基于电化学方法在铝合金和碳钢表面制备TiO_2复合膜
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用电化学方法在导电材料上制备TiO_2薄膜具有成本低、工艺简单、操作方便、适用于不同形状的工件、生成的薄膜具有良好的均匀性、在一定的沉积时间和电压范围内可控制膜的厚度等优点,具有广阔的应用前景。本课题基于电化学方法分别在铝合金表面制备Al_2O_3/TiO_2复合膜,并在碳钢表面制备NiP/ TiO_2复合膜,基体廉价且应用广泛,不需热处理,对TiO_2应用的推广具有重要的现实意义。
     采用LY-12铝合金在呈酸性的TiPO_4电解液中、匀速上升的直流电压下进行阳极氧化同时沉积TiO_2的方法,使其表面生成了Al_2O_3/TiO_2复合膜。用SEM观察了其表面微观结构,并用EDS表征了其表面成分,结果显示:该复合膜的微观结构与多孔阳极Al_2O_3薄膜(PAA)不同,不存在微孔结构,且表面含Ti原子。通过在3.5%NaCl溶液中对含有Al_2O_3/TiO_2复合膜和PAA膜的铝合金电极进行自腐蚀电位随时间变化测试、电化学阻抗谱和极化曲线测试,分别比较和研究了两种膜电极于常温下在3.5%NaCl溶液中的耐蚀行为,结果表明:两种膜电极在在自然条件下的腐蚀机理不同,Al_2O_3/TiO_2复合膜的耐蚀性高于PAA膜;Al_2O_3/TiO_2复合膜电极(EDTA与Ti~(3+)的摩尔比为4 :1)的耐孔蚀能力强于PAA膜电极,且耐孔蚀能力均明显优于铝合金。
     采用恒电位阳极沉积法于TiPO_4溶液中,在以NiP镀层为过渡层的Q235钢片上制备TiO_2薄膜。利用环境扫描电子显微镜(ESEM)观察了TiO_2薄膜的表面形貌,当电解液的pH=2时,显示的结果与NiP镀层的照片差别不大,而当电解液的pH=3时,试样表面出现了微裂纹;并用EDS分析了其表面显微成分,结果显示含Ti原子;用电化学阻抗谱法和动电位极化曲线测试方法研究了表面覆盖NiP/TiO_2复合膜的电极在3.5%NaCl溶液中的耐蚀行为,结果表明常温下在该腐蚀介质中,含有NiP/TiO_2复合膜的电极与含NiP镀层的电极的腐蚀机理不同,且前者的耐蚀性优于后者。本文在NiP镀层上制备TiO_2薄膜时选用电化学方法代替了溶胶-凝胶法,简化了工艺,降低了成本;另外,以TiPO_4溶液代替TiCl_3溶液做电解液,避免了易造成孔蚀的Cl~-的引入。
Using electrochemical method to prepare TiO_2 films on the conductive material has many advantages, such as low-cost, simple process, easy to operate, applicable to workpieces with different shapes. By this method, films could be prepared with good uniformity; in addition, their thickness could be controlled in certain deposition time and under a range of voltage. In a word, electrochemical method illustrated a good prospect of application and extension. On the basis of electrochemical methods, two improved approaches were drew out, one is preparing Al_2O_3/TiO_2 composite films on aluminum surface, and the other was preparing NiP/ TiO_2 composite films on the surface of the carbon steel. Due to these two kinds of substrate metal cheap and widely used, no treatment involved, promotion of these two methods to prepare TiO_2 composite films are of great realistic significance.
     Al_2O_3/TiO_2 composite films were prepared on LY-12 Aluminum alloy sample surface in TiPO_4 electrolyte under D.C. voltage increased at a constant speed, by anode oxidizing and depositing TiO_2 at one time. The surface microstructure of composite films was observed by SEM, and composition was characterized by EDS. The results showed that the surface microstructure is different to porous anode alumina film (PAA), no micropore structure existing; and contained Ti atoms. The corrosion behavior of Aluminum alloy electrodes coated respectively by Al_2O_3/TiO_2 composite films and PAA films in 3.5% NaCl solution at room temperature were compared and studied by the measurements to corrosion potential changes over time, electrochemical impedance spectroscopy (EIS), and polarization curves. The results indicated that the corrosion mechanism of those two electrodes was different in this solution under natural condition; corrosion resistant in Al_2O_3/TiO_2 composite films was higher than that in PAA films; the same property in the electrode covered by Al_2O_3/TiO_2 composite films (EDTA : Ti~(3+)=4 : 1, by molar ratio) was higher than that in PAA electrode, and pitting corrosion resistant in both electrodes was much more better than that in Aluminum alloy.
     TiO_2 films were formed on NiP transition layers of Q235 carbon steel in TiPO_4 solution by anode deposition with constant potential. The surface microstructure of TiO_2 films was observed by environmental scanning electron microscopy (ESEM), and surface composition was analyzed by EDS. The results showed that: there was little difference between NiP/TiO_2 composite films and NiP coating layers in the microstructure when the pH value of the electrolyte was around 2, however, micro-cracks generated when pH value reached 3; and contained Ti atoms. The corrosion behavior of Q235 carbon steel electrodes coated respectively by NiP/TiO_2 composite films and NiP coating layers were investigated and compared by measurements to EIS and polarization curves in 3.5% NaCl solution at room temperature. The results showed that their mechanisms of corrosion were different in the corrosive media, corrosion resistance of the former was higher than that in the latter. The paper introduced a new electrochemical approach to deposit TiO_2 film on the NiP coating to replace sol-gel method. The new method simplified technique, reduced costs; in addition, TiPO_4 electrolyte replaced TiCl_3 solution, avoided the introduction of Cl~- which could cause pitting corrosion easily on carbon steel.
引文
[1]Chul Han Kwon, Je Hun Kim, Preparation and characterization of TiO2–SiO2 nano-composite thin films, Ceramics International, 2003, 29: 851~856
    [2] C.L. Huisman, A. Goossens, Preparation of a nanostructured composite of titanium dioxide and polythiophene: a new route towards 3D heterojunction solar cells, Synthetic Metals, 2003, 138: 237~241
    [3]Kaishu Guan, Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films, Surface & Coatings Technology, 2005, 191: 155~160
    [4] I.M. Arabatzis , T. Stergiopoulos, Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange, Applied Catalysis B: Environmental, 2003, 42 : 187~201
    [5] Danfeng Li , Changzhi Gu, The effects of ambient gases on the surface resistance of polyoxometalate/TiO2 film, Chemical Physics Letters, 2004, 385: 55~59
    [6] A. Petrellaa, M. Tamborra, TiO2 nanocrystals – MEH-PPV composite thin 2 films as photoactive Material, Thin Solid Films, 2004, (451 –452): 64~68
    [7] I. Losito, A. Amorisco, X-ray photoelectron spectroscopy characterization of composite TiO2–poly(vinylidenefluoride) films synthesised for applications in pesticide photocatalytic degradation, Applied Surface Science, 2005, 240 : 180~188
    [8] Norma R. de Tacconi, Photoelectrochemistry of indium hexacyanoferrate–titania composite films, Journal of Electroanalytical Chemistry, 2001, 500: 270~278
    [9]张俊彦,杨生荣,硅烷自组装膜及硅烷/二氧化钛复合膜的XPS表征与摩擦性能研究,摩擦学学报,2000,20(4) :241~243
    [10]李晓娥,阎宏涛,二氧化钛-聚合物纳米复合膜的制备与光致耗氧行为,高校化学工程学报,2005,19(4):536~540
    [11]夏友谊,纳米二氧化钛/丝素复合膜的制备及其催化甲基橙的研究,现代化工,2005,25(2):41~43
    [12]S. Inoue a, S. Todoroki a, S. Suehara a, Advanced approaches to functional glasses, Journal of Non-Crystalline Solids, 2006, 352: 632~645.
    [13]Akira Nakajima, Nobuaki Hayashi, Yayoi Taniguchi, Effect of vacuum ultraviolet light illumination on the crystallization of sol–gel-derived titanium dioxide precursor films, Surface & Coatings Technology, 2005, 192 :112~116.
    [14]S. Sivakumar, P. Krishna Pillai, P. Mukundan, Sol–gel synthesis of nanosized anatase from titanyl sulfate, Materials Letters, 2002, 57 :330~335.
    [15] Danion A., Disdier J, Guillard,C. Characterization and study of a single-TiO2-coated optical fiber reactor, Applied Catalysis B. 2004, 52(3):213~223
    [16] Nakajima, A.; Hayashi, N.; Taniguchi, Y. Effect of vacuum ultraviolet light illumination on the crystallization of sol–gel-derived titanium dioxide precursor film, Surface & Coatings Technology. 2005, 192(1):112~116
    [17] Djaoued ,Y.; Brüning, R.; Bersanic, D. Sol–gel nanocrystalline brookite-rich titania films. Materials Letters. 2004, (58): 2618~2622
    [18]M. Haraguchi , F. Komatsu a, K. Tajiri. Fabrication and optical characterization of a TiO2 thin film on a silica microsphere.
    [19]Z. Zainal, N. Saravanan, N.S. Fang. Electrochemical assisted photodegradation of oxalate ions using sol–gel coated TiO2 on ITO glass. Materials Science and Engineering B. 2004, (111) :57~63
    [20] Anne Danion, Jean Disdier, Chantal Guillard. Characterization and study of a single-TiO2-coated optical fiber reactor. Applied Catalysis B: Environmental . 2004, (52 ):213~223
    [21]Sonawane, R. S.; Hegde, S. G. Preparation of titanium(IV) oxide thin film photocatalyst by sol–gel dip coating , Materials Chemistry and Physics, 2003, 77(3):744~750
    [22]宋来洲, 高志明, 宋诗哲, 人工神经网络优化碳钢表面TiO2修饰膜制备工艺, 中国腐蚀与防护学报, 2001, 21(2):101~105
    [23]王永为 ,吴凤清 ,阮圣平. 纳米晶TiO2薄膜的制备、表征及其光催化性能的研究, 功能材料, 2003,34(1):93~95
    [24]刘世军, 王培英. 用sol-gel法在不锈钢基片上制备TiO2薄膜,电子元件与材料. 1999,(12):5~8
    [25]银董红,邓吨英,陈恩伟, 溶胶-凝胶法制备二氧化钛薄膜的研究进展,工业催化, 2004, 12(1): 1~6
    [26]胡娟, 邓建刚, 何水样. 纳米级二氧化钛制备方法的比较研究. 材料科学与工程. 2001, 19 (4):71~74
    [27]沈杰, 董昊,张永熙. 溶胶-凝胶法制备二氧化钛薄膜的亲水性研究. 真空科学与技术. 2000, 20(6) : 385~390
    [28]Kai Kamada,Electrodeposition of titanium(IV) oxide film from sacrificial titanium anode in I2-added acetone bath,Electrochimica Acta ,2002,47:3309~/3313
    [29]武朋飞,李谋成,阳极氧化二氧化钛薄膜的光电化学防腐蚀特性,中国腐蚀与防护学报,2005,25( 1):53~56
    [30] Mikula M, Blecha J, Ceppan M. J Electrochem Soc, 1992, 139:3470~3474
    [31] 李宣东,李垚,固定态制备及光催化氧化性能研究,哈尔滨工业大学学报,2004,36(1):79~83
    [32]李芳柏, 王良焱, 李新军,新型Ti/TiO2电极的制备及其光电催化氧化活性, 中国有色金属学报, 2001,11(6):977 ~981
    [33]崔晓莉,江志裕, 纳米二氧化钛薄膜的制备及特性研究,电镀与涂饰,2002, 21(5):17~21
    [34]Han Jun Oh, JongHo Lee, Yongsoo Jeong. Microstructural characterization of biomedical titanium oxide film fabricated by electrochemical method. Surface & Coatings Technology 2005, 198 :247~252
    [35]Toshiaki Ohtsuka, Tetsuo Otsuki, The Influence of the Growth Rate on the Semiconductive Properties of Titanium Anodic Oxide Films. Corrosion Science, 1998, 39 (5):840~847
    [36]Kavan L, Stoto T, Grtzel M, Quantum size effects in nanocystalline semiconducting TiO2 layers prepared by anodic oxidative hydrolysis of TiCl3, J. Phys. Chem. 1993, 97: 9493~9498
    [37]罗瑾, 周静, 祖延兵. 电沉积二氧化钛纳米微粒膜的光电化学性能和表面形貌研究高等学校化学学报, 1998, 19:1484~1487
    [38]Natarajan C, Nogam i G. Cathodic Electrodeposition of Nanaocrystalline Titanium Dioxide Thin Films. J. Electrochem. Soc., 1996, 143(5) : 1547~1550
    [39]Karuppuchamy S, Amalnerkar D P, Yamaguchi K, Chem. Lett. 2001: 78~79
    [40]Subbian Karuppuchamy, Jae Mun Jeong,Super-hydrophilic amorphous titanium dioxide thin film deposited by cathodic electrodeposition,Materials Chemistry and Physics,2005,93:251~254
    [41]Yoshie Ishikawa, Yasumichi Matsumoto, Electrodeposition of TiO2 photocatalyst into porous alumite prepared in phosphoric acid, Solid State Ionics, 151 (2002) 213~218
    [42]谭小春, 黄颂羽. 电泳法制备TiO2超微粒薄膜的研究化学物理学报, 1998, 11 ( 3 ) :416~421
    [43]邱健斌, 曹亚安, 担载材料对TiO2薄膜光催化活性的影响,物理化学学报, 2000, 16 (1) :1~4
    [44]Zhou M,Lin W Y,Tacconi N R,et a1.Metal/semiconductor electrocomposite photoe1ectrodes behavior of Ni/TiO2 photoanodes and comparision of photoactivity of anatase and ruffle modifications.J of Electroanalytical Chem,1996,402:221~224
    [45]李莉,魏子栋,电沉积纳米材料研究现状.电镀与精饰,2004,26(3);9~14
    [46]王晓萍,于云,TiO2薄膜液相沉积法制备及其性能表征,无机材料学报,2000,15(3):573~576
    [47]刘成龙,杨大智,赵 红,316L不锈钢表面液相沉积TiO2薄膜的耐蚀性研究,功能材料,2003, 34(5): 600~602
    [48]曹亚安, 谢腾峰, 张昕彤. TiO2纳米粒子膜表面性质的研究,物理化学学报, 1999, 15(8) : 680—683
    [49]李文军, 李文漪, 赵君芙. 低压MOCVD法制备TiO2薄膜的研究,微细加工技术, 2000, 3:63~69
    [50]孙顺明. 功能电子陶瓷的MOCVD薄膜技术, 电子元件与材料, 1999, 1: 3~4
    [51]魏培海, 姚发业, 王娅娟. MOCVD法制备TiO2薄膜的光电化学性质研究, 山东师大学报(自然科学版) , 2000, 15(2) : 151~153
    [52]郭清萍, 武正簧, 赵君芙. CVD法TiO2 薄膜的制备条件及光学性质的研究,太原理工大学学报, 1998, 29 (3) : 240~243
    [53] Nilson C. da Cruz, Elidiane C. Rangel. Properties of titanium oxide films obtained by PECVD. Surface and Coatings Technology 2000. 126:123~130
    [54] Chantal Guillard, Delphine Debayle, Alain Gagnaire. Physical properties and photocatalytic efficiencies of TiO2 films prepared by PECVD and sol–gel methods. Materials Research Bulletin. 2004, (39) :1445~1458
    [55]丁继成.TiO2膜的激光化学气相淀积.化学物理学报,1994,7(4):386~388
    [56]傅正文, 孔继烈, 秦启宗. 脉冲激光沉积纳米TiO2 薄膜电极的现场光电化学中国科学B, 1999, 29 (6) : 546~552
    [57]蒋立中,周鸣飞, 脉冲激光沉积具有锂离子储存能力的CeO2薄膜,物理化学学报, 1999,15 (8) : 752~756
    [58]Takeda S, Suzuki S, Odaka H, Photocatalytic TiO2 thin film deposited onto glass by DC magnetron sputtering, Thin Solid Films, 2001, 392 (2) : 338~344
    [59]张永熙, 沈杰. 沉积速率及相关工艺条件对直流反应磁控溅射制备TiO2薄膜性质,真空科学与技术, 2000, 20 (1) : 13~18
    [60] L. Casta?eda , J.C. Alonso , A. Ortiz. Spray pyrolysis deposition and characterization of titanium oxide thin films. Materials Chemistry and Physics 2002,77 : 938~944
    [61]Kavan L, Rathousky J, Grtzel M. Mesoporous thin TiO2 film electrodes, Microporous and Mesoporous Materials, 2001, 44-45: 653-659 [62 ]Ohko Y, Tatsuma T, Fujishima A. Photoelectrochemical anticorrosion and self-cleaning effects of a TiO2 coating for type 304 stainless steel, Journal of the Electrochemical Society, 2001, 148(1): 24-28
    [63]Tatsuma T, Saitoh S, Ohko Y, TiO2-WO3 photoelectrochemical anticorrosion system with an energy storage ability, Chem. Mater .2001, 13: 2838~2842
    [64]Sun R D, Nakajima A , Fujishima A , Photoinduced Surface Wettability Conversion of ZnO and TiO2Thin Films.J. Phys.Chem. B, 2001, 105: 1984~1990
    [65]Shin H, Collins R J , De Guire M R. Synthesis and Characterization of TiO2 Thin Films on Organic Self- assembled Monolayers: part I.Film formation from aqueous solutions.J. Mater. Res. 1995,10 (3) : 692~694
    [66]黄丹, 黄宁平, 袁春伟. TiO2薄膜的自组装制备及表征,东南大学学报, 1997, 27 (1) :68~71
    [67]Jin J , Li L S, Li Y, Chen X, Preparation of titanium dioxide and barium titanate nanothick film by Langmuir-Blodgett technique, Thin Solid Films, 2000, 379 (122) : 218~223
    [68]郝彦忠,蔡生民,TiO2微粒功能化多孔Al2O3膜的光电化学研究,化学学报,2005,63(13):1201~ 1204
    [69]崔晓莉,沃松涛,贾晓婷. 通电加热氧化金属钛制备TiO2薄膜及其光催化活性,钛工业进展,2005,22 (1 ):24~25
    [70] Khan S U M, Al-shahry M, Ingler Jr W B.Efficient Photochemical Water Splitting by a Chemically Modified-TiO2 Science, 2002, 297: 2243~2245
    [71] Vinodgopal K, Kamat P V. Enhance rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films. Environ Sciechnol , 1995 , 29 (3) :841
    [72] Vinodgopal K, Wynkoop D E, Kamat P K. Environmental photochemistry on semiconductor surfaces :photosensitized degradation of a textile azo dye acid orange 7 on TiO2 particles using visible light , Environ Sci Technol ,1996 ,30(5) :1660 ~1666.
    [73] 陈菲力,刘晓国. 太阳能光催化降解去除水中罗丹明染料的研究. 化工环保,1997 ,17(1) :1~3.
    [74]马颖,管自生,曹亚安, TiO2薄膜的吸附能力对罗丹明B光降解过程的影响,催化学报, 1999 ,20(3) : 350~352
    [75]霍爱群,谭欣, 丛培君, 纳米TiO2光催化降解废水中阿特法律的研究. 工业水处理,1998 ,18(3) :25~29
    [76] Ollis D F ,Pelizzetti E ,Serpone N. Destruction of water contaminants, Environ Sci Technol ,1991 ,25 (9) :1523.
    [77] 陈颖,王宝辉,张海燕, 纳米级TiO2 光催化氧化聚丙烯酰胺,催化学报,1999,20(3) :309 ~312.
    [78] 王怡中,符雁,汤红霄. 甲基橙溶液多相光催化降解研究,环境科学,1998,19(1) :1~4
    [79]赵谦,光催化型玻纤制品的甲基橙降解研究,硅酸盐通报,2004,6:56~59
    [80]崔鹏, 范益群, TiO2 负载膜的制备、表征及光催化性能, 催化学报,2000,21(5):494~496
    [81]Chen S F , Zhao M Y,Tao Y M. Photocatalytic degradation of organophorous pesticides using TiO2 Thin film, Chin J Catal,1996 ,17(5) :455.
    [82] Li L ,Yue P L. Gas-phase photocatalytic oxidation of CHClCCl2 andPhMe by supported Titannia ,Chin J Catal ,1996 ,17 (5) : 450~454
    [83]颜秀茹,粉末状和薄膜状TiO2对敌敌畏的光催化降解, 感光科学与光化学, 1999, 17(4):330~333
    [84] Choi W, Hoffmann M R. Photoreductive mechanismof CCl4 degradationon TiO2 particles and effects of election donors , Environ SciTechnol ,1995 ,29(6) :1646
    [85] 陈士夫,赵梦月,陶跃武. 光催化降解有机磷农药废水的研究, 工业水处理,1996 ,16(1) :17 ~19
    [86] 张新荣,杨平, 玻璃微球负载复合光催化剂降解有机磷农药, 郑州工业大学学报,1999 ,20 (1) :39~411
    [87]何建波,张鑫,魏凤玉, TiO2 薄膜晶相组成对苯胺光催化降解的影响. 应用化学,1999 ,16(5) :57 ~60.
    [88]蔡乃才,王亚军,王鄂凤, 光催化与光化学联合降解苯胺, 应用化学,1999,16(2):87~89
    [89]张天庆,李祥忠,赵进才. 国产二氧化钛在光催化降解染料废水中的应用, 催化学报,1999 ,20(3) :356.
    [90]李田,仇雁翎. 水中六六六与五氯苯酚的光催化氧化, 中国环境科学,1996,17(1) :24~26
    [91]施利毅,古宏晨,李春忠, SnO2-TiO2复合光催化剂的制备和性能, 催化学报,1999 ,20(3) :338
    [92] Peill N J ,Hoffmann M R. Chemical and physical characterization of TiO2 coated fiber optic cable reactor, Environ Sci Technol , 1995 , 30(9) :2806~2812.
    [93] 李晓平,徐宝琨, 纳米TiO2 光催化降解水中有机污染物的研究与发展. 功能材料,1999 ,30 (3) :242 ~243
    [94] 颜秀茹, 用光催化剂TiO2 降解2 ,2 - 二氯乙烯基二甲基磷酸酯的研究, 化学工业与工程,1998 ,15 (4) :17~211
    [95]张贵斌,孙晓东,史峰山,. NO2- 离子的光催化反应研究( Ⅱ) , 催化学报,1999,20(2) :150~154
    [96] Bhakta D ,Shukla S S ,Chandrasdeharaiah M S. A novel photocatalytic method for detoxification of cyanide wastes,Environ Sci Technol , 1992 ,26 :625
    [97]李田,陈正夫. 城市自来水光催化氧化深度净化效果, 环境科学学报,1998,18(2) :167~171
    [98]徐兆瑜,纳米TiO2的新功能及其应用进展,化工技术与开发,2003,32(6):27~33
    [99]祖庸,雷闫盈,李晓娥, 纳米TiO2 — 一种新型的无机抗菌剂, 现代化工,1999 ,19(8) :46~48.
    [100]刘平,林华香,付贤智, 掺杂TiO2光催化膜材料的制备及其灭菌机理, 催化学报,1999 ,20(3) :325~328.
    [101]王浩,赵安宽,方佑岭,. 二氧化钛光催化杀灭肿瘤细胞的研究, 催化学报,1999, 20(3) :373~374
    [102]于向阳,程继健,TiO2光催化抗菌材料,玻璃与搪瓷,2000,28(4):42~47
    [103]李凤生,杨毅,纳米TiO2/ SiO2复合食品抗菌材料. 中国粉体技术,2001 , 7(5) :23~26
    [104]肖汉宁,李玉平, 纳米二氧化钛的光催化特性及其应用, 陶瓷学报, 2001, 22 (3) : 191~195
    [105]李大成,周大利,纳米TiO2的应用,四川有色金属,2002,4:13~16
    [106]潘晓燕,马学鸣, 纳米TiO2 的应用,自然杂志,2001,23(1):29~34
    [107]杨宗志. 效应型颜色在涂料中的应用进展. 现代涂料与涂装, 1998, (2) : 28~32
    [108]杨悦,走新型工业化道路-科学发展铝工业,中国有色金属,2006,7:29~31
    [108]莫畏,钛合金,北京:冶金工业出版社,1979:19,26
    [109]朱祖芳,铝合金阳极氧化与表面处理技术,北京:化学工业出版社,2004,1~2,102,114
    [110]武汉大学,分析化学,北京:高等教育出版社,1978,270,590
    [111]曹楚南,张鉴清,电化学阻抗谱导论,北京:科学出版社,2002,156

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700