基于聚偏氟乙烯的有机—无机复合膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚偏氟乙烯(PVDF)具有物化性质稳定、机械强度高等优点,在水处理等领域应用前景广阔,但是聚合物材料本身疏水,在实际应用过程中易产生膜污染,从而引起膜分离效率的下降和操作成本的增加。利用亲水性的无机纳米粒子制备有机-无机复合膜提高膜的亲水性,正成为膜材料领域的研究热点之一。然而,具有高比表面积和表面能的无机纳米粒子容易团聚,造成其在聚合物基体中分布不均匀。同时,有机与无机两相之间相互作用弱,导致无机纳米粒子在膜服役过程中容易流失,起不到持久亲水化改性的效果。本文采用无机纳米粒子表面改性和仿生矿化的方法,构建了亲水化的有机-无机复合膜,并对表面改性、矿化过程以及复合膜的应用性能进行了深入探讨。全文主要内容如下:
     为提高二氧化硅(Si02)纳米粒子在聚合物基体中的分散性,并增强其与聚合物的相互作用,采用表面引发原子转移自由基聚合在Si02纳米粒子表面分别接枝甲基丙烯酸羟乙酯/甲基丙烯酸甲酯嵌段共聚物,以杂化Si02纳米粒子为亲水性添加剂,分别与PVDF和PAN溶液共混,通过浸没沉淀相转化法制备有机-无机复合膜。考察了杂化SiO2纳米粒子表面接枝聚合物的分子量对成膜过程、复合膜的结构和性能的影响。当Si02纳米粒子表面接枝合适分子量的聚合物时,杂化粒子在成膜过程中向膜表面迁移/富集,其复合膜具有高的表面亲水性、蛋白质截留率和抗蛋白质污染性能。
     制备了PVDF/聚丙烯酸(PAA)复合膜,进而采用交替浸渍法于膜表面和截面进行矿化。组合表面衰减傅里叶变换红外光谱仪、X射线衍射仪、场发射扫描电子显微镜等分析手段对矿化过程进行了表征,着重考察了矿化条件如溶液浓度、PAA含量、循环次数对矿化膜的形貌和机械性能的影响规律,确定了最优矿化条件。矿化后的膜表面和截面覆盖了由方解石和球文石组成的碳酸钙粒子,呈现高亲水特性,纯水通量提高了3倍,对刚果红的截留率高达90%,且膜性能长期稳定。
     采用原位矿化法制备了PVDF/PAA/CaCO3复合膜。结合三元相图分析了不同CaCl2含量的铸膜液的分相行为,在CaCl2的存在下,PVDF/PAA在N,N-二甲基乙酰胺/水溶液中的溶解性变差,且出现了“盐出”效应。比较了碳酸钠和碳酸铵为矿化碳酸源对CaCO3粒子的生成和分布以及矿化膜的结构和性能的影响,选择(NH4)2CO3水溶液为碳酸源。通过添加15wt%甘油于(NH4)2CO3水溶液,降低溶剂与非溶剂的交换速度,制备了PVDF/PAA/CaCO3复合膜。该复合膜无大孔结构,膜上表面、皮层和膜截面处的指状孔内均匀负载由方解石和球文石组成的CaCO3粒子,同时具有抗荷正电蛋白质污染的性能。
Poly(vinylidene fluoride)(PVDF) is the most extensively used materials for ultrafiltration and micro filtration membranes because of their sufficient chemical stability as well as fine mechanical strength. However, their hydrophobic nature has hindered the use of the membrane in water treatment as they tend to be fouled and hence show rapid reduction in permeability. Much attention has been paid to hydrophilic organic-inorganic composite membranes which are often fabricated through blending polymers with inorganic nanoparticles. But these inorganic nanoparticles are easy to agglomerate, resulting in non-uniform distribution in the membranes because of their high specific surface area and high surface free energy. Furthermore, the inorganic nanoparticles are easy to leach out during long term use, which results from the instability of the interface of inorganic particles and hydrophobic polymers. In this thesis, organic-inorganic composite membranes with high surface hydrophilicity were fabricated by introducing inorganic particles that was grafted with polymers or by biomineralization. The surface modification and biomineralization processes were explored in detail. Our specific studies are concentrated on the following aspects:
     PVDF ultrafiltration membranes were prepared by immersion precipitation method using poly(hydroxyethyl methacrylate)-block-poly(methyl methacrylate) grafted silica (PHEMA-b-PMMA@SiO2) nanoparticles as hydrophilic additives. The hybrid nanoparticles were synthesized by the surface initiated atom transfer radical polymerization (SI-ATRP). After blending polymer with the hybrid silica nanoparticles, these hybrid nanoparticles influence the structure and performance of the composite membranes obviously. Nanoparticles with appropriate molecular weight of polymer brushes increase the pure water flux, improve the BSA rejection to a high level (>90%), and reduce the membrane fouling at the same time.
     Organic-inorganic composite membranes were prepared via calcium carbonate (CaCO3) mineralization induced by PVDF/poly(acrylic acid)(PAA) blend membranes. PAA was used as a polyanionic macromolecule in the blend membranes to generate CaCO3particles by an alternate soaking process (ASP). The mineralization condition was optimized based on the concentrations of calcium chloride (CaCl2) and sodium carbonate (Na2CO3) solutions used for ASP, the number of ASP cycles, and the PAA content in the blend membranes. Structures and surface hydrophilicity of the composite membranes were characterized in detail by FTIR-ATR, FESEM, EDX, XRD and water contact angle. Results confirm that CaCO3particles consisting of calcite and vaterite dispersed uniformly in/on the membranes. The membrane hydrophilicity increased dramatically due to the intrinsic wettability of these CaCO3particles. In addition, pure water fluxes of the membranes were improved about three times. Furthermore, the mineralized membranes even showed a high rejection (99.85%) of Congo red with long-term stability, which makes them potential in dye-polluted wastewater treatment.
     PVDF/PAA/CaCO3composite membranes were prepared by in-situ mineralization method. The mineralization condition was optimized based on CaCl2content in the casting solution and carbonate source selection. Structures and surface hydrophilicity were characterized in detail by FESEM, FT-IR/ATR, EDX, XRD and water contact angle for the prepared composite membranes. Results confirm that CaCO3particles consisting of calcite and vaterite disperse uniformly on the membrane surface and in the membrane cross-section, and the membrane hydrophilicty increases with the increase of CaCl2content in the casting solution. The pure water fluxes of the membranes were improved about ten times. Due to the electrostatic repulsion between the positively charges lysozyme and CaCO3particles, the mineralized membranes possess a high rejection (85.13%) and flux recovery ratio (77.21%), indicating good antifouling property.
引文
[1]M.L. Yeow, Y. Liu, K. Li, Preparation of porous PVDF hollow fibre membrane via a phase inversion method using lithium perchlorate (LiClO4) as an additive. Journal of Membrane Science 2005,258,16-22.
    [2]K.Y. Wang, S.W. Foo, T.S. Chung, Mixed matrix PVDF hollow fiber membranes with nanoscale pores for desalination through direct contact membrane distillation. Industrial & Engineering Chemistry Research 2009,48,4474-4483.
    [3]S. Bonyadi, T.S. Chung, Flux enhancement in membrane distillation by fabrication of dual layer hydrophilic-hydrophobic hollow fiber membranes. Journal of Membrane Science 2007, 306,134-146.
    [4]Y.H. Su, Y.L. Liu, Y.M. Sun, J.Y. Lai, D.M. Wang, Y. Gao, B. Liu, M.D. Guiver, Proton exchange membranes modified with sulfonated silica nanoparticles for direct methanol fuel cells. Journal of Membrane Science 2007,296,21-28.
    [5]Y. Yang, P. Wang, Preparation and characterizations of a new PS/TiO2 hybrid membranes by sol-gel process. Polymer 2006,47,2683-2688.
    [6]梁伯润.高分子物理学(第二版).中国纺织出版社.2000.
    [7]P.A. Kober, Pervaporation, perstillation and percrystallization. Journal of the American Chemical Society 1917,39,944-948.
    [8]陈立新,沈新元.相转化法的湿法成膜机理.膜科学与技术.1997,17(3),1-6.
    [9]C. Cohen, G.B. Tanny, S. Prager, Diffusion-controlled formation of porous structures in ternary polymer systems. Journal of Polymer Science:Polymer Physics Edition 1979,17, 477-489.
    [10]S.C.A. Reuvers A J, Formation of membranes by means of immersion precipitation. Part 1. A model to describe mass transfer during immersion precipitation. Journal of Membrane Science 1987,34(1),45-65.
    [11]S.C.A. Reuvers A J, Formation of membranes by means of immersion from the system cellulose acetate-acetone-water. Journal of Membrane Science 1987,34(1),67-86.
    [12]R.S. J. Hildebrand, Solubility of nonelectrolytes Reinhold New York,1949.
    [13]Y. Isono, M. Nakajima, Application of membrane phase separation for enzymatic synthesis of aspartame precursor in biphasic reaction system. Biochemical Engineering Journal 2000,4,143-147.
    [14]R.E. Kesting, Synthetic polymeric membranes:a structural perspective. John Wiley & Sons London,1985.
    [15]D. Hoernschemeyer, The influence of solvent type on the viscosity of concentrated polymer solutions. Journal of Applied Polymer Science 1974,18,61-75.
    [16]D.L. Wang, K. Li, W.K. Teo, Preparation and characterization of polyvinylidene fluoride (PVDF) hollow fiber membranes. Journal of Membrane Science 1999,163,211-220.
    [17]A. Bottino, G. Capannelli, S. Munari, Effect of coagulation medium on properties of sulfonated polyvinylidene fluoride membranes. Journal of Applied Polymer Science 1985, 30,3009-3022.
    [18]S.P. Deshmukh, K. Li, Effect of ethanol composition in water coagulation bath on morphology of PVDF hollow fibre membranes. Journal of Membrane Science 1998,150, 75-85.
    [19]L.P. Cheng, T.H. Young, L. Fang, J.J. Gau, Formation of particulate microporous poly(vinylidene fluoride) membranes by isothermal immersion precipitation from the 1-octanol dimethylformamide poly(vinylidene fluoride) system. Polymer 1999,40, 2395-2403.
    [20]R.E. Kesting, Semipermeable membranes of cellulose acetate for desalination in process of reverse osmosis.1. lyotropic swelling of secondary cellulose acetate. Journal of Applied Polymer Science 1965,9,663-667.
    [21]A. Bottino, G. Capannelli, S. Munari, A. Turturro, High-performance ultrafiltration membranes cast from LiCl doped solutions. Desalination 1988,68 167-177.
    [22]B. Kunst, D. Skevin, G. Dezelic, J.J. Petres, Light-scattering and membrane formation study on concentrated cellulose-acetate solutions. Journal of Applied Polymer Science 1976, 20,1339-1353.
    [23]T. Uragami, Y. Naito, M. Sugihara, Studies on synthesis and permeability of special polymer membranes.39. permeation characteristics and structure of polymer blend membranes from poly(vinylidene fluoride) and poly(ethylene glycol). Polymer Bulletin 1981, 4,617-622.
    [24]B. Kunst, Souriraj.S, Effect of casting conditions on performance of porous cellulose acetate membranes in reverse osmosis. Journal of Applied Polymer Science 1970,14, 723-727.
    [25]M. Mulder, Basic principles of membrane technology. Kluwer Academic Publishers 1998.
    [26]D.L. Wang, K. Li, W.K. Teo, Porous PVDF asymmetric hollow fiber membranes prepared with the use of small molecular additives. Journal of Membrane Science 2000,178, 13-23.
    [27]A.L.Z. R. F. Boyd, Analysis of protein fouling during ultrafiltration using a two-layer membrane model. Biochemical Engineering Journal 2000,59,451-460.
    [28]A.L.Z. C.C. Ho, Protein fouling of asymmetric and composite microfiltration membranes. Industrial & Engineering Chemistry Research 2001,40,1412-1421.
    [29]S.C. F. Tao, R. Hobbs, J. Sides, J. Wieser, C. Dyke, D. Tuohey, P. Pilger, Reverse osmosis process successfully converts oil field brine into freshwater. Oil and Gas Journal 1993,88-91.
    [30]M.A. A. Salahi, T. Mohammadi, Permeate flux decline during UF of oily wastewater: Experimental and modeling. Desalination 2010,251,163-160.
    [31]Z. Yi, L.P. Zhu, Y.Y. Xu, Y.F. Zhao, X.T. Ma, B.K. Zhu, Polysulfone-based amphiphilic polymer for hydrophilicity and fouling-resistant modification of polyethersulfone membranes. Journal of Membrane Science 2010,365,25-33.
    [32]Y.F. Yang, Y. Li, Q.L. Li, L.S. Wan, Z.K. Xu, Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for anti-biofouling. Journal of Membrane Science 2010,362,255-264.
    [33]C.Y. Tu, Y.L. Liu, K.R. Lee, J.Y. Lai, Hydrophilic surface-grafted poly(tetrafluoroethylene) membranes using in pervaporation dehydration processes. Journal of Membrane Science 2006,274,47-55.
    [34]Y.F. Yang, L.S. Wan, Z.K. Xu, Surface hydrophilization for polypropylene microporous membranes:A facile interfacial crosslinking approach. Journal of Membrane Science 2009, 326,372-381.
    [35]Y. Chang, Y.J. Shih, C.Y. Ko, J.F. Jhong, Y.L. Liu, T.C. Wei, Hemocompatibility of poly(vinylidene fluoride) membrane grafted with network-like and brush-like antifouling layer controlled via plasma-induced surface PEGylation. Langmuir 2011,27,5445-5455.
    [36]C.S.C. E. Ostuni, D.E. Ingber, G.M. Whitesides, Selective deposition of proteins and cells in arrays of micro wells. Langmuir 2001,17,2828-2834.
    [37]R.G.C. E. Ostuni, M.N. Liang, G. Meluleni, G. Pier, D. E. Ingber, G. M. Whitesides, Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells. Langmuir 2001,17,6336-6343.
    [38]R.G.C. E. Ostuni, R.E. Holmlin, S. Takayama, G.M. Whitesides, A survey of structure-property relation ships of surfaces that resist the adsorption of protein. Langmuir 2001,17,5605-5620.
    [39]M.M. L. Deng, G.M. Whitesides, Self-assembled monolayers of alkanethiolates presenting tri(propylene sulfoxide) groups resist the adsorption of protein. Journal of the American Chemical Society 1996,118,5136-5137.
    [40]G.M.W. M. Mrksich, Using self-assembled monolayers that present oligo (ethylene glycol) groups to control the interactions of proteins with surfaces. ACS Symposium Series, ACS Publications 1997,361-373.
    [41]A. Rahimpour, S.S. Madaeni, Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes:preparation, morphology, performance and antifouling properties. Journal of Membrane Science 2007,305,299-312.
    [42]S.M. A. Rahimpour, S. Zereshki, Y. Mansourpanah, Preparation and characterization of modified nano-porous PVDF membrane with high antifouling property using UV photo-grafting. Applied Surface Science 2009,255,7455-7461.
    [43]S.S.M. A. Rahimpour, Y. Mansourpanah, Nano-porous polyethersulfone (PES) membranes modified by acrylic acid (AA) and 2-hydroxyethylmethacrylate (HEMA) as additives in the gelation media. Journal of Membrane Science 2010,364,380-388.
    [44]A. Rahimpour, S.S. Madaeni, S. Zereshki, Y. Mansourpanah, Preparation and characterization of modified nano-porous PVDF membrane with high antifouling property using UV photo-grafting. Applied Surface Science 2009,255,7455-7461.
    [45]L. Li, G.P. Yan, J.Y. Wu, X.H. Yu, Q.Z. Guo, Surface-initiated atom-transfer radical polymerization from polyimide films and their anti-fouling properties. Journal of Macromolecular Science Part A:Pure and Applied Chemistry 2008,45,828-832.
    [46]L. Li, G.P. Yan, J.Y. Wu, X.H. Yu, Q.Z. Guo, E.T. Kang, Electroless plating of copper on polyimide films modified by surface-initiated atom-transfer radical polymerization of 4-vinylpyridine. Applied Surface Science 2008,254,7331-7335.
    [47]M.M. L. Deng, G.M. Whitesides, Self-assembled monolayers of alkanethiolates presenting tri(propylene sulfoxide) groups resist the adsorption of protein. Journal of the American Chemical Society 1996,118,5136-5137.
    [48]M.S.K. Chong, J. Chan, M. Choolani, C.N. Lee, S.H. Teoh, Development of cell-selective films for layered co-culturing of vascular progenitor cells. Biomaterials 2009, 30,2241-2251.
    [49]B.A.G. E. Ostuni, M. Mrksich, C.S. Roberts, G.M. Whitesides, Adsorption of proteins to hydrophobic sites on mixed self-assembled monolayers. Langmuir 2003,19,1861-1872.
    [50]S.T. L. Harris, M. Wieland, M. Textor, R. Richards, Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials 2004,25,4135-4148.
    [51]J.V. G.L. Kenausis, D.L. Elbert, N. Huang, R. Hofer, L. Ruiz-Taylor, M. Textor, J.A. Hubbell, N.D. Spencer, Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: attachment mechanism and effects of polymer architecture on resistance to protein adsorption. The Journal of Physical Chemistry B 2000,104,3298-3309.
    [52]H.J.B.D. McCloskey, B.D. Freeman, Composite membranes based on a selective chitosan-poly(ethylene glycol) hybrid layer:synthesis, characterization, and performance in oil-water purification. Industrial & Engineering Chemistry Research 2009,49,366-373.
    [53]J. Wei, G.S. Helm, N. Corner-Walker, X.L. Hou, Characterization of a non-fouling ultrafiltration membrane. Desalination 2006,192,252-261.
    [54]L.E.S. Brink, D.J. Romijn, Reducing the protein fouling of polysulfone surfaces and polysulfone ultrafiltration membranes:optimization of the type of presorbed layer. Desalination 1990,78,209-233.
    [55]A. Hucknalll, S. Rangarajan, A. Chilkotil, In pursuit of zero:polymer brushes that resist the adsorption of proteins. Advanced Materials 2009,21,2441-2446.
    [56]P. Kingshott, H. Thissen, H. J. Griesser, Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins. Biomaterials 2002,23, 2043-2056.
    [57]P. Wang, K. L. Tan, E. T. Kang, K. G. Neoh, Antifouling poly(vinylidene fluoride) microporous membranes prepared via plasma-induced surface grafting of poly(ethylene glycol). Journal of Adhesion Science and Technology 2002,16,111-127.
    [58]H. Susanto, M. Balakrishnan, M. Ulbricht, Via surface functionalization by photograft copolymerization to low-fouling polyethersulfone-based ultrafiltration membranes. Journal of Membrane Science 2007,288,157-167.
    [59]Q. Shi, Y. L. Su, W. J. Chen, J. M.Peng, L. Y. Nie, L. Zhang, Z. Y. Jiang, Grafting short-chain amino acids onto membrane surfaces to resist protein fouling. Journal of Membrane Science 2011,366,398-404.
    [60]P. Kingshott, S. McArthur, H. Thissen, D.G. Castner, H.J. Griesser, Ultrasensitive probing of the protein resistance of PEG surfaces by secondary ion mass spectrometry. Biomaterials 2002,23,4775-4785.
    [61]A. R. Denes, E. B. Somers, Denes, A.C.L. Wong, F. Denes,12-crown-4-ether and tri(ethylene glycol) dimethyl-ether plasma-coated stainless steel surfaces and their ability to reduce bacterial bio film deposition. Journal of Applied Polymer Science 2001,81, 3425-3438.
    [62]H. Y. Yu, Y. Xie, M. X. Hu, J. L. Wang; S. Y. Wang, Z. K. Xu, Surface modification of polypropylene microporous membrane to improve its antifouling property in MBR:CO2 plasma treatment. Journal of Membrane Science 2005,254,219-227.
    [63]A. Asatekin, S. Kang, M. Elimelech, A. M. Mayes, Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly (ethylene oxide) comb copolymer additives. Journal of Membrane Science 2007,298,136-146.
    [64]A. Asatekin, E. A. Olivetti, A. M. Mayes, Fouling resistant, high flux nanofiltration membranes from polyacrylonitrile-graft-poly(ethylene oxide). Journal of Membrane Science 2009,332,6-12.
    [65]Y.L. Su, W. Cheng, C. Li, Z.Y. Jiang, Preparation of antifouling ultrafiltration membranes with poly(ethylene glycol)-graft-polyacrylonitrile copolymers. Journal of Membrane Science 2009,329,246-252.
    [66]J.F. Hester, P. Banerjee, A.M. Mayes, Preparation of protein-resistant surfaces on poly(vinylidene fluoride) membranes via surface segregation. Macromolecules 1999, 32,1643-1650.
    [67]J.F. Hester, A. M.Mayes, Design and performance of foul-resistant poly(vinylidene fluoride) membranes prepared in a single-step by surface segregation. Journal of Membrane Science 2002,202,119-135.
    [68]D. Rana, T. Matsuura, Surface Modifications for Antifouling Membranes. Chemical Reviews 2010,110,2448-2471.
    [69]H. Susanto, M. Ulbricht, Photografted thin polymer hydrogel layers on PES ultrafiltration membranes:characterization, stability, and influence on separation performance. Langmuir 2007,23,7818-7830.
    [70]Y. Ogawa, Y. Arikawa, T. Kida, M. Akashi, Fabrication of novel layer-by-layer assembly films composed of poly(lactic acid) and polylysine through cation-dipole interactions. Langmuir 2008,24,8606-8609.
    [71]F. Q. Nie, Z. K.Xu, X. J. Huang, P. Ye, J. Wu, Acrylonitrile-based copolymer membranes containing reactive groups:Surface modification by the immobilization of poly(ethylene glycol) for improving antifouling property and biocompatibility. Langmuir 2003,19,9889-9895.
    [72]F. Q. Nie, Z. K. Xu, P. Ye, J. Wu, P. Seta, Acrylonitrile-based copolymer membranes containing reactive groups:effects of surface-immobilized poly(ethylene glycol)s on anti-fouling properties and blood compatibility. Polymer 2004,45,399-407.
    [73]E. Ostuni, R. G. Chapman, R.E. Holmlin, S. Takayama, G.M. Whitesides, A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir 2001,17,5605-5620.
    [74]Y. Y. Luk, M. Kato, M. Mrksich, Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir 2000,16,9604-9608.
    [75]A.B. Lowe, N.C. Billingham, S.P. Armes, Synthesis and characterization of zwitterionic block copolymers. Macromolecules 1998,31,5991-5998.
    [76]T.A. Wielema, J.B.F.N. Engberts, Zwitterionic polymers-I. synthesis of a novel series of poly(vinylsulfobetaines):effect of structure of polymer on solubility in water, European Polymer Journal 1987,23,947-950.
    [77]K. Ishihara, H. Nomura, T. Mihara, K. Kurita, Y. Iwasaki, N. Nakabayashi, Why do phospholipid polymers reduce protein adsorption? Journal of Biomedical Materials Research 1998,39,323-330.
    [78]K. Ishihara, K. Fukumoto, Y. Iwasaki, N. Nakabayashi, Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility, part 2. protein adsorption and platelet adhesion. Biomaterials 1999,20,1553-1559.
    [79]S.F. Chen, S.Y. Jiang, A new avenue to nonfouling materials. Advanced Materials 2008, 20,335-338.
    [80]S.Y. Jiang, Z.Q. Cao, Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Advanced Materials 2010,22, 920-932.
    [81]S.F. Chen, J. Zheng, L.Y. Li, S.Y. Jiang, Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption:Insights into nonfouling properties of zwitterionic materials. Journal of the American Chemical Society 2005,127,14473-14478.
    [82]H. Susanto, M. Ulbricht, Photografted thin polymer hydrogel layers on PES ultrafiltration membranes:characterization, stability, and influence on separation performance. Langmuir 2007,23,7818-7830.
    [83]C. Sanchez, B. Julian, P. Belleville, M. Popall, Applications of hybrid organic-inorganic nanocomposites. Journal of Materials Chemistry 2005,15,3559-3592.
    [84]J.Y. Yuan, A.H.E. Muller, One-dimensional organic-inorganic hybrid nanomaterials. Polymer 2010,51,4015-4036.
    [85]S.K. SY Kwak, Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling.1. Preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane. Environmental Science & Technology 2001,35,2388-2394.
    [86]S.H. Kim, S.Y. Kwak, B.H. Sohn, T.H. Park, Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve bio fouling problem. Journal of Membrane Science 2003,211,157-165.
    [87]S.S. Madaeni, N. Ghaemi, Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation. Journal of Membrane Science 2007,303,221-233.
    [88]H.L. Yang, J.C.T. Lin, C. Huang, Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination. Water Research 2009,43,3777-3786.
    [89]I. Genne, S. Kuypers, R. Leysen, Effect of the addition of ZrO2 to polysulfone based UF membranes. Journal of Membrane Science 1996,113,343-350.
    [90]N.M. Wara, L.F. Francis, B.V. Velamakanni, Addition of alumina to cellulose-acetate membranes. Journal of Membrane Science 1995,104,43-49.
    [91]L. Mascia, Z. Zhang, S.J. Shaw, Carbon fibre composites based on polyimide/silica ceramers:aspects of structure-properties relationship. Composites Part A:Applied Science and Manufacturing 1996,27,1211-1221.
    [92]D.Q. Shi, Y. Kong, J.R. Yang, H.W. Du, Study on transitional metal organic complex-polymide hybrid material for gas separation membranes, Acta Polymerica Sinica 2000,457-461.
    [93]E.H. BH Jeong, YS Yan, Interfacial polymerization of thin film nanocomposites:a new concept for reverse osmosis membranes. Jouranl of Membrane Science 2007,294,1-7.
    [94]S.Y. Lee, H.J. Kim, R. Patel, S.J. Im, J.H. Kim, B.R. Min, Silver nanoparticles immobilized on thin film composite polyamide membrane:characterization, nanofiltration, antifouling properties. Polymers for Advanced Technologies 2007,18,562-568.
    [95]J.D. Jou, W. Yoshida, Y. Cohen, A novel ceramic-supported polymer membrane for pervaporation of dilute volatile organic compounds. Journal of Membrane Science 1999, 162,269-284.
    [96]W. Yoshida, Y. Cohen, Ceramic-supported polymer membranes for pervaporation of binary organic/organic mixtures. Journal of Membrane Science 2003,213,145-157.
    [97]R.P. Castro, Y. Cohen, H.G. Monbouquette, Silica-supported polyvinylpyrrolidone filtration membranes. Journal of Membrane Science 1996,115,179-190.
    [98]N.P. Patel, A.C. Miller, R.J. Spontak, Highly CO2-permeable and selective polymer nanocomposite membranes. Advanced Materials 2003,15,729-733.
    [99]N.P. Patel, C.M. Aberg, A.M. Sanchez, M.D. Capracotta, J.D. Martin, R.J. Spontak, Morphological, mechanical and gas-transport characteristics of crosslinked poly(propylene glycol):homopolymers, nanocomposites and blends. Polymer 2004,45,5941-5950.
    [100]S.P. Nunes, K.V. Peinemann, K. Ohlrogge, A. Alpers, M. Keller, A.T.N. Pires, Membranes of poly(ether imide) and nanodispersed silica. Journal of Membrane Science 1999,157,219-226.
    [101]M. Iwata, T. Adachi, M. Tomidokoro, M. Ohta, T. Kobayashi, Hybrid sol-gel membranes of polyacrylonitrile-tetraethoxysilane composites for gas permselectivity. Journal of Applied Polymer Science 2003,88,1752-1759.
    [102]Y. Li, G. He, S. Wang, S. Yu, F. Pan, H. Wu, Z. Jiang, Recent advances in the fabrication of advanced composite membranes. Journal of Materials Chemistry A 2013,1, 10058-10077.
    [103]X.L. Xie, Y.W. Mai, X.P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix:a review. Materials Science and Engineering:R:Reports 2005,49,89-112.
    [104]P.C. Ma, N.A. Siddiqui, G. Marom, J.K. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites:A review. Composites Part A:Applied Science and Manufacturing 2010,41,1345-1367.
    [105]G. Lindenblatt, W. Schartl, T. Pakula, M. Schmidt, Synthesis of polystyrene-grafted polyorganosiloxane microgels and their compatibility with linear polystyrene chains. Macromolecules 2000,33,9340-9347.
    [106]C.R. Vestal, Z.J. Zhang, Atom transfer radical polymerization synthesis and magnetic characterization of MnFe2O4/polystyrene core/shell nanoparticles. Journal of the American Chemical Society 2002,124,14312-14313.
    [107]K. Sill, T. Emrick, Nitroxide-mediated radical polymerization from CdSe nanoparticles. Chemistry of Materials 2004,16,1240-1243.
    [108]J. Pyun, T. Kowalewski, K. Matyjaszewski, Synthesis of polymer brushes using atom transfer radical polymerization. Macromolecular Rapid Communications 2003,24, 1043-1059.
    [109]T.K. Mandal, M.S. Fleming, D.R. Walt, Preparation of polymer coated gold nanoparticles by surface-confined living radical polymerization at ambient temperature. Nano Letters 2002,2,3-7.
    [110]G. Kickelbick, D. Holzinger, C. Brick, G. Trimmel, E. Moons, Hybrid inorganic-organic core-shell nanoparticles from surface-functionalized titanium, zirconium, and vanadium oxo clusters, Chemistry of Materials 2002,14,4382-4389.
    [111]T. von Werne, T.E. Patten, Preparation of Structurally Well-Defined Polymer-Nanoparticle Hybrids with Controlled/Living Radical Polymerizations, Journal of the American Chemical Society,121 (1999) 7409-7410.
    [112]G. Carrot, S. Diamanti, M. Manuszak, B. Charleux, J.P. Vairon, Atom transfer radical polymerization of n-butyl acrylate from silica nanoparticles. Journal of Polymer Science Part A:Polymer Chemistry 2001,39,4294-4301.
    [113]D. Li, X. Sheng, B. Zhao, Environmentally responsive "hairy" nanoparticles:mixed homopolymer brushes on silica nanoparticles synthesized by living radical polymerization techniques, Journal of the American Chemical Society 2005,127,6248-6256.
    [114]A. El Harrak, G. Carrot, J. Oberdisse, C. Eychenne-Baron, F. Boue, Surface-atom transfer radical polymerization from silica nanoparticles with controlled colloidal stability. Macromolecules 2004,37,6376-6384.
    [115]X. Chen, D.P. Randall, C. Perruchot, J.F. Watts, T.E. Patten, T. von Werne, S.P. Armes, Synthesis and aqueous solution properties of polyelectrolyte-grafted silica particles prepared by surface-initiated atom transfer radical polymerization. Journal of Colloid and Interface Science 2003,257,56-64.
    [116]J. Pyun, S. Jia, T. Kowalewski, G.D. Patterson, K. Matyjaszewski, Synthesis and characterization of organic/inorganic hybrid nanoparticles:kinetics of surface-initiated atom transfer radical polymerization and morphology of hybrid nanoparticle ultrathin films. Macromolecules 2003,36,5094-5104.
    [117]C. Perruchot, M.A. Khan, A. Kamitsi, S.P. Armes, T. von Werne, T.E. Patten, Synthesis of well-defined, polymer-grafted silica particles by aqueous ATRP. Langmuir 2001,17, 4479-4481.
    [118]D. Li, G.L. Jones, J.R. Dunlap, F. Hua, B. Zhao, Thermo sensitive hairy hybrid nanoparticles synthesized by surface-initiated atom transfer radical polymerization. Langmuir 2006,22,3344-3351.
    [119]G. Li, D.L. Zeng, L. Wang, Baoyu, Zong, K.G. Neoh, E.T. Kang, Hairy hybrid nanoparticles of magnetic core, fluorescent silica shell, and functional polymer brushes. Macromolecules 2009,42,8561-8565.
    [120]Q. Li, L. Zhang, L. Bai, Z. Zhang, J. Zhu, N. Zhou, Z. Cheng, X. Zhu, Multistimuli-responsive hybrid nanoparticles with magnetic core and thermoresponsive fluorescence-labeled shell via surface-initiated RAFT polymerization. Soft Matter 2011,7, 6958-6966.
    [121]Y. Yang, Z. Yang, Q. Zhao, X. Cheng, S.C. Tjong, R.K.Y. Li, X. Wang, X. Xie, Immobilization of RAFT agents on silica nanoparticles utilizing an alternative functional group and subsequent surface-initiated RAFT polymerization. Journal of Polymer Science Part A:Polymer Chemistry 2009,47,467-484.
    [122]P.S. Chinthamanipeta, S. Kobukata, H. Nakata, D.A. Shipp, Synthesis of poly(methyl methacrylate)-silica nanocomposites using methacrylate-functionalized silica nanoparticles and RAFT polymerization. Polymer 2008,49,5636-5642.
    [123]R. Rotzoll, P. Vana, Synthesis of poly(methyl acrylate) loops grafted onto silica nanoparticles via reversible addition-fragmentation chain transfer polymerization. Journal of Polymer Science Part A:Polymer Chemistry 2008,46,7656-7666.
    [124]Y. Li, B.C. Benicewicz, Functionalization of silica nanoparticles via the combination of surface-initiated RAFT polymerization and click reactions. Macromolecules 2008,41, 7986-7992.
    [125]C.H. Liu, C.Y. Pan, Grafting polystyrene onto silica nanoparticles via RAFT polymerization. Polymer 2007,48,3679-3685.
    [126]B. Radhakrishnan, R. Ranjan, W.J. Brittain, Surface initiated polymerizations from silica nanoparticles. Soft Matter 2006,2,386-396.
    [127]C. Li, J. Han, C.Y. Ryu, B.C. Benicewicz, A versatile method to prepare RAFT agent anchored substrates and the preparation of PMMA grafted nanoparticles. Macromolecules 2006,39,3175-3183.
    [128]C. Li, B.C. Benicewicz, Synthesis of well-defined polymer brushes grafted onto silica nanoparticles via surface reversible addition-fragmentation chain transfer polymerization. Macromolecules 2005,38,5929-5936.
    [129]Y. Tsujii, M. Ejaz, K. Sato, A. Goto, T. Fukuda, Mechanism and kinetics of RAFT-mediated graft polymerization of styrene on a solid surface.1. experimental evidence of surface radical migration. Macromolecules 2001,34,8872-8878.
    [130]Zhao, S. Perrier, Synthesis of well-defined homopolymer and diblock copolymer grafted onto silica particles by z-supported RAFT polymerization. Macromolecules 2006,39, 8603-8608.
    [131]C. Bartholome, E. Beyou, E. Bourgeat-Lami, P. Chaumont, F. Lefebvre, N. Zydowicz, Nitroxide-mediated polymerization of styrene initiated from the surface of silica nanoparticles. in Situ generation and grafting of alkoxyamine initiators. Macromolecules 2005,38, 1099-1106.
    [132]C. Bartholome, E. Beyou, E. Bourgeat-Lami, P. Chaumont, N. Zydowicz, Nitroxide-mediated polymerizations from silica nanoparticle surfaces:"graft from" polymerization of styrene using a triethoxysilyl-terminated alkoxyamine initiator. Macromolecules 2003,36,7946-7952.
    [133]S. Blomberg, S. Ostberg, E. Harth, A.W. Bosman, B. Van Horn, C.J. Hawker, Production of crosslinked, hollow nanoparticles by surface-initiated living free-radical polymerization. Journal of Polymer Science Part A:Polymer Chemistry 2002,40, 1309-1320.
    [134]J. Parvole, G. Laruelle, A. Khoukh, L. Billon, Surface initiated polymerization of poly(butyl acrylate) by nitroxide mediated polymerization:first comparative polymerization of a bimolecular and a unimolecular initiator-grafted silica particles. Macromolecular Chemistry and Physics 2005,206,372-382.
    [135]T. Morinaga, M. Ohkura, K. Ohno, Y. Tsujii, T. Fukuda, Monodisperse silica particles grafted with concentrated oxetane-carrying polymer brushes:their synthesis by surface-initiated atom transfer radical polymerization and use for fabrication of hollow spheres. Macromolecules 2007,40,1159-1164.
    [136]Y. Gao, K. Koumoto, Bioinspired ceramic thin film processing:present status and future perspectives. Crystal Growth & Design 2005,5,1983-2017.
    [137]D. Ogomi, T. Serizawa, M. Akashi, Controlled release based on the dissolution of a calcium carbonate layer deposited on hydrogels. Journal of Controlled Release 2005,103, 315-323.
    [138]陈晓娜.聚丙烯腈/CaCO3复合分离膜的矿化制备与性能研究.浙江大学硕士学位论文.2013.
    [139]J. Pan, H. Xu, J. Qi, J. Cen, Z. Ma, Study of CaCO3 filled polypropylene composite with long use life time. Polymer Degradation and Stability 1991,33,67-75.
    [140]F.C. Meldrum, H. Colfen, Controlling mineral morphologies and structures in biological and synthetic systems. Chemical Reviews 2008,108,4332-4432.
    [141]J.H.E. Cartwright, A.G. Checa, J.D. Gale, D. Gebauer, C.I. Sainz-Diaz, Calcium carbonate polyamorphism and its role in biomineralization:how many amorphous calcium carbonates are there? Angewandte Chemie International Edition 2012,51,11960-11970.
    [142]F.M. Michel, J. MacDonald, J. Feng, B.L. Phillips, L. Ehm, C. Tarabrella, J.B. Parise, R.J. Reeder, Structural characteristics of synthetic amorphous calcium carbonate. Chemistry of Materials 2008,20,4720-4728.
    [143]P. Raiteri, J.D. Gale, Water is the key to nonclassical nucleation of amorphous calcium carbonate. Journal of the American Chemical Society 2010,132,17623-17634.
    [144]K.J. Davis, P.M. Dove, J.J. De Yoreo, The role of Mg2+ as an impurity in calcite growth. Science 2000,290,1134-1137.
    [145]Y. Politi, D.R. Batchelor, P. Zaslansky, B.F. Chmelka, J.C. Weaver, I. Sagi, S. Weiner, L. Addadi, Role of magnesium ion in the stabilization of biogenic amorphous calcium carbonate:a structure-function investigation. Chemistry of Materials 2009,22,161-166.
    [146]A. Al-Sawalmih, C. Li, S. Siegel, P. Fratzl, O. Paris, On the stability of amorphous minerals in lobster cuticle. Advanced Materials 2009,21,4011-4015.
    [147]S. Bentov, S. Weil, L. Glazer, A. Sagi, A. Berman, Stabilization of amorphous calcium carbonate by phosphate rich organic matrix proteins and by single phosphoamino acids. Journal of Structural Biology 2010,171,207-215.
    [148]A. Gal, S. Weiner, L. Addadi, The stabilizing effect of silicate on biogenic and synthetic amorphous calcium carbonate. Journal of the American Chemical Society 2010, 132,13208-13211.
    [149]M. Kellermeier, E. Melero-Garcia, F. Glaab, R. Klein, M. Drechsler, R. Rachel, J.M. Garcia-Ruiz, W. Kunz, Stabilization of amorphous calcium carbonate in inorganic silica-rich environments. Journal of the American Chemical Society 1020,132,17859-17866.
    [150]J. Aizenberg, G. Lambert, S. Weiner, L. Addadi, Factors involved in the formation of amorphous and crystalline calcium carbonate:a study of an ascidian skeleton. Journal of the American Chemical Society 2001,124,32-39.
    [151]R.S.K. Lam, J.M. Charnock, A. Lennie, F.C. Meldrum, Synthesis-dependant structural variations in amorphous calcium carbonate. CrystEngComm 20007,9,1226-1236.
    [152]J.L. Arias, M.a.S. Fernandez, Polysaccharides and proteoglycans in calcium carbonate-based biomineralization. Chemical Reviews 2008,108,4475-4482.
    [153]N.A.J.M. Sommerdijk, G.d. With, Biomimetic CaCCO3 mineralization using designer molecules and interfaces. Chemical Reviews 2008,108,4499-4550.
    [154]陈鹏程.聚丙烯微孔膜的仿生矿化改性及其性能研究.浙江大学硕士学位论文.2013.
    [155]T. Kato, T. Sakamoto, T. Nishimura, Macromolecular templating for the formation of inorganic-organic hybrid structures. MRS Bulletin 2010,35,127-132.
    [156]S.C. Huang, K. Naka, Y. Chujo, A carbonate controlled-addition method for amorphous calcium carbonate spheres stabilized by poly(acrylic acid)s. Langmuir 2007,23, 12086-12095.
    [157]T. Iwatsubo, K. Sumaru, T. Kanamori, T. Yamaguchi, T. Sinbo, Preferential mineralization of CaCO3 layers on polymer surfaces from CaCl2 and water-soluble carbonate salt solutions supersaturated by poly(acrylic acid). Journal of Applied Polymer Science 2004, 91,3627-3634.
    [158]A. Kotachi, T. Miura, H. Imai, Polymorph control of calcium carbonate films in a poly(acrylic acid)-chitosan system. Crystal Growth & Design 2006,6,1636-1641.
    [159]J. Watanabe, M. Akashi, Integration approach for developing a high-performance bio interface:sequential formation of hydroxyapatite and calcium carbonate by an improved alternate soaking process. Applied Surface Science 2008,255,344-349.
    [160]T. Serizawa, T. Tateishi, D. Ogomi, M. Akashi, Deposition of calcium carbonate disks on polyelectrolyte multilayer matrices by the alternate soaking process. Journal of Crystal Growth 2006,292,67-73.
    [161]L. Liu, B. Hu, S.F. Chen, S.J. Liu, J. Jiang, G.B. Cai, S.H. Yu, Mineralization of calcite ribbons on an Allium fistulosum L. bulb inner membrane in an ethanol-water mixed solvent under control of polyacrylic acid by a double diffusion method. CrystEngComm 2010,12, 3593-3598.
    [162]M.W. Rauch, M. Dressler, H. Scheel, D. Van Opdenbosch, C. Zollfrank, Mineralization of calcium carbonates in cellulose gel membranes. European Journal of Inorganic Chemistry 2012,2012,5192-5198.
    [163]J.B. Thompson, G.T. Paloczi, J.H. Kindt, M. Michenfelder, B.L. Smith, G. Stucky, D.E. Morse, P.K. Hansma, Direct observation of the transition from calcite to aragonite growth as induced by abalone shell proteins. Biophysical Journal 2000,79,3307-3312.
    [164]G. Fu, S. Valiyaveettil, B. Wopenka, D.E. Morse, CaCO3 biomineralization:acidic 8-kDa proteins isolated from aragonitic abalone shell nacre can specifically modify calcite crystal morphology. Biomacromolecules 2005,6,1289-1298.
    [165]D. Volkmer, M. Fricke, T. Huber, N. Sewald, Acidic peptides acting as growth modifiers of calcite crystals. Chemical Communications 2004,1872-1873.
    [166]K. Naka, D.K. Keum, Y. Tanaka, Y. Chujo, Control of crystal polymorphs by a 'latent inductor':crystallization of calcium carbonate in conjunction with radical polymerization of sodium acrylate in aqueous solution. Chemical Communications 2000,1537-1538.
    [167]S.F. Chen, S.H. Yu, T.X. Wang, J. Jiang, H. Colfen, B. Hu, B. Yu, Polymer-directed formation of unusual CaCO3 pancakes with controlled surface structures. Advanced Materials 2005,17,1461-1465.
    [168]W. Stober, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science 1968,26,62-69.
    [169]F. Liu, N.A. Hashim, Y.T. Liu, M.R.M. Abed, K. Li, Progress in the production and modification of PVDF membranes. Journal of Membrane Science 2011,375,1-27.
    [170]S. Kaur, Z. Ma. R. Gopal, G. Singh, S. Ramakrishna, T. Matsuura, Plasma-induced graft copolymerization of poly(methacrylic acid) on electrospun poly(vinylidene fluoride) nanofiber membrane. Langmuir 2007,23,13085-13092.
    [171]S.D. Li, C.C. Wang, C.Y. Chen, Preparation and characterization of a novel bipolar membrane by plasma-induced polymerization. Journal of Membrane Science 2008,318, 429-434.
    [172]Y.W. Chen, L. Ying, W.H. Yu, E.T. Kang, K.G. Neoh, Poly(vinylidene fluoride) with grafted poly(ethylene glycol) side chains via the RAFT-mediated process and pore size control of the copolymer membranes. Macromolecules 2003,36,9451-9457.
    [173]M.A. Masuelli, M. Grasselli, J. Marchese, N.A. Ochoa, Preparation, structural and functional characterization of modified porous PVDF membranes by gamma-irradiation. Journal of Membrane Science 2012,389,91-98.
    [174]M.C. Clochard, J. Begue, A. Lafon, D. Caldemaison, C. Bittencourt, J.J. Pireaux, N. Betz, Tailoring bulk and surface grafting of poly(acrylic acid) in electron-irradiated PVDF. Polymer 2004,45,8683-8694.
    [175]N. Hilal, V. Kochkodan, L. Al-Khatib, T. Levadna, Surface modified polymeric membranes to reduce (bio)fouling:a microbiological study using E. coli. Desalination 2004, 167,293-300.
    [176]M.G. Zhang, Q.T. Nguyen, Z.H. Ping, Hydrophilic modification of poly (vinylidene fluoride) microporous membrane. Journal of Membrane Science 2009,327,78-86.
    [177]J.F. Hester, P. Banerjee, A.M. Mayes, Preparation of protein-resistant surfaces on poly(vinylidene fluoride) membranes via surface segregation. Macromolecules,1999,32, 1643-1650.
    [178]J.F. Hester, A.M. Mayes, Design and performance of foul-resistant poly(vinylidene fluoride) membranes prepared in a single-step by surface segregation. Journal of Membrane Science 2002,202,119-135.
    [179]G.G. Kumar, P. Kim, K.S. Nahm, R.N. Elizabeth, Structural characterization of PVDF-HFP/PEG/Al2O3 proton conducting membranes for fuel cells. Journal of Membrane Science 2007,303,126-131.
    [180]F. Liu, M.R.M. Abed, K. Li, Preparation and characterization of poly(vinylidene fluoride) (PVDF) based ultrafiltration membranes using nano gamma-Al2O3. Journal of Membrane Science 2011,366,97-103.
    [181]CJ. Liao, J.Q. Zhao, P. Yu, H. Tong, Y.B. Luo, Synthesis and characterization of low content of different SiO2 materials composite poly (vinylidene fluoride) ultrafiltration membranes. Desalination 2012,285,117-122.
    [182]C.J. Liao, J.Q. Zhao, P. Yu, H. Tong, Y.B. Luo, Synthesis and characterization of SBA-15/poly (vinylidene fluoride) (PVDF) hybrid membrane. Desalination 2010,260, 147-152.
    [183]X.L. Bian, Q.M. Gu, L. Shi, Q. Sun, Epoxidation of Styrene with Hydrogen Peroxide over MgO Catalyst. Chinese Journal of Catalysis 2011,32,682-687.
    [184]F.M. Shi, Y.X. Ma, J. Ma, P.P. Wang, W.X. Sun, Preparation and characterization of PVDF/TiO2 hybrid membranes with different dosage of nano-TiO2. Journal of Membrane Science 2012,389,522-531.
    [185]Q.L. Xie, J. Liu, X.X. Xu, G.B. Han, H.P. Xia, X.M. He, Size separation of Fe2O3 nanoparticles via membrane processing. Separation and Purification Technology 2009,66, 148-152.
    [186]H. Li, H. Kim, Thermal degradation and kinetic analysis of PVDF/modified MMT nanocomposite membranes. Desalination,2008,234,9-15.
    [187]T. Ogoshi, Y. Chujo, Synthesis of poly(vinylidene fluoride) (PVDF)/silica hybrids having interpenetrating polymer network structure by using crystallization between PVDF chains. Journal of Polymer Science Part a-Polymer Chemistry 2005,43,3543-3550.
    [188]X.J. Zhao, W. Zhang, S.J. Chen, J. Zhang, X.L. Wang, Hydrophilicity and crystallization behavior of PVDF/PMMA/TiO(SiO2) composites prepared by in situ polymerization. Journal of Polymer Research 2012,19,9862-9871.
    [189]T. Taniguchi, T. Kashiwakura, T. Inada, Y. Kunisada, M. Kasuya, M. Kohri, T. Nakahira, Preparation of organic/inorganic composites by deposition of silica onto shell layers of polystyrene (core)/poly[2-(N,N-dimethylamino)ethyl methacrylate] (shell) particles. Journal of Colloid and Interface Science 2010,347,62-68.
    [190]Y.Z. You, K.K. Kalebaila, S.L. Brock, D. Oupicky, Temperature-controlled uptake and release in PNIPAM-modified porous silica nanoparticles. Chemistry of Materials 2008,20, 3354-3359.
    [191]G. Lindenblatt, W. Schartl, T. Pakula, M. Schmidt, Synthesis of polystyrene-grafted polyorganosiloxane microgels and their compatibility with linear polystyrene chains. Macromolecules 2000,33,9340-9347.
    [192]T. von Werne, T.E. Patten, Atom transfer radical polymerization from nanoparticles:a tool for the preparation of well-defined hybrid nano structures and for understanding the chemistry of controlled/"living" radical polymerizations from surfaces. Journal of the American Chemical Society 2001,123,7497-7505.
    [193]S. Edmondson, V.L. Osborne, W.T.S. Huck, Polymer brushes via surface-initiated polymerizations. Chemical Society Reviews 2004,33,14-22.
    [194]F. Niepceron, B. Lafitte, H. Galiano, J. Bigarre, E. Nicol, J.F. Tassin, Composite fuel cell membranes based on an inert polymer matrix and proton-conducting hybrid silica particles. Journal of Membrane Science 2009,338,100-110.
    [195]C. Huang, L. Zhang, Miscibility of poly(vinylidene fluoride) and atactic poly(methyl methacrylate). Journal of Applied Polymer Science 2004,92,1-5.
    [196]K. Ohno, T. Akashi, Y. Huang, Y. Tsujii, Surface-initiated living radical polymerization from narrowly size-distributed silica nanoparticles of diameters less than 100 nm. Macromolecules 2010,43,8805-8812.
    [197]S.H. Qin, K. Matyjaszewski, H. Xu, S.S. Sheiko, Synthesis and visualization of densely grafted molecular brushes with crystallizable poly(octadecyl methacrylate) block segments. Macromolecules 2003,36,605-612.
    [198]Z.X. Dong, H. Wei, J. Mao, D.P. Wang, M.Q. Yang, S.Q. Bo, X.L. Ji, Synthesis and responsive behavior of poly(N,N-dimethylaminoethyl methacrylate) brushes grafted on silica nanoparticles and their quaternized derivatives. Polymer 2012,53,2074-2084.
    [199]C.X. Mu, Y.L. Su, M.P. Sun, W.J. Chen, Z.Y. Jiang, Remarkable improvement of the performance of poly(vinylidene fluoride) microfiltration membranes by the additive of cellulose acetate. Journal of Membrane Science 2010,350,293-300.
    [200]X.R. Chen, Y. Su, F. Shen, Y.H. Wan, Antifouling ultrafiltration membranes made from PAN-b-PEG copolymers:effect of copolymer composition and PEG chain length. Journal of Membrane Science 2011,384,44-51.
    [201]N. Wada, N. Horiuchi, M. Nakamura, T. Hiyama, A. Nagai, K. Yamashita, Effect of poly(acrylic acid) and polarization on the controlled crystallization of calcium carbonate on single-phase calcite substrates. Crystal Growth & Design 2013,13,2928-2937.
    [202]L. Liu, D. He, G.S. Wang, S.H. Yu, Bioinspired crystallization of CaCO3 coatings on electrospun cellulose acetate fiber scaffolds and corresponding CaCO3 microtube networks. Langmuir 2011,27,7199-7206.
    [203]K. Hu, J.M. Dickson, Development and characterization of poly(vinylidene fluoride)-poly (acrylic acid) pore-filled pH-sensitive membranes. Journal of Membrane Science 2007,301,19-28.
    [204]C.Q. Qiu, F. Xu, Q.T. Nguyen, Z.H. Ping, Nanofiltration membrane prepared from cardo polyetherketone ultrafiltration membrane by UV-induced grafting method. Journal of Membrane Science 2005,255,107-115.
    [205]C. Mbareck, Q.T. Nguyen, O.T. Alaoui, D. Barillier, Elaboration, characterization and application of polysulfone and polyacrylic acid blends as ultrafiltration membranes for removal of some heavy metals from water. Journal of Hazardous Materials 2009,171, 93-101.
    [206]P.C. Chen, L.S. Wan, Z.K. Xu, Bio-inspired CaCO3 coating for superhydrophilic hybrid membranes with high water permeability. Journal of Materials Chemistry 2012,22, 22727-22733.
    [207]X.N. Chen, L.S. Wan, Q.Y. Wu, S.H. Zhi, Z.K. Xu, Mineralized polyacrylonitrile-based ultrafiltration membranes with improved water flux and rejection towards dye. Journal of Membrane Science 2013,441,112-119.
    [208]L.P. Cheng, D.J. Lin, C.H. Shih, A.H. Dwan, C.C. Gryte, PVDF membrane formation by diffusion-induced phase separation-morphology prediction based on phase behavior and mass transfer modeling. Journal of Polymer Science Part B:Polymer Physics 1999,37, 2079-2092.
    [209]D.J. Lin, C.L. Chang, F.M. Huang, L.P. Cheng, Effect of salt additive on the formation of microporous poly(vinylidene fluoride) membranes by phase inversion from LiClO4/water/DMF/PVDF system. Polymer 2003,44,413-422.
    [210]D.J. Lin, C.L. Chang, C.L. Chang, T.C. Chen, L.P. Cheng, Fine structure of poly(vinylidene fluoride) membranes prepared by phase inversion from a water/N-methyl-2-pyrollidone/poly(vinylidene fluoride) system, Journal of Polymer Science Part B:Polymer Physics 2004,42,830-842.
    [211]Y.N. Yang, W. Jun, Z.Q. Zheng, X.S. Chen, H.X. Zhang, The research of rheology and thermodynamics of organic-inorganic hybrid membrane during the membrane formation. Journal of Membrane Science 2008,311,200-207.
    [212]M.J. Han, S.T. Nam, Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane. Journal of Membrane Science 2002,202,55-61.
    [213]X.F. Li, C.A. Fustin, N. Lefevre, J.F. Gohy, S. De Feyter, J. De Baerdemaeker, W. Egger, I.F.J. Vankelecom, Ordered nanoporous membranes based on diblock copolymers with high chemical stability and tunable separation properties. Journal of Materials Chemistry 2010,20,4333-4339.
    [214]Q. Wei, J. Li, B.S. Qian, B.H. Fang, C.S. Zhao, Preparation, characterization and application of functional polyethersulfone membranes blended with poly (acrylic acid) gels. Journal of Membrane Science 2009,337,266-273.
    [215]CO. M'Bareck, Q.T. Nguyen, S. Alexandre, Ⅰ. Zimmerlin, Fabrication of ion-exchange ultrafiltration membranes for water treatment Ⅰ. Semi-interpenetrating polymer networks of polysulfone and poly(acrylic acid). Journal of Membrane Science 2006,278,10-18.
    [216]H.J. Yu, Y.M. Cao, G.D. Kang, J.H. Liu, M. Li, Tethering methoxy polyethylene glycols to improve the antifouling property of PSF/PAA-blended membranes. Journal of Applied Polymer Science 2012,124,123-133.
    [217]T. Taguchi, A. Kishida, M. Akashi, Hydroxyapatite formation on/in poly(vinyl alcohol) hydrogel matrices using a novel alternate soaking process. Chemical Letters 1998,711-712.
    [218]N. Wada, S. Suda, K. Kanamura, T. Umegaki, Formation of thin calcium carbonate films with aragonite and vaterite forms coexisting with polyacrylic acids and chitosan membranes. Journal of Colloid and Interface Science 2004,279,167-174.
    [219]A. Villegas-Jimenez, A. Mucci, M.A. Whitehead, Theoretical insights into the hydrated (10.4) calcite surface:structure, energetics, and bonding relationships. Langmuir 2009,25, 6813-6824.
    [220]P.Q. Yuan, Z.M. Cheng, Z.M. Zhou, W.K. Yuan, R. Semiat, Zeta potential on the anti-sealant modified sub-micro calcite surface. Colloid and Surface A:Physicochemical and Engineering Aspects 2008,328,60-66.
    [221]M. Ulbricht, H. Yang, Porous polypropylene membranes with different carboxyl polymer brush layers for reversible protein binding via surface-initiated graft copolymerization. Chemistry of Materials 2005,17,2622-2631.
    [222]R. Konradi, J. Ruhe, Interaction of poly(methacrylic acid) brushes with metal ions:an infrared investigation. Macromolecules 2004,37,6954-6961.
    [223]S. Lages, R. Michels, K. Huber, Coil-collapse and coil-aggregation due to the interaction of Cu2+ and Ca2+ ions with anionic polyacylate chains in dilute solution. Macromolecules 2010,43,3027-3035.
    [224]B. Yeom, K. Char, Nanostructured CaCO3 thin films formed on the urease multilayers prepared by the layer-by-layer deposition. Chemistry of Materials 2010,22,101-107.
    [225]S.A. McKelvey, W.J. Koros, Phase separation, vitrification, and the manifestation of macro voids in polymeric asymmetric membranes. Journal of Membrane Science 1996,112, 29-39.
    [226]L.P. Cheng, H.Y. Shaw, Phase behavior of a water/2-propanol/poly(methyl methacrylate) cosolvent system. Journal of Polymer Science Part B:Polymer Physics 2000, 38,747-754.
    [227]L.P. Cheng, D.J. Lin, C.H. Shih, A.H. Dwan, C.C. Gryte, PVDF membrane formation by diffusion-induced phase separation-morphology prediction based on phase behavior and mass transfer modeling. Journal of Polymer Science Part B:Polymer Physics 1999,37, 2079-2092.
    [228]L.P. Cheng, Effect of temperature on the formation of microporous PVDF membranes by precipitation from 1-octanol/DMF/PVDF and water/DMF/PVDF systems. Macromolecules 1999,32,6668-6674.
    [229]L.P. Cheng, A.H. Dwan, C.C. Gryte, Membrane formation by isothermal precipitation in polyamide-formic acid-water systems I. Description of membrane morphology. Journal of Polymer Science Part B:Polymer Physics 1995,33,211-222.
    [230]A. Bottino, G. Capannelli, A. Comite, Novel porous membranes from chemically modified poly(vinylidene fluoride). Journal of Membrane Science 2006,273,20-24.
    [231]C.W. Yao, R.P. Burford, A.G. Fane, C.J.D. Fell, Effect of coagulation conditions on structure and properties of membranes from aliphatic polyamides. Journal of Membrane Science 1988,38,113-125.
    [232]Y. Termonia, Molecular modeling of phase-inversion membranes:effect of additives in the coagulant. Journal of Membrane Science 1995,104,173-179.
    [233]K.J. Kuhn, B. Hahn, V. Percec, M.W. Urban, Structural and quantitative analysis of surface modified poly(vinylidene fluoride) films using ATR FT-IR spectroscopy. Applied Spectroscopy 1987,41,843-847.
    [234]J. Marchand-Brynaert, N. Jongen, J.L. Dewez, Surface hydroxylation of poly(vinylidene fluoride) (PVDF) film. Journal of Polymer Science Part A:Polymer Chemistry 1997,35,1227-1235.
    [235]H. Kise, H. Ogata, Phase transfer catalysis in dehydrofluorination of poly(vinylidene fluoride) by aqueous sodium hydroxide solutions. Journal of Polymer Science:Polymer Chemistry Edition 1983,21,3443-3451.
    [236]P.Q. Yuan, Z.M. Cheng, Z.M. Zhou, W.K. Yuan, R. Semiat, Zeta potential on the anti-scalant modified sub-micro calcite surface. Colloids and Surfaces A:Physicochemical and Engineering Aspects 2008,328,60-66.
    [237]R. Konradi, J. Ruhe, Interaction of poly(methacrylic acid) brushes with metal ions:an infrared investigation. Macromolecules 2004,37,6954-6961.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700