反应烧结碳化硅坯体的冷凝浇注成型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在陶瓷材料先进成型技术中,室温冷凝浇注成型是近三年来发展的一种冷冻浇注成型工艺,它具有水基冷冻浇注成型的主要优点,如在干燥过程中没有收缩开裂,可以实现陶瓷近净尺寸成型,能够制备具有特殊孔结构的陶瓷坯体等,同时避免了通常水基冷冻浇注成型工艺需要昂贵专用设备以及具有较大体积变化等缺点。本文以炭黑、碳化硅为主要研究对象,采用莰烯作为悬浮介质,通过对陶瓷粉体在莰烯中的表面电性研究,高固相含量低粘度莰烯基炭黑料浆、高固相含量碳化硅料浆以及炭黑/碳化硅料浆的制备技术的研究,实现了反应烧结碳化硅素坯的室温冷凝浇注成型工艺,制备出了结构均匀、具有一定孔结构的反应烧结碳化硅素坯以及烧结体。主要获得的研究成果如下:
     研究了各种陶瓷粉体在莰烯中的表面电性,并对陶瓷粉体在莰烯中的表面电性进行了分析。偶联剂与分散剂的加入能够改变陶瓷粉体在莰烯中的表面电位,碳化硅、炭黑表面ZETA电位随偶联剂以及分散剂的加入量存在一个极值,此极值与陶瓷粉体表面对偶联剂以及分散剂的饱和吸附量密切相关。通过ZETA电位分析,可以初步判断分散剂以及偶联剂最佳加入量。
     系统研究炭黑莰烯基浓悬浮体的制备技术以及流变特性,阐明了炭黑的分散性与炭黑表面官能团含量的关系。研究发现:表面的酚羟基以及醌基含量高的炭黑在莰烯中的分散性能较好。超分散剂CH6是一种优良的炭黑分散剂,其最佳加入量为2mg/m~2,分散机制为空间位阻稳定机制。采用超分散剂CH6分散的莰烯基炭黑料浆在固相含量为40vol%以下时,其流变特性接近于牛顿流体;当固相含量高于40vol%时,炭黑料浆呈现出塑性流体特征。
     系统研究了莰烯基碳化硅料浆的制备技术。通过对碳化硅表面改性可以有效提高碳化硅在莰烯中的分散性能,表面改性剂的种类以及改性工艺对分散性能有较大的影响,使用钛酸酯偶联剂TC27并采用干混法进行预处理的方式能够获得最好的分散效果。通过选用合适分散剂以及适当的表面改性以及采用合理级配,可以制备出固相分数达到70vol%,粘度为1.1Pa·s的莰烯基料浆,能够满足室温冷凝浇注成型工艺的要求。
     对莰烯基炭黑/碳化硅料浆制备技术以及流变特性进行了研究。研究表明:料浆的粘度与炭黑含量相关以及固相含量相关,通过优化制备出固相含量达到70vol%,50s~(-1)剪切速率下粘度小于0.9Pa·s的料浆,上述料浆能够较好地实现室温冷凝成型工艺。莰烯基碳化硅以及莰烯基炭黑/碳化硅料浆的流变学特性接近于宾汉流体。料浆存在剪切变稀现象,并存在一定的屈服值。
     研究了室温冷凝浇注成型的干燥过程,研究表明:冷凝成型样品的干燥可以分为升华干燥与解吸干燥两个阶段,其干燥速率随干燥时间的延长而呈指数下降。
     室温冷凝浇注成型工艺制备的炭黑/碳化硅坯体显微结构均匀,坯体中的气孔呈现树枝状结构,气孔尺寸分布为单峰分布,气孔尺寸与成型料浆的固相含量以及颗粒级配相关。可以通过调整固相分数、颗粒级配、炭黑含量等因素制备出致密或者一定孔结构的样品。经反应烧结后可制备出微观结构均匀的密度为3.0g/cm~3的烧结体。
Freeze casting at ambient temperature is a novel process for ceramics fabrication. It developed in past three years. Compared with conventional aqueous freeze casting, It uses a sublimable orgnic medium instead of water and provides a net shape forming method with less drying shrinkage caused by sublimation of frozen phase. This process does not need expensive freeze equipment and vacuum system which used in normal freeze casting process. In this study, camphene is used as suspending medium; carbon black and silicon carbide are dispensed in camphene. The Zeta potentials of ceramic powders in camphene are measured. Based upon the study on the rheology behavior of carbon black and silicon carbide slurries, high solid content and low viscosity slurries of carbon black, silicon carbide and carbon black/silicon carbide in camphene are obtained. The slurry of SiC/CB is casted in the mould and then freezed at room temperature to produce green parts for reaction bondend silicon carbide. After freeze drying, the green parts are sintered with liquid silicon at high temperature. The structure and properties of green body and sintered parts are investigated. The main results of these studies are as follows:
     The Zeta potentials of various ceramic powders in camphene have been measured and analyzed. It is found that the dispersant and coupling agent can change the surface potential. With adding of the dispersant and coupling agent, the surface potentials of carbon black and silicon carbide reach their peak values which closely related to there saturation absorbing capacities. Through Zeta potential analysis, the optimum addition quantity of dispersant and coupling agent can be forcasted.
     The rheological behavior of the slurry of high solid content of carbon black in camphene has been studied. It shows that the carbon black which contains higher phenolic hydroxyl group and quinonyl group on its surface has better dispersing capability. The hyper-dispersant CH6 is a superior one for carbon black, which reaches its best effect through the steric stability mechanism when the addition quantity is 2mg/m~2. With CH6 as dispersant, the rheological behavior of carbo black slurry in camphene changes from nearly Newtonian fluid, when its solid content is lower than 40vol%, to Plastic fluid, when its solid content is higher than 40vol%.
     The dissertation has conducted a systematic research on preparation of camphene based silicon carbide slurry. It can improve the dispersing capability of silicon carbide by using surface modification agent. The variety of the surface modification agent and the modification process influence the dispersing effect. The best dispersing result can be achieved by using titanate coupling agent TC27 and adopting dry process. By selecting suitable dispersant, conducting proper surface modification and adopting rational particle distribution, the slurry with 70vol% solid loading and viscosity of 1.1Pa·s can be prepared. Thus satisfies the requirement of freeze casting at room temperature.
     The dissertation has also conducted a systematic research on the preparing camphene based carbon black/silicon carbide slurry and its rheological behavior. The results show that the viscosity of the slurry is related to the content of carbon black and total solid content. The 70vol% solid loading slurry with viscosity less than 0.9Pa·s under 50s~(-1)shear rates can be prepared through optimization condition. This slurry can be adopted for freeze casting process at room temperature. The camphene based silicon carbide and carbon black/silicon carbide slurries are nearly Binham fluid.
     The carbon black/silicon carbide green bodies which fabricated by the room temperature freeze casting has homogeneous microstructure. There are exist dendritic pore in the green body, the size of the pore is nearly close, and the size of pore is related to the solid content and particle distribution. By regulating solid content, particle distribution, and the content of carbon black, dense samples or samples with particular pore can be produced. After sintering, the samples density can reach 3.0g/cm~3 with homogeneous microstructure.
引文
[1].王零,特种陶瓷,长沙,中南工业大学出版社,1980:160-163
    [2]. Fred F. Lange, Powder processing Science and Technology for Increased Reliability, J. Am. Ceram. Sci., 72[1] 3-15 (1989)
    [3]. Jennifer A. Lewis, Colloidal Processing of Cereamics, J. Am. Ceram. Sci., 83[10] 2341-59 (2000)
    [4].李懋强,关于陶瓷成型工艺的讨论,硅酸盐学报,2001,29(5):466-470
    [5].杨金龙,陶瓷胶态成型工艺及其原位凝固机制的研究,清华大学博士论文,1996
    [6].陈玉峰,碳化硅/炭黑水基料浆凝胶注模成型的研究,中国建筑材料科学研究院博士论文,2002
    [7]. Giuliano Tarì,Gelcasting Ceramics: A Review, American Ceramic Society Bulletin, Vol. 82, No. 4
    [8]. Ruishuo Li,Temperature - Induced Direct Casting of SiC,PhD Thesis,Universit?t Stuttgart ,2001
    [9]. S.K.Lee, Y.C.Kim, and C.H.Kim, Microstructural Development and Mechanical Properties of Pressureless-Sintered SiC with Plate-like Grains Using Al2O3+Y2O3 Additives, J. Mater. Sci.,29(20), 5321-5326,1994
    [10].郝寅雷,赵文兴,翁志成,新型反射镜材料-碳化硅,宇航材料工艺,2001,4:11-14.
    [11].江东亮,潘振更等,反应烧结碳化硅陶瓷材料的研究,无机材料学报,1988,3(2):130-137.
    [12]. Ness J N,Page T F,Microstructural evolution in reaction-bonded silicon carbide,J Mater Sci,1986,21:1377-1397.
    [13]. M.V.斯温主编,郭景坤等译,陶瓷的结构和性能(材料科学与技术从书第11卷),科学出版社,1998,北京
    [14].唐婕,中国建筑材料科学研究院硕士论文,水基碳化硅/炭黑料浆冷冻浇注成型工艺研究,北京,2002,
    [15]. T. Yokota, Y. Takahata, T. Katsuyama, Y. Matsuda, A New Technique for Preparing Ceramics for Catalyst Support Exhibiting High Porosity and High Heat Resistance, Catalysis Today 69 (2001) 11-15
    [16]. ewis J A,Colloidal processing of ceramics,J Am Ceram Soc,2000,83[10]:2341-59
    [17]. LANG F F,Powder processing science and technology for Increased reliability,J Am Ceram Soc,1989,72[1]:3-15.
    [18]. J. S. Reed, Principles of Ceramic Processing, John Wiley & Sons, Inc., 1995,395-418
    [19].理查德.J.布鲁克主编,清华大学新型陶瓷与精细工艺国家重点实验室译,材料科学与技术丛书(第17A卷)――陶瓷工艺I,科学出版社,1999,北京
    [20]. Richard E. Mistler, Tape casting: Past, Present, potential, The American Society Bulletin, 1998,77:82-86
    [21].贺连星、温廷琏、吕之奕,流延法制膜技术,化学通报,1996,11:19-22
    [22].向军辉,水基凝胶快速固化流延成型研究,清华大学博士论文,清华大学,2001,9
    [23].崔学民,乳胶体系水基流延工艺及其在叠层制备陶瓷材料的研究,清华大学博士论文,清华大学,2003,6
    [24]. T. Chartier, C. Hinczewski and S. Corbel, UV Curable System for Tape Casting, Journal of the European Ceramic Society, 1999,Vol.19[1]:67-74
    [25]. FANELLI A J,SILIVERS R D,FREI W S,et al,New aqueous injection molding process for ceramic powders,J Am Ceram Soc,1989,72[10]:1833-36.
    [26]. Rivers R D,Method of injection molding powder metal parts,US Pat No 41134180,1978.
    [27].王秀,谢志鹏,李建保,黄勇,工程陶瓷注射成型的研究与发展,稀有金属材料与工程,Vol.33 No.11,2004
    [28]. T. Zhang, S. Blackburn, J. Bridgwater, Properties of Ceramic Suspensions for Injection Moulding Based on Agar Binder, Br. Ceramic Trans., 93[6] 229-233 (1994)
    [29]. A.J. Millan, R. Moreno, M.I. Nieto, Rheological Studies of Aqueous Silicon Nitride Slips for Low Pressure Injection Moulding, Br. Ceramic Proceed. 60[1] 67-68 (1999)
    [30]. A. Salomoni, E. Rastelli, I. Stamenkovic, Colloidal Shaping: A Comparison Between Pressure Casting and Injection Moulding of Aqueous Suspensions, Br. Ceramic Proceed, 60[1] 215-216 (1999)
    [31]. T. Kosmoc, Near-net-shape of Engineering Ceramics: Potentials and Properties of Aqueous Injection Molding(AIM), Proceedings of NATO ARW on EngineeringCeramics’96. Kluwer Academic Publishers, New York, 1997
    [32]. W. Huisman, T. Graule, L.J. Gauckler, Centrifugal Slip Casting of Zirconia, J. of the Eur. Ceram. Soc. 13 (1994) 33-39.
    [33]. A. Nijmeijer, C. Huiskes, N.G.M. Sibelt, H. Kruidhof, H. Verweij, Centrifugal Casting of Tubular Membrane Supports, Am. Ceram. Soc. Bull., 77[4] 95-98 (1998)
    [34]. R. Moremo, B. Ferrari, Advanced Ceramics via EPD of Aqueous Slurries, Am. Ceram Soc. Bull., 79[1] 44-48 (2000)
    [35]. T. Kosmac, S. Novak and M.Sajko, Hydrolysis-Assisted Solidification(HAS):A New Setting Concept for Ceramic Net-shaping, J. Europ. Ceram. Soc., 17,427-32,1997
    [36]. A. Abid, R. Bensalem and J. Sealy, The Thermal Stability of AlN, J. Mater. Sci., 21,1301-1304,1986
    [37]. O.O. Omamete, M.A. Janney, R.A. Strehlow, Gelcasting- A New Ceramic Forming Process, Am. Ceram. Soc. Bull., 70 [10] 1641-1649 (1991)
    [38]. M.A. Janney, O.O. Omatete, C.A. Walls, S.D. Nunn, R. J. Ogle, G. Westmoreland, Development of Low-Toxicity Gelcasting Systems, J. of the Am. Ceram. Soc., 81[3] 581-591 (1998)
    [39]. JANNEY M A,WALLS A H,Gelcasting compositions having Improved drying characteristics and mechinability, US Pat No 6228299,2001.
    [40]. Mark A. Janney, etc. ,Gelcasting, The Handbook of Ceramic Engineering, Mohamed N. Rahaman, Editor, Marcel Dekker, 1998
    [41].杨金龙等,α-Al2O3悬浮体流变性以及凝胶注模成型工艺研究,硅酸盐学报,1998,26(11):41-46
    [42]. Waesche R,Steinborn G,Zingaro A,Gelcasting of alumina and alumina-SiC composites,Silicates Industriels,1995,60[7-8]:193-197.
    [43]. K. Prabhakaran, S. Ananthakumar and C. Pavithran,Gel Casting of Alumina Using Boehmite as a Binder,Journal of the European Ceramic Society 19 (1999) 2875-2881
    [44]. T.J. Graule, L.J. Gauckler, F.H. Baader, Direct Coagulation Casting - A New Shape Technique, Ind. Ceramics, 16[1] 31-40 (1996)
    [45]. L.J. Gauckler,T.J. Graule, Swiss Patent, No. 02377/92-1,1992
    [46]. T.J. Graule, L.J. Gauckler ,F.H. Baader, Swiss Patent, No. 10096/96,1993
    [47]. T.J. Graule, L.J. Gauckler ,F.H. Baader, Ceramic Forming Using Enzyme CatalyzedReactions, Mat. Chem. And Phy. 2059,1-25,1999
    [48]. B. Balzer, M. K.M. Hruschka and L.J. Gauckler, Coagulation Kinetics and Mechanical Behavior of Wet Alumina Green Bodies Produced via DCC, J. Col. and Inter. Sci., 216,379-386,1999
    [49].刘学建等,直接凝固注模成型氮化硅陶瓷,无机材料学报,Vol.16, No.5, p877-882, 2001
    [50].司文婕等,直接凝固注模成型SiC陶瓷-浆料凝固过程的研究,无机材料学报,Vol.11, No.1, p171-174, 1996
    [51]. W. Sigmund, J. Yanez and F. Aldinger, Europe Patent Application, PCT/EP98/03555, 1998
    [52]. W.M.Sigmund, N.S.Bell, L. Bergstr?m, New Powder-Processing Methods for Advanced Ceramics, J. Am. Ceram. Soc., 83(7), 1557-74,2000
    [53]. F.F.Lange, US Pat. No.5188780, Feb.23,1993
    [54]. W. Mahler and M. F. Bechtold, Freeze-Formed Silica Fibres, Nature(London), 285, 27-28(1980)
    [55]. W. Mahler, Siliceous Fibers and Method of Preparing Them, U.S. Pat. No. 4,122,041, Oct. 24,1978
    [56].刘继富,吴厚政,谈家琪,朱宣慧,冷冻干燥法制备MgO-ZrO2超细粉末,硅酸盐学报,1996:24(1)105-108
    [57]. T. Yokota, Y. Takahata, T. Katsuyama, Y. Matsuda, A New Technique for Preparing Ceramics for Catalyst Support Exhibiting High Porosity and High Heat Resistance, Catalysis Today 69 (2001) 11-15
    [58]. T. YokoLa, T. Sugawara, and Y. Ichikawa, Preparation of Porous Ceramic Particles by Freeze-Dry Processing(in Jpn.)Kagaku Kogaku Kogaku Ronbunshu,l8[5]752-756(1992)
    [59]. W. A. Maxwell, R. S. Gurnick, A. C. Francisco, Preliminary investigation of the“Freeze-casting”method for forming refractory powders, NACA RM E53L21
    [60]. S. W. Sofie and F. Dogan, Freeze Casting of Aqueous Alumina Slurries with Glycerol, J. Am. Ceram. Sci., 84[7] 1459-64 (2001)
    [61]. T. Fukasawa, Motohide Ando, Tatsuki Ohji, Shuzo Kanzaki, Synthesis of porous ceramics with complex pore structure by freeze-dry processing, J. Am. Ceram. Soc. 84
    [1] 230-32 (2001)
    [62]. T. Fukasawa, Z-Y Deng, M. Ando, T. Ohji, Y. Goto, Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process, J. Mater. Sci. 36(2001) 2523-2527
    [63]. Takayuki Fukasawa, Zhen-Yan Deng, Motohide Ando, Tatsuki Ohji, Shuzo Kanzaki, Synthesis of Porous Silicon Nitride with Unidirectionally Aligned Channels Using Freeze-Drying Process, J. Am. Ceram. Sci., 85[9] 2151-55 (2000)
    [64]. D. Sangeeta etc. Method of Making a Ceramic Composite by Infiltration of a Ceramic Preformer, US Pat. No. 5628938, May 13, 1997
    [65]. F. J. Schnettler, F. R. Monforte, and W. W. Rhodes, Cryochemical Method for Preparing Ceramic Materials, pp. 79-90 in Science of Ceramics, Vol.4, Edited by G. H. Stewart. British Ceramic Society, London, U.K., 1968
    [66]. M. J. Statham, F. Hammett, B. Harris, R.G. Cooke, R. M. Jordan and A. Roche, Net-Shape Manufacture of Low-Cost Ceramic Shapes by Freeze-Gelation, Journal of Sol-Gel Science and Technology 13, 171-175 (1998)
    [67].张润林,壳型铸造和冷冻铸造近净形铸造技术,新技术新工艺,2001,12,22-23
    [68]. D. Koch, L. Andresen, T. Schmedders and G. Grathwohl, Evolution of Porosity by Freeze Casting and Sintering of Sol-Gel Derived Ceramics, Journal of Sol-Gel Science and Technology 26, 149-152, 2003
    [69]. Ma Dongling, Linda S, Schadler, et al., Preparation and structure investigation of nanoparticle assembled titanium dioxide microtubes. Appl Phys Lett, 2003, 83(9):1839
    [70]. K. Araki and J. W. Halloran, A New Freeze Casting Technique for Ceramics with Sublimable Vehicles, J. Am. Ceram. Soc., 87[10], 1859-1863, 2004
    [71]. K. Araki and J. W. Halloran, Porous Ceramic Bodies with Interconnected Pore Channel by a Novel Freeze Casting Technique,J. Am. Ceram. Soc., 88[15], 1108-1114, 2005
    [72]. Young-Hag Koh, In-Kook Jun, Jong-Jae Sun and Hyoun-Ee Kim, In situ Fabrication of Dense/Porous Bi-layered Ceramic Composite using Freeze Casting of Ceramic-Camphene Slurry, J. Am. Ceram. Soc., 89[2], 763-766,2006
    [73]. Popper P. The preparation of dense self-bonded silicon carbide, P209 in special ceramic. Heywood, London, 1960.
    [74]. Minnear W P,Interfacial energies in the Si/SiC system and the Si+C reaction,J Am Ceram Soc,1982,65(1):C10-C11.
    [75]. Fitzer E,Gadow R,Investigations of the reactivity of different carbons with liquid silicon,in Proceedings of the international symposium on ceramic components for engines,KTK Scientific Publishers,Tokyo,Japan,1984.
    [76]. Zhou H,Singh R N,Kinetics model for the growth of silicon carbide by the reaction of liquid silicon with carbon,J Am Ceram Soc,1995,78(9):24562462.
    [77]. Hase T,Suzuki H,Rise in temperature of SiC pellet involving reaction sintering,J Nucl Mater,1976,59(1):42-48.
    [78]. Ness J N,Page T F,Microstructural evolution in reaction-bonded silicon carbide,J Mater Sci,1986,21:1377-1397.
    [79]. Chiang Y M,Messner R P,Terwilliger C D,Reaction-formed silicon carbide,Mater Sci Eng A,1991,144:63-74.
    [80]. Wilhelm M,Mornfeld M,Wruss W,Development of SiC-Si composites with fine-grained SiC microstructures,J European Ceram Soc,1999,19:2155-2163.
    [81]. Chiang Y M,Messner R P,Terwilliger C D,Reaction-formed silicon carbide,Mater Sci Eng A,1991,144:63-74.
    [82]. Lseki T,Lim C B,Properties of heat-trate reaction sintered SiC and fabrication of SiC/MoSi2 composites,Key Eng Mater,1991,53-55:138-143.
    [83]. Messner R P,Chiang Y M,Liquid-phase reaction bonding of silicon carbide using alloyed silicon-molybdenum melt,J Am Ceram Soc,1990,73(5):1193-2000.
    [84]. Schmid W,Wruss W,Stroh R,et al,Manufacture and properties of Si-SiC-MoSi2 composites,cfi/Ber,DGK,1997,67(6):245-249.
    [85]. Lim C B,Yano T,Iseki T,Microstructure and mechanical properties of RB-SiC/MoSi2 composite,J Mater Sci,1989,24(11):4144-4151.
    [86]. Hillig W B,Mehan R L, Morelock C R,Silicon/silicon carbide composites,Am Ceram Bulletin,1975,54(12):1054-1056.
    [87]. Trantina G G,Mehan R L,High temperature time-dependent strength of an Si/SiC composite,J Am Ceram Soc,1977,60(3-4):177-178.
    [88]. Mehan R L,Effect of SiC content and orientation on the properties of Si/SiC ceramic composite, J Mater Sci,1978,13:358-366.
    [89]. Lee S P, Katoh Y, Hinoki T, et al , Microstructure and bending properties of SiC/SiC composites fabricated by reaction sintering process, Ceramic Engineering and ScienceProceedings,2000, 21(3):339-346.
    [90]. Duraphe A, Dukes H, Sankar J,et al, Effect of temperature on fatigue properties of melt infiltrated ceramic composites, Ceramic Engineering and Science Proceedings,2000,21(3):347-354.
    [91]. Krenkel W,Cost effective processing of CMC composites by melt infiltration,Ceramic Engineering and Science Proceedings,2001,22(3):443-454.
    [92]. Muhlratzer A,Karlsfeld,Production,properties and applications of ceramic matrix composites,Ceramic forum international,1999,76(4):30-35.
    [93].李锐星等,冷冻干燥合成ZrO2-(A12O3, Fe2O3)及其微观组织的变化,无机材料学报Vol. 18, No. 2,2003
    [94]. R.J.Pugh and L.Bergstorm, Surface and Colloid Chemistry in Advanced Ceramics Processing, Marcel Dekker, Inc., 1994
    [95].陈孟林,涂伟萍,兰仁华,杨卓如,陈焕钦,瓶装物料的冷冻干燥过程研究,制冷学报,1998,2,39-43
    [96].刘永忠,郭有仪,郁永章,非挥发性组分对真空冷冻干燥过程的影响,西安交通大学学报,1999:33(4)77-81
    [97].赵兰萍、徐烈、李兆慈,冻结过程与冷冻干燥的关系,低温工程,1999,(4):115-118
    [98].涂伟萍、田文清、杨卓长、陈焕钦、谭盈科,冷冻干燥过程的实验研究,高校化学工程学报,No. 3 Vol. 9,1995
    [99]. P. Badica, G. Aldica, Bi-2223 Freeze-dried ceramic: specific features, related problems and search for new solutions, Journal of Optoelectronics and Advanced Materials Vol. 5, No. 4, December 2003, p. 1029 - 1039
    [100]. R.W.Jones, Near Net Shape Ceramics by Freeze Casting, Ind. Ceram. 20[2], 117-21 (2000)
    [101]. Victor F. Petrenko and Robert W. Whitworth, Physics of Ice, Oxford; New York: Clarendon Press, 1999
    [102]. D J肖著,张中路,张仁佑译,胶体与表面化学导论,化学工业出版社,1986.
    [103].沈钟,王果庭,胶体与表面化学,化学工业出版社,1991
    [104].李葵英,界面与胶体的物理化学,哈尔滨工业大学出版社,1998.
    [105].任俊、沈健、卢寿慈,颗粒分散科学与技术,化学工业出版社,2005
    [106].高濂、孙静、刘阳桥,纳米粉体的分散及表面改性,化学工业出版社,2004
    [107].邓彤、赵学范译,界面电现象,北京大学出版社,1991
    [108]. J. Lyklema ,Principles of the stability of lyophobic colloidal dispersions in non-aqueous media ,Adv. Colloid Interface Sci.,2,65(1968)
    [109]. Koelmans H,Overbeek J Th G. Stability and Electrophoretic Deposition of Suspensions in Non-Aqueous Media,Discuss Faraday Society,1954,18:52-63,
    [110]. Van der Minne, J. L.; Hermanie, P. H. J. Electrophoresis measurements in benzene-correlation with stability, I. Development of method. J. Colloid Sci. 1952, 7, 600-615
    [111]. J.Briant and B.Bernelin,Rev. Inst. Fr. Petrole,1767,1959
    [112]. Feat G R, Levine S J. The double-layer interaction of two charged colloidal spherical particles of a concentrated dispersion in a medium of low dielectric constant:Ⅲ.Approximation of perfectly conducting particles.Colloid and Interface Sci,1976,54:34
    [113]. W. Albers 1 and J. Th. G. Overbeek, Stability of emulsions of water in oil, II: Charge as a factor of stabilization against flocculation, Journal of Colloid Science 14, 510-518 (1959)
    [114]. G. D. Parfitt, J. Colloid Interface Sci., 54,4,1976
    [115].郑树亮,黑恩成,应用胶体化学,华东理工大学出版社,1996.
    [116]. Tadros T F,Steric stabilization and flocculation by polymers,Polymer,1991,23
    [5]:683-696.
    [117]. Ottewill R H,Stability and instability in disperse systems,J Colloid Interface Sci,1977,58[2]:357-373.
    [118]. Napper D H ,Streic stabilization,J Colloid Interface Sci,1977,58[2]:390-407.
    [119]. T佐藤,聚合物吸附对胶态分散体稳定性的影响,科学出版社,1988.
    [120]. Feigin R I,Napper D H,Depletion stabilization and depletion flocculation,J Colloid Interface Sci,1980,75[2]:525-541.
    [121]. Vincent B,Edwards J,Emmett S,et al,Depletion flocculation in dispersions of sterically stabilized particles(”soft spheres”),Colloids Surf,1986,18:261.
    [122]. WalzZ J Y,Sharma A,Effect of long-range interactions on the depletion force between colloidal particles,J Colloid Interface Sci,1994,168:485.
    [123]. Mao Y,Cates M E,Lekerkerker H N,Depletion forces in polydisperse systems,Physica A,1995,222:10-24.
    [124]. Richetti P,Kekicheff P,Direct measurement of depletion and structural forces in a micellar system,Phys Rev Lett,1992,68:1951.
    [125]. Frank H S, Wen W Y., Ion-solvent interaction III. Structural aspects of ion- solvent interaction in aqueous solutions: A Suggested Picture of Water Structural,Disc Faraday Soc. 1957,24,133
    [126]. Cox B G, et al. Solvation of ions XIX. Thermodynamic properties for transfer of single ions between protic and dipolar aprotic solvents. Aust. J. Chem. 27:477-501,Aust. J Chem, 1974,27,477
    [127]. J Ren S Song, Lopez-Valdivieso A S Lu, J Shen. Dispersion of Silica Fines in Water-Ethanol Suspensions,J Colloid Interface and Sci., 2001,238(2), 279-284
    [128]. Pashley R M, Hydration forces between mica surfaces in electrolyte solutions , Adv Coll Inter Sci, 1982,16,57-62
    [129]. Churaev N V , et al. Inclusion of structural forces in the theory of stability of colloids and films, J Colloid Interface Sci,1985,103(2),542-533
    [130]. Tamura-Lis W, et al., Interactive forces between sphingomyelin bilayers. J Colloid Interface Sci,1986,114(1),214-219
    [131]. Claesson P M, et al. Experimental Evidence for Repulsive and Attractive Forces not Accounted for by Conventional DLVO theory ,Prog Coll Polym Sci, 1987,74,48
    [132]. I Israelachvili J. Intermolecular and Surface Forces(2nd ed.). New York: Academic Press, 1991.
    [133]. Zhenghe Xu, et al. Study of hydrophobic coagulation , J Colloid Interface Sci,1990,134(2),427-434
    [134].王启宏等,材料流变学,中国建筑工业出版社,1985.
    [135]. Krieger I M,Rheology of monodisperse latices,Adv Colloid Interface Sca,1972,3:11.
    [136]. Woodcock L V,Origins of shear dilatency and shear thickening phenomena,Chem Phys Lett,1984,111:455.
    [137]. Barnes H A,Shear thickening(dilatency)in suspensions of nonaggregating solid particles dispersed in Newtonian liquids,J Rheol,1989,33:329.
    [138]. Hoffman R L,Discontinuous and dilatent viscosity behavior in concentrated suspensions,Trans Soc Rheol,1972,16:155.
    [139]. Ackerson B J,Shear-induced order and shear processing of model hard-sphere suspensions, J Rheol,1990,34[4]:553-90.
    [140]. Bender J,Wagner N J,Reversible shear thickening in monodisperse and bidisperse colloidal dispersions,J Rheol,1996,40:899.
    [141]. Binham E. C. , Fluidity and Plasticity, McGraw-Hill, New York, 1922
    [142]. Herschel H and Buckley R. Measurement of consistency as applied to rubber- benzene solutions. Proc. Am. Soc. Test. Mater, 1922, 26(2):621
    [143]. Mill C C. ed., Rhelogy of disperse Systems. Pergamon Press, London, 1959
    [144]. K. A. Jackson and J. D. Hunt, Transparent Compounds That Freeze Like Metals, Acta Met., 13, 1212-1215, 1965
    [145]. E. R. Rubstein, M. E. Glicksman, Dendritic growth kinetics and structure II. Camphene, Journal of Crystal Growth 112 (1991) 97-110
    [146].化工产品手册有机化工原料上册,化学工业部科学技术情报研究所编,1989,化学工业出版社,北京
    [147]. D. R. H. Jones, Review—The Free Energies of Solid-Liquid Interfaces, J. Mater. Sci., 9, 1-17, 1974
    [148]. E. Cadirli, N. Marasli, B. Bayender and M. Gündüz, Dependency of Microstructure Parameters on Solidification Parameters for Camphene, Mater. Res. Bull., 35, 985-995, 2000
    [149]. E. J. W. Verwey, The electrical double layer of oxidic substances especially in non-aqueous media,Recl. Trav. Chim. Pays-Bas,60, 625(1941)
    [150].刘安华,刘长生,吴璧耀,等,焦磷酸络锰(III)引发炭黑表面接枝聚合研究,武汉化工学院学报,1997,19:1-4.
    [151].刘安华,龚克成,刘长生,等,乙酰丙酮(II)引发的炭黑表面接枝聚合研究,高分子材料科学与工程,1999,15[3]:68-70.
    [152].胡友慧,董红兵,刘俊峰,等,炭黑对乙烯基单体自由基聚合反应的影响,功能高分子学报,1998,11:143-146.
    [153].李玮,谢志明,李卓美,聚丙烯酸酯接枝炭黑的合成、表征及其应用,功能高分子学报,1999,12:302-306.
    [154].陈敏,廖隆理,李志强,炭黑表面接枝改性研究进展,皮革科学与工程,2001,11(3):23-31.
    [155].季君晖,不同电荷的丙烯酸类单体在炭黑表面的接枝聚合,高分子材料科学与工程,2001,17(4):48-51.
    [156].吴璧耀,刘安华,邵兰英,等,丙烯酸在炭黑表面接枝聚合研究,高分子学报,1994,6:745-748..
    [157].李玮,谢志明,李卓美,丙烯酸酯在炭黑表面接枝聚合的研究,中山大学学报(自然科学版),1999,38(4):40-43.
    [158].王曾辉,高晋生,炭素材料,上海,华东化工学院出版社,1991.
    [159].李显堂,炉法炭黑生产,北京,职工教育出版社,1998.
    [160].王道宏,徐亦飞,张继炎,炭黑的物化性质及表征,化学工业与工程,2002,19(1):76-82.
    [161]. Studebaker M L,Rinehart R W,Infrared studies of oxygen-containing groups on the surface of carbon black,Rubber Chem Technol,1972,45:106.
    [162].周光义(编译),炭黑聚集体形态研究进展,炭黑工业,1992,5:31.
    [163]. Divin D,Surface Properties of Carbon. Rubber Chem Technol,1971,44:307.
    [164]. H. P. Boehm and M. Voll , Basische Oberfl?chenoxide auf Kohlenstoff-I. Adsorption von S?uren, Carbon,1970,8:227-240.
    [165].常文保,李克安编,简明无机化学分析手册,北京大学出版社,北京,1981
    [166].王正东,胡黎明,超分散剂的作用机理及应用效果,精细石油化工,1996,11,p59-62
    [167].王正东,张雪莉,胡黎明,超分散剂的结构特征与合成路线,化学世界,1996,2,p59-63
    [168].严海彪,潘国元,胡玉琴,聚酯型超分散剂在聚合物中的应用,塑料工业,vol.32,11,p46-48,2004
    [169].陈飞跃,许勇,王胜茂,胡黎明,超分散剂对炭黑体系分散性能的研究,华东理工大学学报,Vo1.21,No. 4,p418-422,1995
    [170].郑水林编著,粉体表面改性,中国建筑工业出版社,2003,北京
    [171].钱逢麟,竺玉书主编,涂料助剂——品种和性能手册,化学工业出版社,1998,北京
    [172].颜鲁婷,司文捷,苗赫濯,Al2O3浆料体系中偶联剂的选择含量及作用影响,材料科学与工程,vol.22, No.1, p15-18, 2002
    [173].黄苏萍等,嵌段型超分散剂在固/液界面的吸附机理,中南工业大学学报Vol.33 No.1,P41-44,2002
    [174]. http://210.34.120.10/software/08/09/001/01/00001/5_zi/5_4_2.htm
    [175].刘晓林,氧化锆增韧氧化铝陶瓷凝胶注模成型的研究,清华大学博士论文,2001
    [176].陈金祥,王玉平著,粉体工程学,四川建材学院,1991,4
    [177].刘海林,反应烧结碳化硅凝胶注模成型,中国建筑材料科学研究总院硕士论文,2004,
    [178].江东亮,张景贤,碳化硅水基流延和层状复合材料,第一届海峡两岸陶瓷基和金属基复合材料研讨会,台湾,2001.
    [179]. Granja M F L,Doreau F,Ferreira J M F,Aqueous tape-casting of silicon carbide,Key Eng Mater,1997,132-136:362-365.
    [180].张巨先,李镇江,杨静漪等,碳化硅水基浆料体系的流变性能的研究,青岛化工学院学报,Vol.19,No.2:103-106,1998
    [181].葛斌,冷冻干燥过程传热传质研究,制冷,Vol.57,No.4:37-40,1996
    [182].涂伟萍等,冷冻干燥过程的数学模型,高等化学工程学报,Vol.9,No.1:38-44,1995
    [183]. D. R. Uhlmann, B.Chalmers, and K. A. Jackson, Interaction between Partics and a Solid-Liquid Interface, J. App;. Phys., 35, 2986-93(1964).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700