多孔钛的微观结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统地研究了多孔钛的制备工艺、微观结构与其力学性能和生物化学相容性之间的关系,初步探讨和分析了孔隙结构对多孔钛的断裂机制和导电性能的影响,以期利用多孔钛独特的孔隙结构、良好的生物相容性和与骨接近的力学性能,应用于种植体等骨科临床领域。
     论文首先选取球形聚甲基丙烯酸甲酯作为造孔剂,采用粉末冶金法制备孔隙结构(孔隙度为10—70%,孔隙尺寸<500μm,开孔率>75%)可控的多孔钛。其孔隙分两种:尺寸为几十微米到几百微米、具有台阶表面、相互连通的宏观大孔隙和尺寸为几到十几微米分布在孔壁上近似球形的微孔。宏观大孔隙的孔隙度、孔隙尺寸及连通程度随着造孔剂体积分数及尺寸的增大而增大;与此同时,大孔隙的各向异性随孔隙尺寸的增大成线性降低。随烧结温度的升高和时间的延长,晶粒尺寸增大,孔隙尺寸和数量减小,微孔隙的形貌逐渐趋于球形。
     多孔钛的压缩应力-应变曲线具有线弹性阶段、塑性屈服平台和致密化阶段,而拉伸和弯曲应力-应变曲线只有线弹性特征。在三种状态下,多孔钛均发生脆性解理断裂,其主裂纹受大孔隙的控制,沿与外加载荷方向成45°角扩展。随孔隙度及孔隙尺寸的增大,多孔钛的压缩强度、拉伸强度、弯曲强度和弹性模量均降低。与MOri-Tanaka模型相比,多孔钛的弹性模量、强度与孔隙度的关系更加符合Gibson-Ashby理论计算值;其泊松比v*介于-0.92—-0.37之间,且与孔隙尺寸近似成线性关系。随烧结温度的增大,烧结时间的延长和烧结真空度的提高,多孔钛的弹性模量和强度增大。
     多孔钛(孔隙度为10-70%,大孔隙尺寸为100-500μm)在1 M NaOH溶液、0.1MH2SO4溶液和37℃Hank's溶液中的阳极极化曲线均具有活化-钝化特征,而在37℃0.9% NaCl溶液中表现为自钝化特征。随孔隙度的增大和连通大孔隙尺寸的降低,多孔钛的有效表面积增大,致使其腐蚀电流密度增大,但腐蚀电位变化不大(<6%)。
     多孔钛的电导率随孔隙度的降低(由70%降至10%)和大孔隙尺寸的增大(由150μm增至400)而增大。两者的关系符合麦克斯韦近似理论;而微分有效媒体近似理论仅适用于平均孔径为400μm,孔隙度为40-70%的多孔钛。综合考虑孔隙度、孔隙尺寸和形态等因素对多孔钛导电性能的影响,麦克斯韦近似理论和微分有效媒体近似理论分别修正为σ=σ0(1-ε)/(1+aε+bxε)和σ=σ0(1-ε)(c+dx),式中:σ和σ0分别代表多孔钛及孔壁材料的电导率,ε代表孔隙度,x代表孔隙尺寸,a和b分别为与实验条件和与孔隙形态有关的常数,c和d分别为依赖于系统参数和孔隙形态的临界指数。
The relationship between fabrication processing, microstructure and mechanical properties of porous Ti has been investigated, and the effect of pore structure on the fracture behavior and electrical conductivity of porous Ti has been also analyzed, in order to utilize the adequate porous structure, good biocompatibility and appropriate mechanical properties of porous Ti for the application in clinic orthopaedics field such as the bone substitute.
     Adding polymethyl methacrylate powders as pore maker, porous Ti with controllable pore structure was successfully prepared by powder metallurgy at first. The porous Ti shows a three-dimensional open-cellular structure with two types of pore:inter-connection macro-pore with stepped pore walls and a small isolated micro-pore distributed on the macro-pore walls. Porosity, macro-pore size and the open pore ratio of sintered porous Ti increase with the increasing of volume fraction and particle size of the pore maker. The pore anisotropy decreases linearly as the size of the PMMA particles used increases and hence with macro-pore size. As the increase of sintering temperature and sintering time, the grain size increases, pore size and porosity decrease and micro-pore rounds gradually.
     The compressive stress-strain curve of porous Ti show linear elasticity at low stresses followed by a long collapse plateau, truncated by a regime of densification in which the stress rises steeply. While the tensile and bending stress-strain curves of porous Ti both show the linear-elastic feature. Fractography shows evidence of the brittle cleavage fracture in porous Ti. The stress is prior to concentrate on the weak macro-pore wall, thus resulting in the crack and then propagation. The failure with the formation of shear bands of 45°to the stress axis due to cracking (complete fracture) of the struts on porous Ti is controlled primarily by the macro-pores. The elastic modulus and strength of porous Ti decrease with the increase of porosity and macro-pore size. Compared to Mori-tanaka model, the present experimental results are in agreement with the theory of Gibson-Ashby satisfactory. Poisson's ratio measured is in the range of-0.92—-0.37, which is linear with macro-pore size. The elastic modulus and strength of porous Ti increase with the increasing sintering temperature, longer sintering time and higher vucuum.
     Electrochemical corrosion tests are performed on porous titanium in 0.1 M H2SO4,1 M NaOH and 37℃0.9% NaCl and 37℃Hank's solutions. It is shown that the anodic polarization curves of porous titanium exhibit active-passive transition behavior in 1 M NaOH and 0.1 M H2SO4 and 37℃Hank's solutions, while self-passivation in 37℃0.9% NaCl solution. As the porosity increases and macro-pore size decreases, the corrosion current density of porous titanium increases due to the higher effective specific area, while the corrosion potential does not change (<5%) remarkably.
     As the porosity increasing and the macro-pore size decreasing, the electrical conductivity of porous Ti decreases dramatically. The dependence of the electrical conductivity on the porosity could be well described by the Maxwell approximation. The differential effective medium approximation is only applicable to porous Ti with average pore size of 400μm in the porosity range of 40-70%. Taking the porosity, pore size and pore morphology into consideration, Maxwell approximation and differential effective medium approximation have been modified to beσ-σ0(1-ε)/(1+aε+bxε) andσ=σ0(1-ε)(c+dx), respectively. Where x represents pore size,εis porosity,σandσ0 are electrical conductivity of porous and solid Ti, respectively, a and b are the constant correlative to the experimental condition and pore morphology of porous materials, respectively, c and d represent the critical exponent that depend on the system parameters and pore morphology in a piecewise constant manner, respectively.
引文
1. Anselme, K., Osteoblast adhesion on biomaterials. Biomaterials,2000.21(7):p.667-681.
    2. B. D. Ratner, A.S.H., F. J. Schoen, J. E. Lemons, Biomaterials science:an introduction to materials in medicine.1996, London:Academic Press.
    3. An, Y.B. and W.H. Lee, Synthesis of porous titanium implants by environmental-electro-discharge-sintering process. Materials Chemistry and Physics,2006.95(2-3):p. 242-247.
    4. Peng L, B.W., Liang FH, Xu HZ., Implanting hyduoxyapatite-coated porous titanium with bone morphogenetic protein-2 and hyaluronic acid into distal femeoral metaphysic of rabbits. Chinese Journal of Traumatology,2008.11(3):p.179-185.
    5. Chung, C.Y., C.L. Chu, and S.D. Wang, Porous TiNi shape memory alloy with high strength fabricated by self-propagating high-temperature synthesis. Materials Letters,2004.58(11):p. 1683-1686.
    6. Oliveira, M.V., L.C. Pereira, and C.A.A. Cairo, Porous Structure Characterization in Titanium Coating for Surgical Implants. Materials Research,2002.5:p.269-273.
    7. Jung, H.-D., et al., Fabrication of titanium scaffolds with porosity and pore size gradients by sequential freeze casting. Materials Letters,2009.63(17):p.1545-1547.
    8. Thieme, M., et al., Titanium powder sintering for preparation of a porous functionally graded material destined for orthopaedic implants. Journal of Materials Science:Materials in Medicine,2001. 12(3):p.225-231.
    9. Fox, P., et al., Interface interactions between porous titanium/tantalum coatings, produced by Selective Laser Melting (SLM), on a cobalt-chromium alloy. Surface and Coatings Technology,2008. 202(20):p.5001-5007.
    10.俞耀庭,张兴栋,生物医用材料.2000,天津:天津大学出版社.
    11. Tengvall, P. and I. Lundstrom, Physico-chemical considerations of titanium as a biomaterial. Clinical Materials,1992.9(2):p.115-134.
    12. Sun, Z.M., et al., Microstructure and mechanical properties of porous Ti3SiC2. Acta Materialia, 2005.53(16):p.4359-4366.
    13. Fujibayashi, S., et al., Osteoinduction of porous bioactive titanium metal. Biomaterials,2004. 25(3):p.443-450.
    14. Melikyan, M. and V. Itin, Dynamics of bone tissue mineralization in porous titanium and the mechanical properties of a titanium-bone tissue composite. Technical Physics Letters,2002.28(8):p. 673-674.
    15. OH, I.-H., N. NOMURA, and S. HANADA, Microstructures and mechanical properties of porous titanium compacts prepared by powder sintering. Materials transactions 2002.43(0916-1821):p. 443-446.
    16. Oh, I.-H., et al., Mechanical properties of porous titanium compacts prepared by powder sintering. Scripta Materialia,2003.49(12):p.1197-1202.
    17. Wen, C.E., et al., Processing of biocompatible porous Ti and Mg. Scripta Materialia,2001.45(10): p.1147-1153.
    18. Wen, C.E., et al., Processing and mechanical properties of autogenous titanium implant materials. Journal of Materials Science:Materials in Medicine,2002.13(4):p.397-401.
    19. Zhu, K., et al., Measurement of the dynamic Young's modulus of porous titanium and Ti6Al4V. Journal of Materials Science,2007.42(17):p.7348-7353.
    20. Zhu, K., C.-F. Li, and Z.-G Zhu, Measurement of Electrical Conductivity of Porous Titanium and Ti6Al4V Prepared by the Powder Metallurgy Method. Chinese Physics Letters,2007.24:p.187-190
    21. Seah, K.H.W. and X. Chen, A comparison between the corrosion characteristics of 316 stainless steel, solid titanium and porous titanium. Corrosion Science,1993.34(11):p.1841-1851.
    22. Seah, K.H.W., et al., A comparison between the corrosion behaviour of sintered and unsintered porous titanium. Corrosion Science,1995.37(9):p.1333-1340.
    23. Blackwood, D.J., et al., Corrosion behaviour of porous titanium-graphite composites designed for surgical implants. Corrosion Science,2000.42(3):p.481-503.
    24. R. A. Wood, R.J.F.,钛合金手册(上册).1983,重庆:科学技术文献出版社重庆分社.20.
    25. Nemat-Nasser, S., W.G Guo, and J.Y. Cheng, Mechanical properties and deformation mechanisms of a commercially pure titanium. Acta Materialia,1999.47(13):p.3705-3720.
    26.柯华,宁聪琴,贾德昌,周玉,宋桂明,羟基磷灰石及钛作为骨替代材料的研究进展.有色金属,2001.53(4):p.8-14.
    27. Boyd DW, K.K., Vanadium:a versatile biochemical effector with an elusive biological function. Advances in Inorganic Biochemistry 1984.6:p.311-65.
    28. Jandhyala, B.S. and GJ. Hom, Physiological and pharmacological properties of vanadium. Life Sciences,1983.33(14):p.1325-1340.
    29.姜淑文,齐民,生物医用多孔金属材料的研究进展.材料科学与工程,2002.20(4):p.597-600.
    30. Krishna, B.V., S. Bose, and A. Bandyopadhyay, Low stiffness porous Ti structures for load-bearing implants. Acta Biomaterialia,2007.3(6):p.997-1006.
    31. Oh, I.-H., et al., Microstructures and bond strengths of plasma-sprayed hydroxyapatite coatings on porous titanium substrates. Journal of Materials Science:Materials in Medicine,2005.16(7):p. 635-640.
    32. Cornette, D., et al., Ultra high strength FeMn TWIP steels for automotive safety parts. Revue De Metallurgie-Cahiers D Informations Techniques,2005.102(12):p.905-918.
    33. Kohn, D.H., Metals in medical applications. Current Opinion in Solid State and Materials Science, 1998.3(3):p.309-316.
    34. Muller, U., et al., DO HUMAN OSTEOBLASTS GROW INTO OPEN-POROUS TITANIUM? European Cells and Materials,2006.11:p.8-15.
    35. WINTERMANTEL, E. and S.W. HA, Biokompatible werkstoffe und bauweisen.1998, Berlin: Springer Verlag.547.
    36. Itin, V.I., et al., Mechanical properties and shape memory of porous nitinol. Materials Characterization,1994.32(3):p.179-187.
    37. Zou, C., et al., Preparation, microstructure and mechanical properties of porous titanium sintered by Ti fibres. Journal of Materials Science:Materials in Medicine,2008.19(1):p.401-405.
    38.彭德清,唐.,新型生物材料多孔钛的初步探索.解放军医学杂志,1984.8(1):p.34-36.
    39.张二林,邹鹑鸣,曾松岩等,一种生物医用多孔钛植入体及其制备方法,中国专利局,Editor.2007:中国.
    40.郭志猛,李艳,隋延力,一种复杂形状多孔钛的凝胶注模成型方法,中国专利局,Editor.2006:中国.
    41. Li, J.P., et al., Preparation and characterization of porous titanium. Key Engineering Materials, 2002.218-220:p.51-54.
    42. Li, Y., et al., Porosity and mechanical properties of porous titanium fabricated by gelcasting. Rare Metals,2008.27(3):p.282-286.
    43. Erk, K.A., D.C. Dunand, and K.R. Shull, Titanium with controllable pore fractions by thermoreversible gelcasting of TiH2. Acta Materialia,2008.56(18):p.5147-5157.
    44. Ricceri, R, F. Arcuri, and P. Matteazzi, Porous titanium obtained by P/M. J. Phys. IV France, 2001.11:p.51-57.
    45. Yook, S.-W., et al., Porous titanium (Ti) scaffolds by freezing TiH2/camphene slurries. Materials Letters,2008.62(30):p.4506-4508.
    46.陈良建,李益民,胡幼华等,一种多孔结构钛种植体及制备方法,中国专利局,Editor.2007:中国.
    47. Li, J.P., et al., Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials,2007.28(18):p.2810-2820.
    48. Ibrahim, A., et al., Processing of porous Ti and Ti5Mn foams by spark plasma sintering. Materials & Design,2011.32(1):p.146-153.
    49. Ryan, GE., A.S. Pandit, and D.P. Apatsidis, Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials,2008.29(27):p.3625-3635.
    50. Lopez-Heredia, M.A., et al., Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering. Biomaterials,2008.29(17):p.2608-2615.
    51. Lopez-Heredia, M.A., et al., Bone growth in rapid prototyped porous titanium implants. Journal of Biomedical Materials Research Part A,2008.85A(3):p.664-673.
    52. Xue, W., et al., Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomaterialia,2007.3(6):p.1007-1018.
    53. Das, K., et al., Surface modification of laser-processed porous titanium for load-bearing implants. Scripta Materialia,2008.59(8):p.822-825.
    54. Ryan, G., A. Pandit, and D.P. Apatsidis, Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials,2006.27(13):p.2651-2670.
    55. Liang, F., L. Zhou, and K. Wang, Apatite formation on porous titanium by alkali and heat-treatment. Surface and Coatings Technology,2003.165(2):p.133-139.
    56. Banhart, J., Manufacture, characterisation and application of cellular metals and metal foams. Progress in Materials Science,2001.46(6):p.559-632.
    57. Li, C.F., Z.G. Zhu, and T. Liu, Microhardness of pore walls in porous titanium prepared with novel powder metallurgy. Powder Metallurgy,2005.48:p.237-239.
    58. Janine K. Kardokus, O.O., Diana Morales, et al., Hot pressed and sintered sputtering target assemblies and method for making same, U.s.P. Office, Editor.1999.
    59.李众利,王岩,张国强,肖俊,新型三维连通多孔钛的制备及特性生物骨科材料与临床研究,2007.4(1):p.1-4.
    60. Laptev, A., et al., Green strength of powder compacts provided for production of highly porous titanium parts. Powder Metallurgy,2005.48:p.358-364.
    61. Otsuki, B., et al., Pore throat size and connectivity determine bone and tissue ingrowth into porous implants:Three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials,2006.27(35):p.5892-5900.
    62. Digby, P.J. and S.A.F. Murrell, The role of shear stresses in brittle fracture. Journal of the Mechanics and Physics of Solids,1975.23(3):p.185-196.
    63. Jiang, H., et al., Investigation on the micro-deformation characteristics of porous NiTi shape memory alloy using SEM moire method. Acta Metallurgica Sinica,2006.42(11):p.1153-1157.
    64. Spoerke, E.D., et al., Titanium with aligned, elongated pores for orthopedic tissue engineering applications. Journal of Biomedical Materials Research Part A,2008.84A(2):p.402-412.
    65. Balla, V.K., et al., Porous tantalum structures for bone implants:Fabrication, mechanical and in vitro biological properties. Acta Biomaterialia,2010.6(8):p.3349-3359.
    66.薛恩兴,徐华梓,彭磊,自体骨髓细胞增强多孔钛碳灰石涂层植入物在兔体内的早期骨整合.浙江创伤外科,2007.12(1):p.3-7.
    67. L.J. Gibson, M.F.A., ed. Cellular solids:structure and properties. Second Edition ed.1997, Cambridge University Press:Cambridge.189-195.
    68. Mori, T. and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica,1973.21(5):p.571-574.
    69. Shen, H., et al., Numerical modeling of pore size and distribution in foamed titanium. Mechanics of Materials,2006.38(8-10):p.933-944.
    70. Shen, H. and L.C. Brinson, Finite element modeling of porous titanium. International Journal of Solids and Structures,2007.44(1):p.320-335.
    71. Shen, H., H. Li, and L.C. Brinson, Effect of microstructural configurations on the mechanical responses of porous titanium:A numerical design of experiment analysis for orthopedic applications. Mechanics of Materials,2008.40(9):p.708-720.
    72. Simon M, L.C., Moreno J, Lissac M, Dalard F, Grosgogeat B, Corrosion resistance and biocompatibility of a new porous surface for titanium implants. Eur J Oral Sci.,2005.113(6):p. 537-45.
    73.刘康美,多孔钛抗腐蚀性能的研究稀有金属材料与工程,1989.5:p.55-58.
    74. Seah, K.H.W., R. Thampuran, and S.H. Teoh, The influence of pore morphology on corrosion. Corrosion Science,1998.40(4-5):p.547-556.
    75. Goodall, R., Weber, L., Mortensen, A., The electrical conductivity of microcellular metals. J. Appl. Phys.,2006.100:p.044912
    76. Boitsov, O.F., Chernyshev, L.I., Skorokhod, V.V., Effects of porous structure on the electrical conductivity of highly porous metal-matrix materials. Powder Metall. Met. Ceram.,2003.42:p.88-93.
    77. Ewing, R.P., Hunt, A.G, Dependence of the electrical conductivity on saturation in real porous media. Vadose Zone J.,2006.5:p.731-741.
    78. Weber, L., C. Fischer, and A. Mortensen, On the influence of the shape of randomly oriented, non-conducting inclusions in a conducting matrix on the effective electrical conductivity. Acta Materialia,2003.51(2):p.495-505.
    79. Tane, M., Hyun, S.K., Nakajima, H., Anisotropic electrical conductivity of lotus-type porous nickel. J. Appl. Phys.,2005.97:p.103701.
    80. Weber, L., J. Dorn, and A. Mortensen, On the electrical conductivity of metal matrix composites containing high volume fractions of non-conducting inclusions. Acta Materialia,2003.51(11):p. 3199-3211.
    81. Benveniste, Y, A new approach to the application of Mori-Tanaka's theory in composite materials. Mechanics of Materials,1987.6(2):p.147-157.
    82. Clyne, T.W., Kelly, A., Zweben C., Comprehensive composite materials.2000, New York: Pergamon Press.
    83. Huang, P.Y., Principles of Powder Metallurgy.1982, Beijing:Metallurgical Industry Press.
    84. McLaughlin, R., A study of the differential scheme for composite materials. Int. J. Eng. Sci.,1977. 15:p.237-244.
    85. Torquato, S., Random heterogeneous media:microstructure and improved bounds on effective properties. Appl. Mech. Rev,1991.44:p.37-76.
    86. Ioannidis, M.A., Kwiecien, M.J., Chatzis, I., Electrical conductivity and percolation aspects of statistically homogeneous porous media. Transport Porous Med,1997.29:p.61-83.
    87. Sevostianov, I., J. Kovacik, and F. Simancik, Elastic and electric properties of closed-cell aluminum foams:Cross-property connection. Materials Science and Engineering:A,2006.420(1-2):p. 87-99.
    88. Niu, W., et al., Preparation and characterization of porous titanium using space-holder technique. Rare Metals,2009.28(4):p.338-342.
    89. Li, C. and Z. Zhu, Dynamic Young's modulus of open-porosity titanium measured by the electromagnetic acoustic resonance method. Journal of Porous Materials,2006.13(1):p.21-26.
    90. Parthasarathy, J., et al., Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). Journal of the Mechanical Behavior of Biomedical Materials,2010.3(3): p.249-259.
    91. Blackwood, D.J. and S.K.M. Chooi, Stability of protective oxide films formed on a porous titanium. Corrosion Science,2002.44(3):p.395-405.
    92.可渗性烧结金属材料-开孔率的测定.1985,国家技术监督局.
    93.金属材料中氢、氧、氮、碳和硫分析方法通则.1993,国家技术监督局.
    94.烧结金属材料室温压缩强度的测定1986,国家技术监督局.
    95.烧结金属材料(不包括硬质合金)室温拉伸试验1987,国家技术监督局.
    96.金属弯曲试验方法.1988,国家技术监督局.
    97.钟宁and李玉宝,生物医用复合人工骨修复材料的应用研究.中华实用医药杂志,2003.3(23):p.52-56.
    98. Jones, F.H., Teeth and bones:applications of surface science to dental materials and related biomaterials. Surface Science Reports,2001.42(3-5):p.75-205.
    99. Karlsson, K.H., H. Ylanen, and H. Aro, Porous bone implants. Ceramics International,2000. 26(8):p.897-900.
    100. Li, B. and X. Lu, The Effect of Pore Structure on the Electrical Conductivity of Ti. Transport in Porous Media,2011.87(1):p.179-189.
    101. De Medeiros, W.S., et al., Bioactive Porous Titanium:An Alternative to Surgical Implants. Artificial Organs,2008.32(4):p.277-282.
    102. Pan, J., H.N. Ch'ng, and A.C.F. Cocks, Sintering kinetics of large pores. Mechanics of Materials, 2005.37(6):p.705-721.
    103.黄培云,ed.粉末冶金原理.1982,冶金工业出版社:北京.170-191.
    104. Parhami, F., et al., A model for the sintering and coarsening of rows of spherical particles. Mechanics of Materials,1999.31(1):p.43-61.
    105. Cocks, A.C.F., Constitutive modelling of powder compaction and sintering. Progress in Materials Science,2001.46(3-4):p.201-229.
    106. Wang, D.-D., J.-M. Zhang, and K.-W. Xu, Anisotropy analysis of the surface energy of hcp (c/a< 1.633) metals. Surface Science,2006.600(15):p.2990-2996.
    107.冯端,金属物理学(第一卷结构与缺陷).Vol.1.1987,北京:科学出版社.380-382.
    108. Matysina, Z.A., The relative surface energy of hexagonal close-packed crystals. Materials Chemistry and Physics,1999.60(1):p.70-78.
    109.姚允斌等,物理化学手册.1985,上海:上海科学技术出版社.614.
    110.果世驹,粉末烧结理论.1998,北京:冶金工业出版社.
    111.李伯琼,陆兴,and王德庆,制备工艺对多孔钛的微观结构和压缩性能的影响.大连铁道学院学报,2006.27(3):p.70-76.
    112. D. Kinggery, W., Crystallography.1997, Walter Borchardt-Ott:Springer-Verlag.6402.
    113. J, B.R., Treatise on Metal.1976, New York:Academic Press 6-526.
    114.钟群鹏and赵子华,断口学.2006,北京:高等教育出版社.187-203.
    115. Ferrie, E., J.Y. Buffiere, and W. Ludwig,3D characterisation of the nucleation of a short fatigue crack at a pore in a cast Al alloy using high resolution synchrotron microtomography. International Journal of Fatigue.27(10-12):p.1215-1220.
    116. Li, P., et al., Quantification of the interaction within defect populations on fatigue behavior in an aluminum alloy. Acta Materialia,2009.57:p.3539-3548.
    117.刘培生,et al.,多孔金属抗拉强度公式中的指数项取值力学学报,2001.33(6):p.853-855.
    118. Liitjering, G. and J.C. Williams, Titianium Second Edition ed.2007, New York:Springer Berlin Heidelberg 20-195.
    119. Wen, C.E., Y. Yamada, and K. Shimojima, Novel titanium foam for bone tissue engineering. J. Mater. Res,2002.17:p.2633-2639.
    120. Traini, T., et al., Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dental Materials, 2008.24(11):p.1525-1533.
    121. Brezny, R. and D.J. Green, The effect of cell size on the mechanical behavior of cellular materials. Acta Metallurgica et Materialia,1990.38(12):p.2517-2526.
    122. Krishnamohanrao, Y., V.V. Kutumbarao, and PR. Rao, Fracture mechanism maps for titanium and its alloys. Acta Metallurgica,1986.34(9):p.1783-1806.
    123. Davis, N.G, et al., Solid-state foaming of titanium by superplastic expansion of argon-filled pores. J. Mater. Res.,2001.16:p.1508-1519.
    124. Williams, J., R. Baggerly, and N. Paton, Deformation behavior of HCP Ti-Al alloy single crystals. Metallurgical and Materials Transactions A,2002.33(3):p.837-850.
    125. Wang, GQ., et al. Bending properties and fracture behavior of Ti-23A1-17Nb alloy laser beam welding joints. Tsinghua Science and Technology,2009.13:p.293-299.
    126. Liu, J.-M. and S.-S. Chou, Study on the microstructure and formability of commercially pure titanium in two-temperature deep drawing. Journal of Materials Processing Technology,1999.95(1-3): p.65-70.
    127. Dieter, G.E., Mechanical Metallurgy. Third Edition ed.1988:Mcgraw-Hill companies.241-265.
    128. Wanhill, R.J.H, A consideration of cleavage in alpha titanium. Acta Metallurgica,1973.21(9):p. 1253-1258.
    129. Fekry, A.M., The influence of chloride and sulphate ions on the corrosion behavior of Ti and Ti-6Al-4V alloy in oxalic acid. Electrochimica Acta,2009.54(12):p.3480-3489.
    130. Barson, S.D., et al., Corrosion protection of titanium by pulsed plasma deposition of palladium. Corrosion Science,2000.42(7):p.1213-1234.
    131. Liu, G.L., Electronic theoretical study on the corrosion and passivation mechanism of Ti metal. Acta Physica Sinica,2008.57:p.4441-4445.
    132. Neville, A. and J. Xu, An assessment of the instability of Ti and its alloys in acidic environments at elevated temperature. Journal of Light Metals,2001.1:p.119-126.
    133. Aparicio, C., et al., Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials,2003.24(2):p. 263-273.
    134. Skorokhod, V.V., Solonin, S.M., Chernyshev, L.I., The sintering mechanism in high-porosity materials in the presence of a volatilizing pore former. Poroshk. Metall,1974.11:p.31-36.
    135. Solonin, S.M., Chernyshev, L.I., Effects of sintering mode on the physicomechanical properties of porous tungsten. Poroshk. Metall,1975.10:p.31-33.
    136. Shklovskii, B.I., Efros, A.L., Percolation theory and conductivity of strongly inhomogeneous media. Soviet Physics Uspekhi,1975.18:p.845-862.
    137. Robinson, D.A. and S.P. Friedman, Electrical conductivity and dielectric permittivity of sphere packings:Measurements and modelling of cubic lattices, randomly packed monosize spheres and multi-size mixtures. Physica A:Statistical Mechanics and its Applications,2005.358(2-4):p.447-465.
    138. Kirkpatrick, S., Percolation and conduction. Rev. Mod. Phys.,1973.45:p.574-588.
    139. Kovacik, J. and F. Simancik, Aluminium foam--modulus of elasticity and electrical conductivity according to percolation theory. Scripta Materialia,1998.39(2):p.239-246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700