纳米SnO_2/ZnO复合光催化剂的制备表征及其光催化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年,半导体光催化降解技术作为一种新型的环境净化技术已经越来越为人们所重视。ZnO是一种重要的半导体材料,其体相材料的禁带宽度为3.2eV,对应于波长为387nm的紫外光。但是,纯ZnO光催化效率较低,难以工程化应用。半导体复合或掺杂等能提高其光催化效率,因而引起广泛关注。
     本文采用共沉淀法制备了纳米SnO_2/ZnO复合光催化剂。用热分析仪分析复合光催化剂前驱体的热反应行为,X射线衍射分析煅烧后复合光催化剂的物相组成,并用透射电镜观察其形貌及粒度分布:在高压汞灯照射下,用其降解甲基橙、甲醛等溶液,并对其光催化活性进行分析。实验结果表明:
     (1)以ZnSO_4·7H_2O和SnCl_4·5H_2O为原料,氨水为沉淀剂,采用共沉淀法制备的纳米SnO_2/ZnO复合光催化剂,其最佳n(Zn)/n(Sn)比为2:1,最佳煅烧温度为600℃保温6h。用纳米SnO_2/ZnO作光催化剂,比同等条件下仅用纳米ZnO对甲基橙的降解率提高显著。复合催化剂添加量为2.5g/L,光照20min后,甲基橙的降解率已达到了100%。光降解甲基橙反应基本符合一级动力学方程,且重复使用性能良好。
     (2)根据本实验中确定的最佳制备条件得到的前驱体,经不同煅烧温度,不同保温时间制备的复合光催化剂对甲醛、对甲基苯酚和酿酒废水进行光降解。实验结果表明:600℃煅烧6h的复合催化剂效果最好。复合催化剂对甲醛的光催化降解情况类似于甲基橙,反应都符合一级动力学方程,但甲醛较难以降解;对对甲基苯酚的光降解符合零级动力学方程。复合催化剂对酿酒废水中COD的去除,达到了较好的效果。
Currently, the photocatalytic technology is paid greater attention as a new environment-purifying technique among various techniques for purifying environment. ZnO is a kind of important semiconductor material, its bulk material's energy gap is 3.2eV, corresponding to the ultraviolet light of the wavelength 387nm, which gained people comprehensive research in recent years. But photocatalytic efficiency of pure ZnO is lower, so it is hard to apply in the engineering. And its photocatalytic efficiency is improved by compounding semiconductors or adulterating, which was researched widely.
     The SnO_2/ZnO nanocomposites were prepared by coprecipitation method. The phase was analyzed by XRD, the particle figure and the size distribution were analyzed by TEM, and the photocatalytic activity was analyzed through degradating the solution of methyl orange which was irradiated by the high-voltage mercury lamp. The results showed:
     (1) The SnO_2/ZnO nanocomposites were prepared by coprecipitation method. SnCl_4·5H_2O and ZnSO_4·7H_2O were the starting materials and NH_3·H_2O was used as the precipitant. The best molar ratio of Zn and Sn was 2:1, the best calcination temperature was 600℃for 6h. The photocatalytic activity of SnO_2/ZnO nanocomposites was obviously improved than the pure ZnO in the same conditions. The degradation rate of methyl orange was close to 100% after irradiated 20min and the addition of catalyst was 2.5g/L. The reaction of nanocomposites photodegradating methyl orange was in accord with first order kinetic model. And we found the photocatalytic activity had no change by using it for many times.
     (2) The composite photocatalyst was prepared with different calcination temperature and different holding time by precursor which was prepared according to the best preparation condition in this experiment, which was used to degradate formaldehyde、p-cresol and brewery wasterwater. Results showed that the photocatalytic effect of composite photocatalyst which was prepared by 600℃for 6h was best. The reaction of composite photocatalyst degradating formaldehyde was similar to degradating methyl orange. They were in accord with first order kinetic model. But formaldehyde was hard to be degradatied. The reaction of degradating p-cresol was in accord with zero order kinetic model. The removal efficiency of COD in brewery wasterwater was good.
引文
[1]樊邦堂.环境化学[M],浙江:浙江大学出版社,1991,8-9.
    
    [2]岳贵春,吴吉琨,杜尧国.环境化学[M],长春:吉林大学出版社,1991,3.
    
    [3]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J].Nature, 1972,238(5358):37-38.
    
    [4] Steven N. Frank, Allen J. Bard. Semiconductor electrodes. 12.Photoassisted oxidations andphotoelectrosynthesis at polycrystalline TiO_2 electrodes[J]. Am.Chem.Soc, 1977,99(14):4667-4675.
    
    [5]Cary J Hetal.Bull of Environ Contain Toxical., 1976, 16:697-701.
    
    [6]P. V Kamat, N. M Dimitrijevie. Colloidal semiconductors as photocatalysts for conversion[J].Solar Energy, 1990,44(2): 83-98.
    
    [7]Li Zhijie, Hou Bo, Xu Yao, Wu Dong, Sun Yuhan. Hydrothermal synthesis, characterization,and photocatalytic performance of silica-modified titanium dioxide nanoparticles[J], Journal ofColloid and Interface Science, 2005, 288(1):149-154.
    
    [8]Senthikumaar S, Porkodi K. Heterogeneous photocatalytic decomposition of Crystal Violet inUV-illuminated sol-gel derived nanocrystalline TiO_2 suspensions [J]. Journal of Colloid andInterface Science, 2005, 288(1):184-189.
    
    [9]Yoshioka Kohtaro, Petrykin Valery, Kakihana Masato, Kato Hideki, Kudo Akihiko. Therelationship photocatalytic activity and crystal structure in strontium tantalates[J]. Journal ofCatalysis, 2005, 232(1): 102-107.
    
    [10]Hiroshi Y. Crvt Rev Solid State Mater Sci, 1993(18):69.
    
    [11]Sakthivela S, Neppolianb B, Shankar M V[J]. Solar Energy Materials & Solar Cells, 2003,77(1):65-82.
    
    [12]Akyol A, Yatmaz H C, Bayramoglu M. Applied Catalysis B:Environmental,2004,54(l): 19-24.
    
    [13]Linsebigler AL, Lu G,Yates J T.Chem.Rev,1995,95(3):735-758.
    
    [14]M. Gratzel, Heterogeneous Photochemical Electron Transfer, CRC Press, Boca Raton, FL,1989.
    
    [15]A. Hagfeldt and M. Gratzel, Light-induced Redox Reactions in Nanocrystalline Systems,??Chem.Rev.1995,95(1),49-68.
    
    [16]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社, 2002,42-431
    
    [17]Yamashita H, Kamada N, He H, et al. Chem. Lett., 1994:855-858.
    
    [18]Bickley R, Gonzalea-Carreno T, Lees J. J. Solid State Chem.,1991,92:178-190.
    
    [19]李田,严煦世.光催化氧化饮用水深度处理研究[J].中国给水排对,1992,8(2):12-17.
    
    [20]魏宏斌,李田,严煦世.水中有机污染物的光催化氧化[J].环境科学进展,1994, 2(3):50-57.
    
    [21]胡春,王怡中,汤鸿宵.多相光催化氧化的理论与实践发展[J].环境科学进展,1995, 3(1):55-64.
    
    [22]罗菊仙,赵中一.半导体多相光催化氧化技术在环境保护中的应用研究进展[J].中国地 质大学学报,2000,25(5):536-541.
    
    [23]Gerischer H, Heller A. J Phys Chem, 1991,95(13):5261.
    
    [24]Kohl PA, Bard A J. J Electrochem Soc, 1979,126(1):59.
    
    [25]Takeda K, Fujiwara K. Characteristics on the determination of dissolved organic nitrogencompounds in natural waters using titanium dioxide and platinized titanium dioxide mediatedphotocatalytic degradation [J]. Wat.Res, 1996,30(2): 323-330.
    
    [26]Aguado M A, Anderson M A, Hill C GDegradation of formic acid over semiconductingmembranes supported on glass effects of structure and electronic doping [J]. Solar EnergyMater.and Solar Cells, 1993, 28(4): 345-361.
    
    [27]Wang Ch M, Heller A, Gerischer H. Palldadium catalysis of O_2 reduction by electronsaccumulated on TiO_2 particles during photoassisted oxidation of organic compounds[J].J.Am.Chem.Soc, 1992,114:2530-2534.
    
    [28]Hadjiivanov K, Uassileva E, Kantcheva M, et al. Ir spectroscopy study of silver ions adsorbedon titania (anatase) [J]. Mater.Chem.Phys, 1991, 28(4): 367-377.
    
    [29]Kondo M M, Jardim W F. Photodegradation of chloroform and urea using Ag-loaded titaniumdioxide as catalyst [J]. WatRes, 1991, 25: 823-827.
    
    [30]Alberci R M, Jardim W F. Photocatalytic degradation of phenol and chlorinated phenols usingAg-TiO_2 in a slurry reactor [J]. WatRes, 1994, 28:1845-1849.
    
    [31]Choi W Y, Termin A, Hoffmann M R. The Role of Metal Ion Dopants in Quantum-Sized??TiO_2:Correlation between Photoreactivitv and Charge CarrierRecombination Dynamics[J]. J Phys.Chem, 1994, 98(51): 13669-13679.
    
    [32]B.I.Rufus, Indian J .Technol. 1989,27:171.
    
    [33]井立强,蔡伟民,孙晓君,侯海鸽,徐自力,杜尧国.Pd/ZnO和Ag/ZnO复合纳米粒子的 制备、表征及光催化活性[J].催化学报,2002,23(4):336-340.
    
    [34]O.A.IlepenrmaY, K.Tennakone, WD.D.PDissanayake. Photocatalytic behaviour of metal doped titanium dioxide: Studies on the Photochemical Synthesis of Ammonia on Mg/Ti02 Catalyst Systems [J].Appl.Cata 1.1990,62:11.
    
    [35]张靖峰,杜志平,赵永红,台秀梅.Fe~(3+)改性纳米ZnO光催化降解壬基酚聚氧乙烯醚[J]. 催化学报,2007,28(6):561-566.
    
    [36]漆新华,王中华,庄源益,余颖,李家麟.改性TiO_2对X-3B的光催化性能及其降解动力 学研究[J].环境污染与防治,2004,26(2):84-86.
    
    [37]D. Chatterjee and A. Mahata. Photoassisted detoxification of organic pollutants on the surface modified TiO_2 semiconductor particulate system[J]. Catal. Commun., 2001, 2(1): 1-3.
    
    [38]林元华,袁方利,黄淑兰,李晋林.纳米级ZnO-TiO_2复合粉体的制备及其性能表征[J]. 功能材料,1999,30(5):507-508.
    
    [39]向芸,杨世源,梁晓峰,王军霞,郑维松.光催化剂纳米TiO_2改性技术的研究进展[J].材 料导报,2006,20(1):57-60.
    
    [40]徐惠,白大勇,王毅,李凤生.凹凸棒负载纳米TiO_2的制备、表征及其光催化性能研究[J]. 安徽工业大学学报,2006,23(2):146-1 50.
    
    [41]丁士文,王利勇,张绍岩,刘淑娟,丁宇,刘燕朝,康全影.纳米TiO_2-ZnO复合材料的合 成、结构与光催化性能[J].无机化学学报,2003,19(6):631-635.
    
    [42]徐静,宋小杰,魏先文.紫外吸收光谱法研究ZnO/碳纳米管复合材料催化降解偶氮染料 [J].光谱学与光谱分析,2007,27(12):2510-2513.
    
    [43]张敬畅,李青,曹维良.超临界流体干燥法制备纳米TiO_2-ZnO复合催化剂及其对苯酚降 解的光催化性能[J].催化学报,2003,24(11):831-834,
    
    [44]赵新强,周秋香,王延吉,张继炎,ZnO,PbO和SiO_2纳米复合物的制备与结构表征[J]. 材料科学与工程学报,2004,22(1):82-85.
    
    [45]王存,王鹏,徐柏庆.ZnO-SnO_2纳米复合氧化物光催化剂催化降解对硝基苯胺[J].催化 学报,2004,25(12):967-972.
    
    [46]王振兴,丁士文,张美红,张玉卓.自组装合成纳米复合TiO_2-ZnO介孔材料及其光催化 性能[J].化学学报,2005,63(3):243-248.
    
    [47]徐甲强,高巧欢,王培义,向群.氧化锌/偏锡酸锌复合氧化物的制备与光催化性能[J]. 硅酸盐学报,2007,35(6):741-745.
    
    [48]杨合,薛向欣,赵娜,左良.半导体多相光催化研究进展及应用技术[J].材料与冶金学报, 2003,2(1):16-20.
    
    [49]王浩,赵文宽,方佑龄,王润帮,李莉.二氧化钛光催化杀灭肿瘤细胞的研究[J].催化学 报,1999,20(3):372-374.
    
    [50]薛宝永.TiO_2-SnO_2复合半导体对气相污染物的光催化降解研究[D].吉林:吉林大学, 2004.
    
    [51]丁士文,张绍岩,刘淑娟,丁宇,康全影,刘燕朝.直接沉淀法制备纳米ZnO及其光催化 性能[J].无机化学学报,2002,18(10):1015-1019.
    
    [52]王振希,郑典模,李建敏,范敏,刘明,庄叶凯.直接沉淀法制备纳米氧化锌工艺研究[J]. 无机盐工业,2006,38(9):40-42.
    
    [53]C.Wang, X.M.Wang, J.C.Zhao, B.X.Mai, GY.Sheng, P.A.Peng, J.M.Fu.Synthesis, characterization and photocatalytic activity of nano-sized SnO_2/VZnO coupled photocatalysts[J]. Mater. Sci. 2002 (37):269-279.
    
    [54]何凯,陈宏刚.表面改性剂在碳酸化法制备白炭黑过程中的作用[J].过程工程学报,2006, 6(3):402-407.
    
    [55]卫芝贤,欧海峰,宫喜军,孙新建,朱振晓.表面活性剂PEG在掺锑纳米SnO_2粉末氧化 共沉淀制备中的作用[J].过程工程学报,2005,5(3):305-308.
    
    [56]Maolin Zhang, Taicheng An, Xiaohong Hu, et al. Preparation and photocatalytic properties of a nanometer ZnO-SnO_2 coupled oxide[J]. Applied Catalysis A:General, 2004, 260:215-222.
    
    [57]韩喜江,张慧娇,徐崇泉,周德瑞,谢晓美.超微颗粒尺寸测量方法比较研究[J].哈尔滨 工业大学学报,2004,36(10):331-1334.
    
    [58]华东理工大学化学系,四川大学化工学院.分析化学[M].北京:高等教育出版社,2003, 256.
    
    [59]J.Bandara, K.Tennakone, P.P.B.Jayatilaka.Composite Tin and Zinc oxide nanocrystalline particles for enhanced charge separation in sensitized degradation of dyes[J]. Chemosphere, 2002,49(4):439-445.
    
    [60]K.Vinodgopal, P.V Kamat.Enhanced rates of photocatalytic degradation of an azo dye usingcoupled SnO_2/TiO_2 semiconductor thin films, Environ.Sci. Technol. 1995 (29):841.
    
    [61]K.Tennakone and J. Bandara, Photocatalytic activity of dye-sensitized tin(IV) oxidenanocrystalline particles attached to zinc oxide particles:long distance electron transfer viaballistic transport of electrons across nanocrystallites, Appl.Catal.B:Gen., 2001, 208(1-2):335-341.
    
    [62]M. S. T. Goncalves, A. M. F. Oliveira-campos, E. M. M. S. Pinto, P. M. S. Plasencia, M. J.R. P.Queiroz, Photochemical treatment of solutions of azo dyes containing TiO_2,Chemosphere1999 (39): 781.
    
    [63] J. Bangun, A. A. Adesina, The photodegradation kinetics of aqueous sodium oxalate solutionusing TiO_2 catalyst, Appl. Catal. A: gen. 1998 (175): 221.
    
    [64]A. A. Khodja, T. Sehili, J. -F. Pilichowski, P. Boule, Photocatalytic degradation of2-phenylphenol on TiO_2 and ZnO in aqueous suspensions, J. Photochem.Photobiol. A: Chem.2001 (141): 231.
    
    [65]I. Poulios, M. Kositzi, A.Kouras,Photocatalytic decomposition of triclopyr over aqueoussemiconductor suspensions, J. Photochem. Photobiol. A: Chem. 1998(115): 175.
    
    [66]F. Kiriakidou, D. I. Kondarides, X. E. Verykios, The effect of operational parameters andTiO_2-doping on the photocatalytic degradation of azo-dyes,Catal. Today 1999 (54): 119.
    
    [67]J. C. Yu, J. Lin, R. W. M. Kwok, Ti,_多 rx02 solid solutions for the photocatalytic degradationof acetone in air, J. Phys. Chem. B 1998 (102): 5094.
    
    [68]L. G. Devi, G. M. Krishnaiah, Photocatalytic degradation of p-amino-azo-benzene andp-hydroxy-azo-benzene using various heat treated TiO_2 as the photocatalyst, J. Photochem.Photobiol. A: Chem. 1999 (121): 141.
    
    [69]I. Poulios, M. Kositzi, A. Kouras. Photocatalytic decomposition of triclopyr over aqueoussemiconductor suspensions[J]. Journal of Photochemistry and Photobiology A: Chemistry,1998,115(2):175-183.
    
    [70]天津大学物理化学教研室.物理化学[M],北京:高等教育出版社,2001:210.
    
    [71]Lewandowski M,OUis DEExtension of a two-site transient kinetic model of TiO_2 deactivation during photocatalytic oxidation of aromaticsxoncentration variations and catalyst regeneration studies[J].Applied Catalysis B:Environmental,2003,45(3):223-238.
    
    [72]Alberici R.M., Jardim W.E, Photocatalytic destruction of VOCs in the gas-phase usingtitanium diode, Appli. Catal. B: Environ.1997, 14 (1): 55-68.
    
    [73]Dibble L. A.. Raupp G B., Kinetics of the Gas-Solid Heterogeneous Photocatalytic Oxidationof Trichloroethylene by Near UV Illuminated Titanium Diode, Catal. Lett., 1990, 4:345-354.
    
    [74]Peral J., Ollis D. R, Heterogeneous Photocatalytic Oxidation of Gas-Phase Organics for AirPurification: Acetone, l-Butanol,Butyralde, Formalde, and m-Xylene Oxidation, J.Catal. 1992, 136 (2): 554-565.
    
    [75]张音波.TiO_2光催化降解甲基橙的试验及机理研究[D].广东:广东工业大学,2002.
    
    [76]李辉勇,金密,周军,李志光,戴翔,赵律.纳米TiO_2的制备及其对甲醛的光催化降解性 能[J].精细化工中间体,2006,36(4):43-45.
    
    [77]丁延伟,吴缨,范崇政.甲醇在纳米TiO_2作用下进行光催化氧化反应的机理研究[J].化 学物理学报,2002,15(6):465-470.
    
    [78]G. Marci, M. Addamo, V. Augugliaro, S. Coluccia, E. Garci a-Lopez, V. Loddo, G Martra, L. Palmisano, M. Schiavello. Photocatalytic oxidation of toluene on irradiated Ti02:comparison of degradation performance in humidified air, in water containing a zwitterionic surfactant[J]. Journal of Photochemistry and Photobiology A:Chemistry, 160(2003): 105-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700