纳米结构非织造基抗菌功能材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
银系抗菌剂是目前应用最普遍的抗菌整理剂。纳米银抗菌剂除了优异的抗菌效果之外,还具备低毒性、易分散、无耐药性、不受pH值影响、亲水、及热稳定性等优点,日益成为制备抗菌材料的研究重点。
     本文在详细介绍了抗菌剂的分类和国内外制备纳米银抗菌织物方法的基础上,针对目前已有的制备纳米银抗菌织物方法的缺点,提出采用绿色环保的磁控溅射技术,在室温条件下,选择在丙纶及聚乳酸非织造布基材表面沉积功能性纳米结构银镀层,以实现纺织材料表面的抗菌功能化。
     论文主要探讨了溅射工艺参数(溅射时间,溅射功率,溅射压强和气体流量)以及氩气等离子预处理对抗菌性能的影响。采用振荡烧瓶法对非织造基纳米银薄膜进行了抗菌性能测试,同时利用扫描电镜(SEM)、原子力显微镜(AFM)和X射线能谱分析仪(EDX)研究了纳米结构银薄膜的表面微观形貌及组成成分。抗菌测试结果表明,溅射时间和氩等离子预处理是影响抗菌性能的两大关键因素,而溅射功率、溅射压强,气体流量对抗菌性能影响较小。在实验范围内,随溅射时间的延长,抗菌性能明显逐渐改善。对于丙纶及聚乳酸非织造布,对大肠杆菌和金黄色葡萄球菌的抑菌率均达100%时的纳米银薄膜厚度分别为3nm和2nm。在相同工艺条件下,经氩等离子预处理的纳米银薄膜抗菌性能有明显的提高,对于丙纶及聚乳酸非织造布,对大肠杆菌和金黄色葡萄球菌的抑菌率均达100%时的纳米银薄膜厚度仅分别是2nm和0.5nm。AFM及EDX分析结果表明,随溅射时间的增加,膜的致密性、均匀性越来越好,表面积越来越大,织物单位面积上Ag元素含量逐渐增加,银离子释放的几率增大,样品抗菌性能提高;氩等离子预处理使织物表面凹凸不平,银粒子到达基材表面时不易因扩散运动而发生团聚,银粒子活性增大,此外,氩等离子处理引起的比表面积增大使溅射出的银粒子更多地附着在织物的表面,抗菌性能提高。
     在相同工艺条件下,丙纶与聚乳酸非织造基纳米结构银薄膜的抗菌性能存在的差异主要是由粗糙度及织物材质的亲水性导致的。
Silver antimicrobial is the most widely used antibacterial finishing agents. Besides the excellent antibacterial effects, nanostructured silver has such advantages as low toxicity to human beings, easy to be dispersed in water, no tolerance, not affected by pH value and good thermal stability. Thus, preparation of antibacterial materials has aroused increasing attention from the people all over the world.
     In this paper, classification of the antibacterial finishing agents and techniques employed for the preparation of the nanostructured silver antibacterial textiles home and abroad were first introduced. For there are drawbacks existing in these available techniques, in this research, magnetron sputter coating which is friendly to the environments was used to deposit nanostructured silver films on polypropylene (PP) and PLA nonwovens at room temperature to obtain the antibacterial properties.
     In this research, the impacts of sputtering parameters such as deposition time, sputtering power, gas pressure and gas flow on antibacterial properties of the samples were investigated. Furthermore, the effect of argon plasma pretreatment for nonwovens on antibacterial properties was also studied. The antibacterial performance was assessed using shake flask test. The surface morphology was observed with SEM and AFM. Surface elemental distribution and elemental quantitative analysis was measured employing EDX. The antibacterial test results revealed that deposition time and argon plasma pretreatment were the two key factors affecting antibacterial properties of the coated materials, while sputtering power, gas pressure and gas flow had slight influence on antibacterial properties. Within the scale of experiment, antibacterial performance was significantly improved as the deposition time prolonged. For PP nonwovens, when the silver film thickness was above 3nm, both the reduction percentage of Staphyllococcus aureus and Escherichia coli bacteria got to 100%; while for PLA nonwovens, as the coating thickness exceeded 2nm, both the reduction percentage reached 100%. Under the same processing condition, the coated samples with argon plasma pretreatment had the better antibacterial performance. And respectively for the pretreated PP and PLA nonwovens, when the film thickness got to 2nm and 0.5nm, the reduction percentage of both the tested bacteria reached 100%. AFM and EDX analysis indicated that as the deposition time prolonged, the coverage of the silver particles on nonwovens and silver weight percentage per unit surface increased, leading to an increase in release rate of silver ions from coating, which resulted in the improved antibacterial properties. The process of argon plasma treatment resulted in the formation of obvious etch dot and flute on fibers of nonwovens, thus the sputtered silver particles were hard to cluster, leading to the increased activity of nanostructured silver on films, which contributes to the improved antibacterial performance. Moreover, after plasma pretreatment, the overall amount of silver particles deposited on nonwovens increased, resulting in the improved antibacterial properties.
     Under the same deposition conditions, there were differences in antibacterial performance between the coated PP and PLA nonwovens, which were caused by the roughness and hydrophilicity difference between the materials.
引文
[1]陈小兵.溶胶凝胶法制备二氧化钛基抗菌薄膜及其性能研究[D]:[硕士论文].广东:广东工业大学,2004.
    [2]季君晖,史维明.抗菌材料[M].第2版.北京:化学工业出版社,2004.9-44.
    [3]严国良,苏英.抗菌卫生纺织品的现状与展望[J].金山油化纤,2001,(3):37-40.
    [4]何敏珠,阎均,龚羽.抗菌织物及其抗菌性能的评价[J].上海纺织科技,2005,33(3):62-64.
    [5] Qun Li, Shuilin Chen. The study on ZnO Nano-particle Coating Agent and Anti-bacterial T/C Fabric Modified[A]. Proceeding of 2005 International Conference on Advanced Fibers and Polymer Materials, Oct.19-21, Shanghai, China.
    [6] Y S Cheng, K L Yeung. Effects of electroless plating chemistry on the synthesis of palladium membranes[J]. Journal of Membrane Science, 2001, 182:195-203.
    [7] Razima S Souleimanova, Alexander S Mukasyan, Arvind Varma. Study of structure formation during electroless planting of thin metal-composite membranes. Chemical Engineering Science[J], 1999, 54:3369-3377.
    [8] HOON JOO LEE AND SUNG HOON JEONG. Bacteriostasis of nanosized colloidal silver on Polyester nonwovens[J]. Textile Research Journal, 2004, 74(5): 442-447.
    [9] Alan Jankowski, Jeffrey Hayes. The evaporative deposition of aluminum coatings and shapes with grain size control[J]. Thin solid Films, 2004, 447-448: 568-574.
    [10] S Q Jiang, E Newton, C W M Yuen, etc. Chemical Silver Plating and Its Application to Textile Fabric Design[J]. Journal of Applied Polymer Science, 2005, 96:919-926.
    [11] Wilmert De Bosscher, Hugo Lievens. Advances in magnetron sputter sources[J]. Thin Solid Films, 1999, 351:15-20.
    [12] B Window. Recent advances in sputter deposition[J]. Surface and Coatings Technology, 1995, 71:93-97.
    [13] D P Dowling, K Donnelly, M L McConnell, etc. Deposition of anti-bacterial silver coatings on polymeric substrates[J].Thin Solid Films, 2001, 398-399:602-606.
    [14]冯乃谦,严建华,翟凡,等.无机抗菌剂、抗菌制品及其测试方法[J].贵金属,1998,32(5):315-316.
    [15]何继辉,马文石,谭绍早,等.抗菌丙纶的制备及其性能研究[J].合成纤维工业,2004,24(6):24-27.
    [16]吕艳萍.有机硅季铵盐—纳米银复合织物抗菌整理剂的制备及应用研究[D]:[硕士论文] .陕西:陕西科技大学,2004。
    [17]顾彪,陈茹.辉光放电等离子体对聚丙烯纤维的表面改性[J].高分子通报,2003,2,51-58.
    [18]陈杰瑢.低温等离子体化学及其应用[M].科学出版社,2001.9.
    [19]夏彦水,杨建忠.低温等离子体技术在纺织材料表面改性中的应用进展.纺织科技进展,2005,3:5-7。
    [20]孙东明.圆柱形平面式磁控溅射靶的特点与设计原理[J].昆明理工大学学报,2000(2):54-57.
    [21]孙银洁.PET基氟碳膜形貌、结构及性能研究[D]: [硕士论文].青岛:青岛大学,2003.
    [22]朱友水,王红卫.丙纶非织造物的等离子体金属化处理[J].纺织学报,2005,26(5):83-85.
    [23]吴桂芳,赵青生.直流磁控溅射镀膜实验条件的选择[J].大学物理实验,2004,17(2):25-27.
    [24]胡作启,李佐宜,缪向水,等.磁控溅射薄膜的厚度均匀性理论研究[J].华中理工大学学报,1996,24(1):89-92.
    [25]王静,冀志江,金宗哲,等.抗菌功能建材抗菌性能评价方法[J].中国建材科技,2004,(2),6-12.
    [26]王俊起,王友斌,薛金荣,肖钧.纺织品抗菌功能测试方法研究[J].中国卫生工程学,2003,2(3):129-132.
    [27] Radhesh Kumar, Helmut Munstedt. Silver ion release from antimicrobial polyamide/silver composites[J]. Biomaterials, 2005, 26:2081-2088.
    [28]李秀杰.磁控溅射沉积氧化锌薄膜的原子力显微镜研究[J].机械管理开发,2003,70(1):15-16.
    [29]洪剑寒,王鸿博,魏取福,等.磁控溅射制备Ag薄膜的AFM分析和导电性能[J].纺织学报,2006,27(9):14-17.
    [30]陈耀文,林月娟,张海丹.扫描电子显微镜与原子力显微镜技术之比较[J].中国体视学与图像分析,2006,11(1):53-58.
    [31]杜珊.原子力显微镜相位象的理论和应用[J].云南师范大学学报,2005,25(4):47-51.
    [32]蔡颖谦,徐如祥,姜晓丹.原子力显微镜技术在生物医学领域的应用[J].中华神经医学杂志,2005,4(7):735-738.
    [33] Q F Wei. Surface characterization of plasma-treated polypropylene fibers[J]. Materials Characterization,2004,52:231-235.
    [34]金郡潮,戴瑾瑾,陆望,等.丙纶薄膜等离子体表面改性处理研究[J].印染,2000,4:11-13.
    [35] D P Dowling, A J Betts, C Pope, etc. Anti-bacterial silver coating exhibiting enhanced activity through the addition of platinum[J]. Surface and Coating Technology, 2003, 163-164: 637-640.
    [36]赵艳志,张燕,张建春.Coolmax织物液态水传递性能研究[J].山东纺织科技,2003,(1):5-8.
    [37]唐启祥.纳米抗菌材料[J].文山师范高等专科学校学报,2004,17(3),262-265.
    [38]赵娣芳,周杰,刘宁.含银无机抗菌材料的开发及应用[J].矿产保护与利用,2005,(3):12-15.
    [39]付伟,吴卫华,王黔平.新型银系抗菌剂的现状和展望[J].江苏陶瓷,2006,39(5):26-28.
    [40]郭登峰,郭腊梅.纺织品抗菌整理现状及发展趋势[J].广西纺织科技,2006,35(3):38-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700