乙醇脱氢合成乙酸乙酯催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以ZrOCl2为锆源,采用溶胶-凝胶法首先制备出Zr(OH)_4凝胶,再将凝胶进行醇化处理,烘干和焙烧制得ZrO_2纳米载体。以ZrO_2为载体,采用浸渍法制备了负载型CuO/ZrO_2催化剂。以凝胶Zr(OH)_4粉末为前驱物,制备了掺杂型CuO-ZrO_2催化剂。采用共沉淀法制备了共沉淀型催化剂CuO·ZrO_2。以Cu和Zr的共沉淀物为前驱物,制备了Pd-CuO·ZrO_2复合金属氧化物催化剂。通过XRD、N2吸附、TG-DCS、TEM、SEM和Raman对载体和催化剂进行表征。以乙醇氧化脱氢合成乙酸乙酯为探针反应,考察了不同制备方法对CuZrO系列催化剂的催化性能的影响。
     研究表明:制备的ZrO_2载体具有较大的比表面积、孔容和均匀的孔径分布;在不同制备方法所得的样品中,共沉淀型CuO·ZrO_2催化剂比表面积和孔体积是最大的;对于掺杂型催化剂CuO-ZrO_2、共沉淀催化剂CuO·ZrO_2而言,活性组分的加入可延迟ZrO_2的相变,且掺杂型的延迟效果更为显著;对Pd-CuO·ZrO_2研究表明Pd和Cu两种元素的加入可以极大的改变ZrO_2的晶相结构,远比单金属Cu含量增加更有效。
     本文对制备的CuZrO系列催化剂催化性能进行了考察。发现CuZrO系列催化剂对乙醇的催化氧化具有较高的活性,CuO作为活性组分可以明显的提高乙酸乙酯的选择性。实验考察了反应温度、空气流速、催化剂焙烧温度、活性组分含量以及不同制备方法对催化剂催化性能的影响。催化剂活性变化规律为:共沉淀型>掺杂型>负载型。本文对催化反应进行了工艺条件优化,优化的工艺条件为:Cu含量为6%,550℃焙烧,反应温度为473 K,反应气流速30 mL/min。掺杂型CuO-ZrO_2的活性处于负载型和共沉淀型之间,乙醇转化率为28%,乙酸乙酯选择性为83%;共沉淀型CuO·ZrO_2活性最好,乙醇转化率为39%,乙酸乙酯选择性为88%。同时实验表明催化剂在反应过程中表现出了较好的稳定性。Pd-CuO·ZrO_2催化剂活性评价表明:Pd的加入可以提高催化剂对乙醇的转化率性,但对于乙酸乙酯的选择性不利。
Zr(OH)_4 gel was prepared by sol-gel method from ZrOCl2 material. Then the the gel was alcoholized by ethanol, dried, and calclined to get ZrO_2 nanometer scale particles. Supported catalysts CuO/ZrO_2 were prepared by impregnation method. Doped CuO-ZrO_2 catalysts were prepared that Cu(NO_3)2 was supported on Zr(OH)_4. CuO·ZrO_2 catalysts were prepared by co-precipitated method. The catalyst Pd-CuO?ZrO_2 was prepared that PdCl2 was supported on Cu(OH)2-Zr(OH)_4. The catalysts were characterized by XRD、N2 adsorption-desorption、TG-DCS、TEM、SEM and Raman. Catalytic activities of the catalysts were investigated by dehydrogenation of ethanol to ethyl acetate as the probe reaction.
     The result of research show that ZrO_2 which has higher surface area and pore volum、well-distributed pore is got; CuO·ZrO_2 catalysts has the highest surface area and pore volum during the samples prepared by different ways; That the active constituent Cu was added into CuO-ZrO_2 and CuO?·ZrO_2 can put off the transition of ZrO_2 from tetragonal crystal to monoclinic crystal and the delay of transition in doped CuO-ZrO_2 catalysts is more evidence; The addition of Pd and Cu can change the crystal structure more than only Cu by increasing its content.
     Catalytic activities of the catalysts were investigated. The results indicate that the catalysts prepared by different ways have the catalytic activity by dehydrogenation of ethanol to ethyl acetate, the active constituent Cu can improve the selectivity of ethyl acetate. The influence of activity by different metal, reaction temperature, velocity of flow, temperature of calcination, content of metal and different methods of preparation was studied. The discipline of catalytic activity is: CuO?ZrO_2>CuO-ZrO_2>CuO/ZrO_2. The process conditions were optimized as following: the content of Cu is 6%, the temperature of calcinations is 550℃, the reaction temperature is 473 K, the space velocity is 30 mL/min. The catalytic activity of CuO-ZrO_2 is between the CuO·ZrO_2 and CuO/ZrO_2, the conversion of ethanol is 28% and the selectivity of ethanol to ethyl acetate is 83% is attained. The CuO?ZrO_2 catalyst has the highest catalytic activity during the catalysts. The conversion of ethanol is 39% and the selectivity of ethanol to ethyl acetate is 88%. The results of stability tests indicated that the catalysts performed a well performance. The research of Pd-CuO?ZrO2 activity shows that the addition of Pd can increase the conversion of ethanol, but it is not good for the selectivity of ethanol to ethyl acetate.
引文
[1]刘冲等编.石油化工手册(三).北京:化学工业出版社, 1987: P259.
    [2]程能林,胡声闻.溶剂手册(下册)[M].北京:化学工业出版社, 1987: 14-15.
    [3]王昌利,宋小妹,胡亚迅,等.沙棘果皮总黄酮提取分离工艺研究[J].中成药, 1994, 9: 6-8.
    [4]魏福祥,韩菊,于宝莉.葡萄籽中活性成分提取工艺的研究[J].精细化工, 2001, 18 (7): 394-400.
    [5] M. A.约翰逊,游一中,刘军伍.气雾剂手册一配方、技术、市场.北京:化学工业出版社, 2004, 3: 222.
    [6]林翔云.调香术.北京:化学工业出版社, 2001, 7: 264-266.
    [7] L. J. Calb.涂料助剂大全.上海:上海科学技术文献出版社, 2000, 5: 330.
    [8]李涛,曹晓岚.乙酸乙酯的生产及市场[J].精细石油化工进, 2002, 3(9): 37-40.
    [9]刘文彬,钱徐萍.乙酸乙酯生产技术对比[J].化学与粘合, 2003, 4: 184-185.
    [10]于伟民,薛永强,梁西良,等.乙酸乙酯的精制方法[J].化学与粘合, 2005, 27(2): 108-111.
    [11]卢伟京,宋少芳,韦小杰. ZSM-5位催化剂合成乙酸乙酯.广西大学学报, 1997, 6: 139-143.
    [12]张俊华,陈永生.乙醛法合成乙酸乙酯[J].精细化工, 1998, 15(4): 55-581.
    [13]刘业成,王德成,韩祖宏,等.乙醛缩合制乙酸乙酯[J].化学与粘合, 1993, 3: 160-162.
    [14]赵景荣.乙醇法乙醛制醋酸乙酯的工业化可行性[J].现代化工, 1997, 6: 309-311.
    [15]曾金龙,傅锦坤,郑荣辉,等.稀土氧化物对乙醇一步合成乙酸乙酯混合氧化物催化剂性能的影响[J].化学研究与应用, 1998, 3: 22-27.
    [16]钱清华.乙醛制备乙酸乙酯[J].连云港职业技术学院学报, 2000, 3: 39-42.
    [17]王军,王德城,王静.乙醛缩合法生产乙酸乙酯的发展前景[J].化学工程师, 1998, 2: 55-56.
    [18]曾金龙,傅锦坤,郑荣辉,等.稀土氧化物对乙醇一步合成乙酸乙酯混合氧化物催化剂性能的影响[J].化学研究与应用. 1998, 3: 22-27.
    [19]郑荣辉,曾金龙,乙醇一步法合成乙酸乙酯的CuZnOCoA12O3TiO2催化剂[J].化学研究与应用, 1997, 9: 302-303.
    [20]朱继芳,廖世军,陈焕钦,等.乙酸/乙烯酯化合成乙酸乙酯工艺的研究与开发[J].化学反应工程与工艺, 1999, 15(3): 314-316.
    [21] Sanokenichi, Nishyamamassaaki, Suzukitoshiro, et al. Process for preparation of lower fatty acide sters from acids and olefin using heteropoly acid and salt catalyst[P]. EurPatAppl. EP 562139: 1993, 09, 29.
    [22]刘明.乙酸乙酯的市场需求与生产方法[J].化学工业与工程技术, 2004, 25(5): 54-56.
    [23]刘怡励,郑宝山.国内外乙酸乙酯市场综述[J].化工技术经济, 2003, 21(1): 21-24.
    [24]李涛,曹晓岚.乙酸乙酯的生产及市场[J].精细石油化工进展, 2002, 3(9): 37-40.
    [25]江镇海,乙酸乙酷市场趋势继续看好[J].化工市场, 2004, 10: 47-48.
    [26]曾庆友.二乙醇胺催化脱氢制亚氨基二乙酸催化剂及工艺研究(硕士学位论文),浙江大学, 2001, 11-12.
    [27]杨树武,周卓华. Cu/ZnO/Al2O3/ZrO2催化剂上乙醇脱氢合成乙酸乙酯I催化反应性能及机理[J],催化学报, 1996, 17(1): 5-7.
    [28]王军,刘文彬,谭淑媛.乙酸乙酯生产工艺现状及发展趋势[J].应用科技, 2003, 3: 51-53.
    [29] Keen B T. A method to convert primary alkanols to their corresponding esters[P]. EP: 201105, 1986, 05, 09.
    [30] J?rgensen B, Christiansen S E, Thomsen M L D, et al. Aerobic oxidation An of aqueous ethanol using heterogeneous gold catalysts: Efficient routes to acetic acid and ethyl acetate[J]. Journal of Catalysis, 2007, 251: 332-337.
    [31] Inui K, Kurabayashi T, Sato S, et al. Effective formation of ethyl acetate from ethanol over Cu-Zn-Zr-Al-O catalyst[J]. Journal of Molecular Catalysis A:Chemical, 2004, 216: 147-156.
    [32] Inui K, Kurabayashi T, Sato S. Direct synthesis of ethyl Acetate from ethanol carried out under pressure[J]. Journal of Catalysis, 2002, 212: 207-215.
    [33]尾花良哲,内田博,佐野健一.生产乙酸与乙酸乙酯的催化剂及其制备方法和用其生产乙酸与乙酸乙酯的方法[P].中国: 00807049.0, 2001, 4, 5.
    [34]王俊,蒋庆智,陈红侠,等.乙醇一步合成乙酸乙酯催化剂的催化性能[J].大庆石油学院学报, 2000, 24(4): 84-86.
    [35] Sanchez A B, Homs N, Fierro J L, et al. New supported Pd catalysts for the direct transformation of ethanol to ethyl acetate under medium pressure conditions[J]. Catalysis Today, 2005, 107: 431-435.
    [36]伏再辉,奚红霞,龚健.乙醇在双功能Pd-Cu分子筛催化剂上气相氧化化一步合成乙酸乙酯[J].催化学报, 1994, 15(4): 262-267.
    [37] Lin Tzongbin, Chung Donglin, Chang Jenray. lndustrial&Engineering Chemistry research, 1999, 38(4):1271-1276.
    [38]马宇春,石峰,邓友权.担载纳米金催化乙醇选择氧化制乙酸乙酯[J].分子催化, 2003, 17(6): 425-429.
    [39] Elliot D J, Pennella F. The formation of ketones in the Presence of carbon monoxide over CuO/ZnO/A12O3[J]. Journal of catalysis, 1989, 119: 359-367.
    [40]潘伟雄.乙醇脱氢歧化酯化一步合成乙酸乙酯[J].石油化工, 1991, 20 (5): 330-337.
    [41]苑静,杨树武,周卓华.负载型铜基催化剂上乙醇脱氢直接合成乙酸乙酯[J].辽宁师范大学学报(自然科学版), 2002, 25(1): 46-49.
    [42]麦景红,王晓东,雍永枯.乙醇催化脱氢制乙酸乙酯的反应特征, 1995, 12(6): 25-30.
    [43]崔能伟,刘成,姜浩锡,等.乙醇一步法制备乙酸乙酯的MoS2/C催化剂[J].化学工业与工程, 2006, 05: 400-402.
    [44] Inui K, Kurabayashi T, Sato S. Effective Formation of Ethyl Acetate from Ethanol over Cu-Zn-Zr-Al-O catalyst[J]. Applied Catalysis A: General, 2002, 237: 53-61.
    [45] Zhou Renxian, Yu Tieming, Jiang Xiaoyuan. Temperature programmed reductionand temperature programmed desorption studies of CuO/ZrO2 catalysts[J]. Applied Surface Science, 1999, 148: 263-270.
    [46] Mugniery X, Chafik T, Primet M. Characterization of sites involved in the adsorption of CO on ZrO2 and ZnO/ZrO2 methanol synthesis aerogel catalysts[J]. Catalysis Today, 1999, 52: 15-22.
    [47] Baiker A, Kilo M, Maciejewski M et al. In: Guczi L, Solymosi F, Tetenyi Peds. Proceedings of the10th International Congress on Catalysis. Amsterdam: Elsevier, 1993, 1257.
    [48]师江柳,刘金尧,朱起明,等. CuO/ZrO2超细粒子催化剂的制备和物性结构表征.Ⅰ.水凝胶pH值的影响[J].催化学报, 1996, 17(4): 277-280.
    [49]师江柳,刘金尧,朱起明,等. CuO/ZrO2超细粒子催化剂的制备和物性结构表征.Ⅱ.煅烧温度的影响[J].催化学报, 1996, 17(4): 323-326.
    [50] Yamaguchi T. Application of ZrO2 as a catalyst and a catalyst support[J]. Catal. Today, 1994, 20: 199-218.
    [51]杨鹏程,蔡小海,谢有畅.共沉淀CuO-ZrO2复合氧化物分散状态研究[J].物理化学学报, 2003, 19(8): 714-717.
    [52] Vrinat M, Hamon D, Breysse M, et al. Zirconia and alumina supported molybdenum-based catalysts: a comparative study in hydrodesulfurization and hydrogenation reactions[J]. Catal Today, 1994, 20: 273-282.
    [53]李为臻,刘海超.氧化锆负载氧化钌催化甲醇低温选择氧化合成甲酸甲酯的活性催化剂结构.催化学报, 2006, 27(10): 840-842.
    [54] Gavalas G. R, Phichitkul C, Voecks G E. Activity of NiO/α-A12O3 and NiO/ZrO2 calcined at high temperatures[J]. Structure Cata1., 1984, 88: 54-64.
    [55] Chen H W, White J M, Ekerdt J G.. Electronic effect of supports on copper catalysts[J]. Cata1., 1986, 99: 293-303.
    [56] Meijers A C Q M., Jong A M, Vanruijthuijsen L M P, et al. Preparation of zirconium oxide on silica and characterization by X-ray photoelectron spectroscopy, secondary ion mass spectrometry, temperature programmed oxidation and infra-red spectroscopy[J]. Appl. Cata1., 1991, 70: 53-71.
    [57] Yamaguclu T, Morita T, Salama T M , et al. Surface properties of ZrO2 dispersed on SiO2[J]. Catal. Lett., 1990, 4: 1-6.
    [58] Li W, Yin Y Q, Gao R X, et al. Comparison of CO hydrogenation on monoclinicand tetragonal ZrO2 catalysts[J]. Mol Catal(Chinese), 1999, 13(3): 186-192.
    [59] Lindstrom B, Pettersson L J. Hydrogen generation by stream reforming of methanol over copper-based catalysts for fuel cell application [J]. International Journal of Hydrogen Energy, 2001, 26: 923-933.
    [60] Lei T, Xu J S, Tang Y. New solid superacid catalysis for n-butane isomerization:γ-Al2O3 or SiO2 supported sulphated zirconia[J]. Applied Catalysis A:General, 2000, 192: 181-188.
    [61] Qe M S, Kei I C. Effect of hydrogen on n-butane isomerization over Pt/ SO42--ZrO2 and Pt/SiO2 + SO42--ZrO2[J]. Applied Catalysis A: General, 2000, 194-195: 383-393.
    [62] Pérez M, Armendáriz H, Toleddo A, et al. Preparation of Ni/ SO42--ZrO2 catalysts by incipient wetness method: effect of nickel on the isomerization of n-butane[J]. Journal of Molecular Catalysis A: Chemical, 1999, 149: 169-178.
    [63]郑纯智,于艳春,张国华.固体超强酸ZrO2-SO42-催化合成α-萘乙酸甲酯[J].化学世界, 2001, 12: 647-650.
    [64] Lopez T, Navarrete J, Gomez Retal. Preparation of Sol-gel sufated ZrO2-SiO2 and characterization of its surface acidity[J]. Appl Catal, 1995, 125: 217-229.
    [65] Stichert W, Schth F. Synthesis of catalytically active high surface area monoclinic sulfated zirconia[J]. J Catal, 1998, 174: 242-245.
    [66] Yori J C, Parera J M. Influence of the crystalline structure of ZrO2 on the metallic properties of Pt in Pt/WO3-ZrO2 catalysts[J]. Catal Lett, 2000, 65: 205-20.
    [67] Pommier B, Teichner S J. In: Phillips M J, Ternan Meds. Proceedings of the 9th International Congress on Catalysis, Vol 2. Ottawa: Chemical Institute of Canada, 1988, 6, 10.
    [68] Keshavaraja A, Ramaswamy A V. Mn-stabilized zirconia catalysts for complete oxidation of n-butane[J]. Appl Catal B: Environmental, 1996, 8: 11-17.
    [69] Choudhary V R, Banerjee S, Pataska SG. Combustion of dilute propane over transition metal-doped ZrO2(cubic) catalysts[J]. App Catal A: General 2003, 253: 65-74.
    [70]李美俊,陈钧,韩波,等.紫外拉曼光谱研究钇掺杂的氧化锆体系表面相变[J].光散射学报, 2002, 14(2): 76-81.
    [71]黄仲涛,林维明,庞先燊等编.工业催化剂设计与开发.广州:华南理工大学出版社, 1991.
    [72] Bokhimi X, Morales A, Novaro O, Portilla M, et al. Tetragonal nanophase stabilization in nondoped Sol-Gel zirconia prepared with different hydrolysis catalysts[J]. Journal of solid state chemistry, 1998, 135: 28-35.
    [73] Jung K T, Alexis T. The effects of synthesis and pretreatment conditions on the bulk structure and surface properties of zirconia[J]. Journal of Molecular Catalysis A: Chemical, 2000, 163: 27-46.
    [74] Su S C, Bell A T. A study of the structure of vanadium oxide dispersed on zirconia[J]. Physical Chemistry B, 1998, 102: 70-73.
    [75] Pacheco G, Fripiant J J. Physical chemistry of the thermal transformation of mesoporous and microporous zirconia[J]. Physical Chemistry B, 2000, 104: 11-16.
    [76] Stefanc I I, Music S, Stefanic G, etal, Thermal behavior of ZrO2 precursors obtianed by sol-Gel processing[J]. Mole. Structure., 1999, 4: 80-84.
    [77] Xiong G, Li C, Feng Z C, et al. UV resonance raman spectroscopic identification of transition metal atoms incorporated in the framework of molecular sieves stud[J]. Surface Science Catalysis, 2000, 5: 130: 341-344.
    [78] Gregg S J, Sing K S W. A dsorption, Surface Area and Porosity. 2nd ed. London: Academic Press, 1982. 213.
    [79]刘维桥,孙桂大编.固体催化剂实用研究方法.北京:中国石化出版社, 2000.
    [80]辛勤编.固体催化剂研究方法.北京:科学出版社, 2004.
    [81] Xie Y C, Tang Y Q. Spontaneous monolayer dispersion of oxides and salts onto surfaces of supports: Applications to heterogenous catalysis[J]. Advanced Catalysis, 1990, 37(1): 1-43.
    [82] Strohmeier B R, Leyden D E, Field R S et al. Surface spectroscopiccharacterization of Cu/Al2O3 catalysts[J]. Journal of Catalysis, 1985, 94(4): 514-530.
    [83]王大宁,梁开明,万菊林.含碳的氧化锆陶瓷[J].硅酸盐学报, 1998, 26(2): 230-236.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700