有机硅粘接促进剂的合成及其增粘无卤阻燃导热加成型有机硅灌封胶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在电子工业领域,为了提高电子元器件的稳定性,经常需要对电子组装部件进行灌封。加成型有机硅灌封胶由于具有优异的电绝缘性能、耐高温性能和耐老化性能,良好的化学稳定性,加工工艺简便等优点,因而发展前景广泛。但普通的有机硅灌封胶存在热导率低、阻燃性能和粘接性能差等缺点,严重影响了其应用范围。通过大量添加导热填料、阻燃剂和粘接促进剂虽然可以改善灌封胶的这些性能,但又会对灌封胶的力学性能、加工性能等产生不利影响。本论文合成了具有增粘作用的新型交联剂和粘接促进剂,并对它们的结构进行了表征。通过选用合适的基础聚合物、导热填料和阻燃剂等,制备了具有良好导热性能、阻燃性能以及粘接性能的加成型有机硅灌封胶。主要研究内容和结果包括:
     第一,以不同粘度端乙烯基硅油复配,含氢硅油为交联剂,氧化铝(Al2O3)、硅微粉(SP)和碳化硅(SiC)为导热填料,制备了绝缘导热加成型有机硅灌封胶,研究了不同粘度端乙烯基硅油的质量比、含氢硅油的活性氢含量、硅氢基(SiH)与硅乙烯基(SiVi)的摩尔比、导热填料的种类和用量等对有机硅灌封胶性能的影响。当选用粘度为300mPa·s和1000mPa·s的端乙烯基硅油以质量比40:60复配,活性氢含量为0.50wt%的含氢硅油且SiH与SiVi的摩尔比为1.2时,有机硅灌封胶的力学性能较佳。填充SP和SiC有机硅灌封胶的力学性能较好,但填充Al2O3体系的粘度较低,更适合灌封工艺。当Al2O3的用量为150phr时,有机硅灌封胶具有良好的综合性能。
     第二,通过3-甲基丙烯酰氧基丙基甲基二甲氧基硅烷(MPMS)的水解反应与八甲基环四硅氧烷(D4)和四甲基环四硅氧烷(DH
     4)的开环聚合反应合成了一种具有增粘作用的新型含丙烯酸酯基的聚甲基氢硅氧烷(MPMS-PHMS)交联剂,采用傅立叶变换红外光谱(FT-IR)、核磁共振氢谱(1H-NMR)、核磁共振硅谱(29Si-NMR)和凝胶渗透色谱(GPC)对其化学结构进行了表征。研究了MPMS-PHMS的用量以及固化条件对有机硅灌封胶性能的影响。发现以MPMS-PHMS为交联剂的有机硅灌封胶具有较高的交联密度。与普通的含氢硅油(PHMS)交联剂相比,MPMS-PHMS能更有效的改善灌封胶的粘接性能和力学性能。升高固化温度和延长固化时间可以提高灌封胶的剪切强度。MPMS-PHMS的合适用量为10phr,适宜的固化温度和固化时间分别为130~150°C和2h。
     第三,通过醚交换反应合成了(3-环氧丙氧基丙基)烯丙氧基二甲氧基硅烷(GAMS)、[2,2-双(烯丙氧基甲基)丁氧基](3-环氧丙氧基丙基)二甲氧基硅烷(AGMS)和[3-烯丙氧基-2,2-双(烯丙氧基甲基)丙氧基](3-环氧丙氧基丙基)二甲氧基硅烷(AAGMS)三种含乙烯基和环氧基的硅烷化合物粘接促进剂,采用FT-IR和1H-NMR对它们的结构进行了表征。详细研究了粘接促进剂对有机硅灌封胶性能的影响,考察了灌封胶的耐热老化和耐水性能,并探讨了灌封胶的粘接机理。发现GAMS、AGMS和AAGMS不但可以显著改善灌封胶的粘接强度,还可以有效提高灌封胶的力学性能。其中,含有较多C=C双键和醚键的AAGMS效果最好。粘接促进剂改善了填料粒子在硅橡胶基体中的分散性以及填料和基体的结合。X-射线光电子能谱(XPS)分析结果表明AAGMS可以迁移到粘接界面起增粘作用。当AAGMS的用量为1.5phr时,有机硅灌封胶的综合性能较好,剪切强度和拉伸强度分别为1.14MPa和3.27MPa,比未加粘接促进剂时分别提高了235%和47%,而且具有良好的耐热老化性能和耐水性能。
     第四,通过三羟甲基丙烷单烯丙基醚(TMPME)分别与3-环氧丙氧基丙基甲基二甲氧基硅烷(GPMMS)和3-环氧丙氧基丙基甲基二乙氧基硅烷(GPMES)反应合成了两种含乙烯基和环氧基的硅烷低聚物(PTGM和PTGE)粘接促进剂,采用FT-IR、1H-NMR和GPC对PTGM和PTGE的结构进行了表征。研究了PTGM和PTGE对灌封胶粘接性能、力学性能和粘度的影响,考察了灌封胶的耐热老化和耐水性能。结果表明PTGM和PTGE均可以提高灌封胶的粘接性能和力学性能。与PTGE相比,加入PTGM灌封胶的综合性能更好。
     第五,在以Al2O3为导热填料的有机硅灌封胶中加入AAGMS和阻燃剂氢氧化铝(Al(OH)3),制备了自粘性无卤阻燃导热加成型有机硅灌封胶,研究了Al(OH)3的粒径和用量以及AAGMS的用量对灌封胶阻燃性能、粘接性能、导热性能、力学性能和粘度的影响。发现AAGMS可以提高灌封胶的粘接性能、导热性能和力学性能,但会增加灌封胶的粘度。扫描电镜(SEM)结果表明AAGMS改善了Al2O3和Al(OH)3在硅橡胶基体中的分散性以及填料和基体的结合。与小粒径Al(OH)3相比,用大粒径Al(OH)3制备灌封胶的流动性较好,更有利于灌封。当AAGMS用量为1.5phr,Al(OH)3的粒径为20μm以及用量为60phr时,灌封胶具有较好的综合性能,热导率为0.583W·m-1·K-1,剪切强度为1.31MPa,拉伸强度为3.43MPa,断裂伸长率为52%,粘度为7200mPa·s,垂直燃烧级别为UL-94V-0级。
In electronics industry, in order to improve the stability of the electronic devices, it isoften necessary to encapsulate the electronic assembly components. Addition-cure siliconeencapsulant has broad development prospects due to its excellent electrical insulationproperty, resistance to high temperature and aging resistant performance, good chemicalstability, easy processing, etc. However, common silicone encapsulant had somedisadvantages such as low thermal conductivity, poor flame retardancy and adhesionproperties, which seriously limited its application. To improve these properties of encapsulant,a large amount of thermally conductive fillers, flame retardants and adhesion promoters wereadded, which has a negative effect on the mechanical properties and processability, etc. Inthis dissertation, a novel adhesion-enhancing cross-linker and several types of adhesionpromoters were synthesized, and their structures were characterized. Addition-cure siliconeencapsulant with good thermal conductivity, flame retardancy and adhesion properties wasprepared through selecting appropriate base polymer, thermally conductive filler and flameretardant, etc. The main research contents and results are listed as following:
     Firstly, electrical insulating and thermal conductive addition-cure silicone encapsulantwas prepared using complex of vinyl end silicone oils with different viscosities, hydrogensilicone oil as cross-linker, alumina (Al2O3), silica power (SP) and silicon carbide (SiC) asthermally conductive fillers. The effect of mass ratio of vinyl end silicone oils, hydridecontent of hydrogen silicone oil, molar ratio of hydrosilyl (SiH) and vinylsilyl (SiVi), typeand content of thermally conductive fillers on the properties of silicone encapsulant wereinvestigated. When mass ratio of vinyl end silicone oil with viscosity of300mPa·s and1000mPa·s was40:60, hydride content of hydrogen silicone oil was0.50wt%and molar ratioof SiH and SiVi was1.2, silicone encapsulant had good mechanical properties. Theencapsulant filled with SP and SiC had better mechanical properties, but the encapsulant withAl2O3had lower viscosity so that it was more suitable for encapsulating process. When thecontent of Al2O3was150phr, silicone encapsulant had good comprehensive performance.
     Secondly, a novel adhesion-enhancing polyhydrosiloxane containing acrylate groups (MPMS-PHMS) as cross-linker was synthesized by the hydrolysis ofmethacryloyloxypropylmethyldimethoxysilane (MPMS) and the ring opening polymerizationof octamethylcyclotetrasiloxane (D4) and tetramethylcyclotetrasiloxane (DH
     4). Fouriertransform infrared (FT-IR) spectroscopy,1H nuclear magnetic resonance (1H-NMR)spectroscopy,29Si nuclear magnetic resonance (29Si-NMR) spectroscopy and gel permeationchromatography (GPC) were used to characterize its chemical structure. The effect ofMPMS-PHMS content and cure conditions on the properties of silicone encapsulant wereinvestigated. It was found that silicone encapsulant had higher cross-linking density whenusing MPMS-PHMS as cross-linker. Compared with commercial hydrogen silicone oil(PHMS) cross-linker, MPMS-PHMS could markedly improve both the adhesion strength andmechanical properties of the encapsulant. Appropriately increasing cure temperature andprolonging cure time were favorable to enhance the shear strength of the encapsulant. Theoptimal content of MPMS-PHMS was10phr, and the suitable cure temperature and time were130~150°C and2h, respectively.
     Thirdly, three types of silanes containing vinyl and epoxy group,(3-glycidoxypropyl)allyloxydimethoxysilane (GAMS),[2,2-bis (allyloxymethyl) butoxy](3-glycidoxypropyl)dimethoxysilane (AGMS) and [3-allyloxy-2,2-bis (allyloxymethyl) propoxy](3-glycidoxypropyl) dimethoxysilane (AAGMS), were synthesized by the transetherificationand used as adhesion promoters. The chemical structures were characterized by FT-IR and1H-NMR. The influence of adhesion promoters on the properties of silicone encapsulant wasinvestigated in detail, heat aging resistance and water resistance of the encapsulant werestudied, and the adhesion mechanism of the encapsulant was explored. It was found thatGAMS, AGMS and AAGMS could not only greatly improve the adhesion strength of theencapsulant but also significantly enhance the mechanical properties of the encapsulant.Among them, AAGMS with more C=C bonds and ether bonds gave the best adhesionstrength and mechanical properties of the encapsulant. The adhesion promoter improved thedispersibility of filler particles in silicone rubber matrix and enhance the bond between fillerand matrix. X-ray photoelectron spectroscopy (XPS) result showed that AAGMS couldmigrate to the bonding interface and produce the adhesion-enhancing effect. When thecontent of AAGMS was1.5phr, silicone encapsulant had good comprehensive performance. The shear strength and tensile strength of the encapsulant were1.14MPa and3.27MPa, whichwas about235%and47%higher than that of the encapsulant without adhesion promoter,respectively. The encapsulant with AAGMS had good heat aging resistance and waterresistance.
     Fourthly, two types of silane oligomers containing vinyl and epoxy group (PTGM andPTGE) as adhesion promoters were synthesized by the reaction of trimethylolpropanemonoallyl ether (TMPME) with3-glycidoxypropylmethyldimethoxysilane (GPMMS) and3-glycidoxypropylmethyldiethoxysilane (GPMES), respectively. FT-IR,1H-NMR and GPCwere used to characterize their chemical structures. The effect of PTGM and PTGE on theadhesion properties, mechanical properties and viscosity of the encapsulant were investigated,and heat aging resistance and water resistance of the encapsulant were studied. The resultsshowed that PTGM and PTGE could enhance both the adhesion strength and mechanicalproperties of the encapsulant. Compared with PTGE, the encapsulant with PTGM had bettercomprehensive performance.
     Finally, self-adhesive, halogen-free flame retardant and thermal conductiveaddition-cure silicone encapsulant was prepared by adding AAGMS and aluminiumhydroxide (Al(OH)3) to silicone encapsulant with Al2O3as thermal conductive filler. Theeffect of particle size and content of Al(OH)3and AAGMS content on the flame retardancy,adhesion properties, thermal conductivity, mechanical properties and viscosity of theencapsulant were investigated. It was found that AAGMS could enhance adhesion properties,thermal conductivity and mechanical properties of the encapsulant, but its viscosity increased.Scanning electron microscopy (SEM) showed that AAGMS could improve the dispersibilityof Al2O3and Al(OH)3particles in silicone rubber matrix and enhance the bond between fillerand matrix. Compared with small particle size of Al(OH)3, the encapsulant filled with largeparticle size of Al(OH)3had good flowability, which was beneficial for encapsulating process.When the content of AAGMS was1.5phr, and the particle size and content of Al(OH)3were20μm and60phr, the encapsulant possessed good comprehensive performance. The thermalconductivity was0.583W·m-1·K-1, the shear strength was1.31MPa, the tensile strength was3.43MPa, the elongation at break was52%, the viscosity was7200mPa·s, and the verticalburning test achieved a UL-94V-0rating.
引文
[1] Ayanoor-Vitikkate V., Chen K.L., Park W.T., et al. Development of wafer scaleencapsulation process for large displacement piezoresistive MEMS devices [J]. Sensorsand Actuators A: Physical,2009,156(2):275-283.
    [2] Gaume J., Taviot-Gueho C., Cros S., et al. Optimization of PVA clay nanocomposite forultra-barrier multilayer encapsulation of organic solar cells [J]. Solar Energy Materials andSolar Cells,2012,99:240-249.
    [3] Hamzah A.A., Husaini Y., Majlis B.Y., et al. Selection of high strength encapsulant forMEMS devices undergoing high-pressure packaging [J]. Microsystem Technologies,2008,14(6):761-766.
    [4] Morlier A., Cros S., Garandet J.P., et al. Gas barrier properties of solution processedcomposite multilayer structures for organic solar cells encapsulation [J]. Solar EnergyMaterials and Solar Cells,2013,115:93-99.
    [5] Rapisarda M., Simeone D., Fortunato G., et al. Pentacene thin film transistors with(polytetrafluoroethylene) PTFE-like encapsulation layer [J]. Organic Electronics,2011,12(1):119-124.
    [6] Tao Q.S., Wang M.H., GanW.J., et al. Studies on the phase separation of poly(ether imide)-modified cyanate ester resin [J]. Journal of Macromolecular Science, Part A: Pure andApplied Chemistry,2003,40(11):1199-1211.
    [7] Zhou W.Y., Qi S.H., Tu C.C., et al. Novel heat-conductive composite silicone rubber [J].Journal of Applied Polymer Science,2007,104(4):2478-2483.
    [8] Yoda N. Recent Development of Advanced Functional Polymers for SemiconductorEncapsulants of Integrated Circuit Chips and High-temperature Photoresist for ElectronicApplications [J]. Polymers for Advanced Technologies,1997,8(4):215-226.
    [9] Togashi A., Kasuya A. Organohydrogenpolysiloxanes and curable organosiloxanecompositions containing same [P]. USA:5,232,959,1993.
    [10] Cros S., de Bettignies R., Berson S., et al. Definition of encapsulation barrierrequirements: A method applied to organic solar cells [J]. Solar Energy Materials andSolar Cells,2011,95: S65-S69.
    [11]王鑫.高导热电子灌封复合材料的研究[D].杭州:浙江工业大学,2012.
    [12] Gao N., Liu W.Q., Ma S.Q., et al. Modification of epoxy resin with cycloaliphatic-epoxyoligosiloxane for light-emitting diode (LED) encapsulation application [J]. Journal ofMacromolecular Science, Part B: Physics,2012,51(8):1509-1524.
    [13] Yazdan Mehr M., Van Driel W.D., Jansen K.M.B., et al. Photodegradation of bisphenol Apolycarbonate under blue light radiation and its effect on optical properties [J]. OpticalMaterials,2013,35(3):504-508.
    [14] Hsu H.Y., Hsieh H.H., Tuan H.Y., et al. Oxidized low density polyethylene: A potentialcost-effective, stable, and recyclable polymeric encapsulant for photovoltaic modules [J].Solar Energy Materials and Solar Cells,2010,94(6):955-959.
    [15] Klemchuk P., Ezrin M., Lavigne G., et al. Investigation of the degradation andstabilization of EVA-based encapsulant in field-aged solar energy modules [J]. PolymerDegradation and Stability,1997,55(3):347-365.
    [16] Tey J.N., Soutar A.M., Mhaisalkar S.G., et al. Mechanical properties of UV-curablepolyurethane acrylate used in packaging of MEMS devices [J]. Thin Solid Films,2006,504(1-2):384-390.
    [17] Dross F., Labat A., Lopez M.A.P., et al. Vacuum-free, cost-effective,developing-country-material-available solar cell encapsulation [J]. Solar Energy Materialsand Solar Cells,2006,90(14):2159-2166.
    [18] Kim J.S., Yang S.C., Kwak S.Y., et al. High performance encapsulant for light-emittingdiodes (LEDs) by a sol-gel derived hydrogen siloxane hybrid [J]. Journal of MaterialsChemistry,2012,22(16):7954-7960.
    [19] Kim J.S., Yang S.C., Bae B.S. Thermally stable transparent sol gel based siloxane hybridmaterial with high refractive index for light emitting diode (LED) encapsulation [J].Chemistry of Materials,2010,22(11):3549-3555.
    [20] Yang X., Zhao X.J., Zhang Y., et al. Synthesis and Properties of Silphenylene-containingEpoxy Resins with High UV-stability [J]. Journal of Macromolecular Science, Part A:Pure and Applied Chemistry,2011,48(9):692-700.
    [21] Ho T.H., Wang C.S. Modification of epoxy resin with siloxane containing phenol aralkylepoxy resin for electronic encapsulation application [J]. European Polymer Journal,2001,37(2):267-274.
    [22] Im H.G., Ka K.R., Kim C.K. Characteristics of polyurethane elastomer blends withpoly(acrylonitrile-co-butadiene) rubber as an encapsulant for underwater sonar devices [J].Industrial and Engineering Chemistry Research,2010,49(16):7336-7342.
    [23] Bae J.Y., Kim Y.H., Kim H.Y., et al. Sol-gel synthesized linear oligosiloxane-basedhybrid material for a thermally-resistant light emitting diode (LED) encapsulant [J]. RSCAdvances,2013,3(23):8871-8877.
    [24] Lopez L.M., Cosgrove A.B., Hernandez-Ortiz J.P., et al. Modeling the vulcanizationreaction of silicone rubber [J]. Polymer Engineering and Science,2007,47(5):675-683.
    [25] Delebecq E., Hermeline N., Flers A., et al. Looking over liquid silicone rubbers:(2)mechanical properties vs network topology [J]. ACS Applied Materials and Interfaces,2012,4(7):3353-3363.
    [26] Simpson T.R.E., Parbhoo B., Keddie J.L. The dependence of the rate of crosslinking inpoly(dimethyl siloxane) on the thickness of coatings [J]. Polymer,2003,44(17):4829-4838.
    [27] Pradhan B., Srivastava S.K., Ananthakrishnan R., et al. Preparation and characterizationof exfoliated layered double hydroxide/silicone rubber nanocomposites [J]. Journal ofApplied Polymer Science,2011,119(1):343-351.
    [28]黄文润.液体硅橡胶[M].成都:四川科学技术出版社,2009.
    [29]来国桥,幸松民.有机硅产品合成工艺及应用[M].北京:化学工业出版社,2009.
    [30]陈精华,李国一,胡新嵩,等.硅微粉对有机硅电子灌封胶性能的影响[J].有机硅材料,2011,25(2):71-75.
    [31]郭建华,曾幸荣,罗昆.乙烯基含量对热硫化硅橡胶抗撕裂性能的影响[J].弹性体,2010,20(5):6-10.
    [32] Xu Q., Pang M.L., Zhu L.X., et al. Mechanical properties of silicone rubber composed ofdiverse vinyl content silicone gums blending [J]. Materials and Design,2010,31(9):4083-4087.
    [33]吕晓峰,陈双俊,张军.含支链型端乙烯基硅油室温固化灌封硅橡胶性能研究[J].材料导报,2009,23(8):37-41.
    [34] Gu Q.G, Zhou Q.L. Preparation of high strength and optically transparent silicone rubber[J]. European Polymer Journal,1998,34(11):1727-1733.
    [35]徐晓秋,杨雄发,伍川,等.凝胶型LED封装材料基础聚合物的制备及性能[J].高分子材料科学与工程,2011,27(2):129-132.
    [36] Liu Y.F., Shi Y.H., Zhang D., et al. Preparation and thermal degradation behavior of roomtemperature vulcanized silicone rubber-g-polyhedral oligomeric silsesquioxanes [J].Polymer,2013,54(22):6140-6149.
    [37]钟桂云.新型的加成型液体硅橡胶的研制[D].南昌:南昌大学,2006.
    [38]李光亮.有机硅高分子化学[M].北京:科学出版社,1998.
    [39]徐晓明,金红君,王轲,等.含氢硅油对加成型液体硅橡胶硫化过程的影响[J].有机硅材料,2011,25(5):311-313.
    [40]杨雄发,伍川,董红,等. LED封装用液体交联剂的制备与表征[J].高分子材料科学与工程,2009,25(2):131-133.
    [41] Yang X.F., Dong H., Wu C., et al. Synthesis and characterization of ethylhydrosiliconefluids as liquid cross-linking agents for the encapsulant of light emitting diodes [J].Phosphorus, Sulfur, and Silicon and the Related Elements,2009,184(11):2870-2876.
    [42] Zhang Y.F., Mao Y.Y., Chen D.Z., et al. Synthesis and characterization of addition-typesilicone rubbers (ASR) using a novel cross linking agent PH prepared by vinyl-POSS andPMHS [J]. Polymer Degradation and Stability,2013,98(4):916–925.
    [43] Roy N., Bhowmick A.K. Novel in situ polydimethylsiloxane-sepiolite nanocomposites:Structure-property relationship [J]. Polymer,2010,51(22):5172-5185.
    [44]李国一.无卤阻燃导热有机硅灌封胶的制备与性能研究[D].广州:华南理工大学,2011.
    [45] Bogdan M. Hydrosilylation: a comprehensive review on recent advances [M]. New York:Springer-Verlag,2009.
    [46]冯圣玉,张洁,李美江,等.有机硅高分子及其应用[M].北京:化学工业出版社,2004.
    [47] Jia L.Y., Du Z.J., Zhang C., et al. Reinforcement of polydimethylsiloxane throughformation of inorganic-organic hybrid network [J]. Polymer Engineering and Science,2008,48(1):74-79.
    [48] Fang X.L., Huang X., Lu Z., et al. Synthesis of new superhydrophobic nanosilica andinvestigation of their performance in reinforcement of polysiloxane [J]. PolymerComposites,2010,31(9):1628-1636.
    [49] Paul D.R., Mark J.E. Fillers for polysiloxane (“silicone”) elastomers [J]. Progress inPolymer Science,2010,35(7):893-901.
    [50] Kim E.S., Kim E.J., Lee T.H., et al. Clay modification and its effect on the physicalproperties of silicone rubber/clay composites [J]. Journal of Applied Polymer Science,2012,125(S1): E298-E304.
    [51] Ma W.S., Li J., Deng B.J., et al. Properties of functionalized graphene/room temperaturevulcanized silicone rubber composites prepared by an In-situ reduction method [J].Journal of Wuhan University of Technology (Materials Science Edition),2013,28(1):127-131.
    [52] Wang J.C., Chen Y.H., Wang J.H. Synthesis of hyperbranched organo-montmorilloniteand its application into high-temperature vulcanizated silicone rubber systems [J]. Journalof Applied Polymer Science,2009,111(2):658-667.
    [53] Ma W.S., Li J., Zhao X.S. Improving the thermal and mechanical properties of siliconepolymer by incorporating functionalized graphene oxide [J]. Journal of Materials Science,2013,48(15):5287-5294.
    [54] Pradhan, B., Srivastava S.K., Saxena A. Mechanical and thermal properties of silanegrafted organomodified montmorillonite reinforced silicone rubber nanocomposites [J].Journal of Nanoscience and Nanotechnology,2012,12(12):8975-8984.
    [55] Pan G.R., Mark J.E., Schaefer D.W. Synthesis and characterization of fillers of controlledstructure based on polyhedral oligomeric silsesquioxane cages and their use in reinforcingsiloxane elastomers [J]. Journal of Polymer Science Part B: Polymer Physics,2003,41(24):3314-3323.
    [56] Wang J.C., Chen Y.H., Jin Q.Q. Organic montmorillonite as a substitute for aerosilica inaddition-type liquid silicone rubber systems [J]. Macromolecular Chemistry and Physics,2005,206(24):2512-2520.
    [57] Pradhan B., Srivastava S.K., Ananthakrishnan R., et al. Preparation and characterizationof exfoliated layered double hydroxide/silicone rubber nanocomposites [J]. Journal ofApplied Polymer Science,2011,119(1):343-351.
    [58] Pradhan B., Srivastava S.K., Bhowmick A.K., et al. Effect of bilayered stearateion-modified Mg-Al layered double hydroxide on the thermal and mechanical propertiesof silicone rubber nanocomposites [J]. Polymer International,2012,61(3):458-465.
    [59] Pradhan B., Srivastava S.K. Novel silicone rubber/layered double hydroxidenanocomposite: preparation and characterization [J]. Springer Proceedings in Physics,2013,143:367-375.
    [60] Pradhan B., Srivastava S.K. Layered double hydroxide/multiwalled carbon nanotubehybrids as reinforcing filler in silicone rubber [J]. Composites Part A: Applied Science andManufacturing,2014,56:290-299.
    [61]梁银杏,郭鹏,任碧野,等. MQ硅树脂制备工艺对RTV硅橡胶补强效果的影响[J].华南理工大学学报(自然科学版),2013,41(2):123-128.
    [62] Lia H.Y., Tao S., Huang Y.H., et al. The improved thermal oxidative stability of siliconerubber by using iron oxide and carbon nanotubes as thermal resistant additives [J].Composites Science and Technology,2013,76:52-60.
    [63] Procter P., Solc J. Improved thermal conductivity in microelectronic encapsulants [J].IEEE Transactions on Components, Hybrids, and Manufacturing Technology,1991,14(4):708-713.
    [64] Kong S.M., Mariatti M., Busfield J.J.C. Effects of types of fillers and filler loading onthe properties of silicone rubber composites [J]. Journal of Reinforced Plastics andComposites,2011,30(13):1087-1096.
    [65]周文英.高导热绝缘高分子复合材料研究[D].西安:西北工业大学,2007.
    [66] Wang L., Li F.P., Su Z.T. Effective thermal conductivity behavior of filled vulcanizedperfluoromethyl vinyl ether rubber [J]. Journal of Applied Polymer Science,2008,108(5):2968-2974.
    [67] Wang Q., Gao W., Xie Z.M. Highly thermally conductive room-temperature vulcanizedsilicone rubber and silicone grease [J]. Journal of Applied Polymer Science,2003,89(9):2397-2399.
    [68] Sim L.C., Ramanan S.R., Ismail H., et al. Thermal characterization of Al2O3and ZnOreinforced silicone rubber as thermal pads for heat dissipation purposes [J].Thermochimica Acta,2005,430(1-2):155-165.
    [69]杨思广,张利萍,林祥坚,等.加成型导热电子灌封硅橡胶的研究[J].广州化工,2011,39(9):86-88.
    [70] Lee S., Hong J.Y., Jang J. Multifunctional graphene sheets embedded in siliconeencapsulant for superior performance of light-emitting diodes [J]. ACS Nano,2013,7(7):5784-5790.
    [71] Sun Y.P., Gu A.J., Liang G.Z., et al. Preparation and properties of transparent zincoxide/silicone nanocomposites for the packaging of high-power light-emitting diodes [J].Journal of Applied Polymer Science,2011,121(4):2018-2028.
    [72] Zhou W.Y., Qi S.H., Zhao H.Z., et al. Thermally conductive silicone rubber reinforcedwith boron nitride particle [J]. Polymer Composites,2007,28(1):23-28.
    [73]唐裕沛,谢建良,梁迪飞,等.填料粒子形貌对液态灌封胶粘度与热导率的影响[J].功能材料,2012,13(43):1778-1781.
    [74] Kemaloglu S., Ozkoc G., Aytac A. Properties of thermally conductive micro and nanosize boron nitride reinforced silicon rubber composites [J].Thermochimica Acta,2010,499(1-2):40-47.
    [75] Zhou W.Y., Qi S.H., Tu C.C., et al. Effect of the particle size of Al2O3on the propertiesof filled heat-conductive silicone rubber [J]. Journal of Applied Polymer Science,2007,104(2):1312-1318.
    [76] Ji T., Zhang L.Q., Wang W.C., et al. Cold plasma modification of boron nitride fillers andits effect on the thermal conductivity of silicone rubber/boron nitride composites [J].Polymer Composites,2012,33(9):1473-1481.
    [77] Lee G.W., Park M., Kim J.K., et al. Enhanced thermal conductivity of polymercomposites filled with hybrid filler [J]. Composites Part A: Applied Science andManufacturing,2006,37(5):727-734.
    [78] Li T.L., Hsu S. L.C. Enhanced thermal conductivity of polyimide films via a hybrid ofmicro-and Nnano-Sized boron nitride [J]. The Journal of Physical Chemistry B,2010,114(20):6825-6829.
    [79] Teng C.C., Ma C.C.M., Chiou K.C., et al. Synergetic effect of thermal conductiveproperties of epoxy composites containing functionalized multi-walled carbon nanotubesand aluminum nitride [J]. Composites Part B: Engineering,2012,43(2):265-271.
    [80] Zhou W.Y., Yu D.M., Wang C.F., et al. Effect of filler size distribution on the mechanicaland physical properties of alumina-filled silicone rubber [J]. Polymer Engineering andScience,2008,48(7):1381-1388.
    [81] Zhou W.Y., Qi S.H., Tu C.C., et al. Novel heat-conductive composite silicone rubber [J].Journal of Applied Polymer Science,2007,104(4):2478-2483.
    [82] Mu Q.H., Feng S.Y., Diao G.Z. Thermal conductivity of silicone rubber filled with ZnO[J]. Polymer Composites,2007,28(2):125-130.
    [83] Zha J.W., Zhu Y.H., Li W.K., et al. Low dielectric permittivity and high thermalconductivity silicone rubber composites with micro-nano-sized particles [J]. AppliedPhysics Letters,2012,101(6):062905-062914.
    [84] Zhou W.Y., Wang C.F., An Q.L., et al. Thermal properties of heat conductive siliconerubber filled with hybrid fillers [J]. Journal of Composite Materials,2008,42(2):173-187.
    [85] Mu Q.H., Feng S.Y. Thermal conductivity of graphite/silicone rubber prepared bysolution intercalation [J]. Thermochimica Acta,2007,462(1-2):70-75.
    [86] Cho H.B., Nakayama T., Suzuki T., et al. Formation and structural characteristic ofperpendicularly aligned boron nitride nanosheet bridges in polymer/boron nitridecomposite film and its thermal conductivity [J]. Japanese Journal of Applied Physics,2011,50(1):01BJ05/1-01BJ05/6.
    [87] Han Y.W., Lv S.M., Hao C.X., et al. Thermal conductivity enhancement of BN/siliconecomposites cured under electric field: Stacking of shape, thermal conductivity, andparticle packing structure anisotropies [J]. Thermochimica Acta,2012,529:68-73.
    [88]程买增.高撕裂环保型阻燃硅橡胶的制备及性能研究[D].广州:华南理工大学,2004.
    [89] Hanu L.G., Simon G.P., Cheng Y.B. Thermal stability and flammability of siliconepolymer composites [J]. Polymer Degradation and Stability,2006,91(6):1373-1379.
    [90] Fang S.L., Hu Y., Song L., et al. Mechanical properties, fire performance and thermalstability of magnesium hydroxide sulfate hydrate whiskers flame retardant silicone rubber[J]. Journal of Materials Science,2008,43(3):1057-1062.
    [91] Alexandre M., Dubois P., Devalckenaere M., et al. Fireproof composition [P]. USA:0,293,877,2008.
    [92] Gardelle B., Duquesne S., Vandereecken P., et al. Characterization of the carbonizationprocess of expandable graphite/silicone formulations in a simulated fire [J]. PolymerDegradation and Stability,2013,98(5):1052-1063.
    [93] Hayashida K., Tsuge S., Ohtani H. Flame retardant mechanism of polydimethylsiloxanematerial containing platinum compound studied by analytical pyrolysis techniques andalkaline hydrolysis gas chromatography [J]. Polymer,2003,44(19):5611-5616.
    [94]胡新嵩,陈精华,黄德裕.氢氧化铝对有机硅电子灌封胶性能的影响[J].中国胶粘剂,2013,22(4):33-36.
    [95]贾丽.镁系阻燃剂对有机硅密封剂性能的影响[D].济南:山东大学,2007.
    [96]郭建华,罗昆,曾幸荣.氢氧化镁阻燃硅橡胶的制备及性能[J].有机硅材料,2006,20(4):171-175.
    [97] Genovese A., Shanks R.A. Fire performance of poly(dimethyl siloxane) compositesevaluated by cone calorimetry [J]. Composites Part A: Applied Science andManufacturing,2008,39(2):398-405.
    [98]王恒芝,吴娜,张鹏,等.缩合型阻燃硅橡胶的研制[J].有机硅材料,2013,27(4):262-265.
    [99] Yang L., Hu Y., Lu H.D., et al. Morphology, thermal, and mechanical properties offlame-retardant silicone rubber/montmorillonite nanocomposites [J]. Journal of AppliedPolymer Science,2006,99(6):3275-3280.
    [100]艾国金,马文石,王惠祖.无机阻燃剂对单组分室温硫化硅橡胶性能的影响[J].橡胶工业,2007,54(5):279-281.
    [101] De Buyl, F. Silicone sealants and structural adhesives [J]. International Journal ofAdhesion and Adhesives,2001,21(5):411-422.
    [102] Roth J., Albrecht V., Nitschke M., et al. Surface Functionalization of silicone rubber forpermanent adhesion improvement [J]. Langmuir,2008,24(21):12603-12611.
    [103] Vast L., Delhalle J., Mekhalif Z.7-Octenyltrimethoxysilane, a model coupling moleculeto study the adhesion promotion of a silicone elastomer on an Al2024alloy [J].International Journal of Adhesion and Adhesives,2009,29(3):286-293.
    [104] Hirayama M., Soares M.C., Caseri W.R., et al. Activated poly(hydromethylsiloxane)s asnovel adhesion promoters for metallic surfaces [J]. The Journal of Adhesion,2000,72(1):51-63.
    [105] Wang J., Xia W.J., Liu K., et al. Improved adhesion of silicone rubber to polyurethaneby surface grafting [J]. Journal of Applied Polymer Science,2011,121(3):1245-1253.
    [106] O’Neill L., Shephard N., Leadley S.R., et al. Atmospheric pressure plasma polymerisedprimer to promote adhesion of silicones [J]. The Journal of Adhesion,2008,84(6):562-577.
    [107] Nwankire C.E., Ardhaoui M., Dowling D.P. The effect of plasma-polymerised siliconhydride-rich polyhydrogenmethylsiloxane on the adhesion of silicone elastomers [J].Polymer International,2009,58(9):996-1001.
    [108] Nwankire C.E., Dowling D.P. Influence of nm-thick atmospheric plasma depositedcoatings on the adhesion of silicone elastomer to stainless steel [J]. Journal of AdhesionScience and Technology,2010,24(7):1291-1302.
    [109] Esfandeh M., Mirabedini S.M., Pazokifard S., et al. Study of silicone coating adhesionto an epoxy undercoat using silane compounds: Effect of silane type and applicationmethod [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2007,302(1-3):11-16.
    [110] Imai K., Tanaka M. Curable organopolysiloxane compositions [P]. USA:4,196,273,1980.
    [111] Stein J., Eichinger B.E., Early T., et al. A new class of adhesion promoters for additioncurable silicone adhesives [J]. Adhesive Joints: Formation, Characteristics and Testing,2002,2:89-100.
    [112] Zhang C., Shephard N.E., Rhodes S.M., et al. Headgroup effect on silane structures atburied polymer/silane and polymer/polymer interfaces and their relations to adhesion [J].Langmuir,2012,28(14):6052-6059.
    [113] Zhang C., Chen Z. Quantitative molecular level understanding of ethoxysilane atpoly(dimethylsiloxane)/polymer Interfaces [J]. Langmuir,2013,29(2):610-619.
    [114] Hardman B.B., Dujack G.M. Self-bonding silicone rubber compositions [P]. USA:4,311,739,1982.
    [115]凌钦才,谢国庆,郭文欣.加成型液体硅橡胶用含环氧基的有机硅增粘剂的制备、表征及性能[J].有机硅材料,2012,26(2):87-92.
    [116] Kato C., Iizuka K., Hayashida O., et al. Adhesive silicone rubber composition andseparator seal material for fuel cells [P]. USA:8,158,738,2012.
    [117] Suzuki T., Kasuya A. Adhesion of addition-reaction type silicone elastomers [J]. Journalof Adhesion Science and Technology,1989,3(6):463-473.
    [118] Ahn D.C., Lutz M.A. Silicone composition and cured silicone product [P]. USA:6,512,037,2003.
    [119] Ahn D.C., Shephard N.E., Olney P.A., et al. Thermal gradient enabled XPS analysis ofPDMS elastomer adhesion to polycarbonate [J]. Macromolecules,2007,40(11):3904-3906.
    [120] Araki T., Miyao T. Self-adhesive organopolysiloxane composition [P]. USA:7,632,909,2009.
    [121] Kerboua R. Adhesion between addition-curable silicone elastomer and nylon usingdiallylbisphenol A as adhesion promoter [J]. Journal of Applied Polymer Science,2003,89(13):3496-3499.
    [122] Kerboua R., Stein J. Curable silicone adhesive compositions [P]. USA:6,602,551,2003.
    [123] Kobayashi T., Matsumoto Y. Adhesive silicone compositions [P]. USA:5,106,933,1992.
    [124]田中隼人,柏木努.聚硅氧烷组合物及其固化物[P]. CN:102010598,2011.
    [125]杨维生,毛晓丽.电子工业封装用硅橡胶的研究[J].热固性树脂,1994,2:15-24.
    [126]杨维生,周庆立.一种新型加成型固化硅橡胶的研究[J].化工新型材料,1993,4:26-29.
    [127] Irifune S., Itagaki A. Organohydrogenpolysiloxane, making method, and addition-curesilicone composition [P]. USA:0,323,033,2012.
    [128] Esteves A.C.C., Brokken-Zijp J., Laven J., et al. Influence of cross-linker concentrationon the cross-linking of PDMS and the network structures formed [J]. Polymer,2009,50(16):3955-3966.
    [129]章坚,叶全明.乙烯基含量对加成型硅橡胶性能的影响[J].有机硅材料,2008,22(5):286-289.
    [130]赵翠峰,方仕江,罗嘉亮,等.加成型室温硫化硅橡胶的制备-I.交联剂及填料的影响规律[J].浙江大学学报(工学版),2007,41(7):1219-1222.
    [131] Hsieh C.Y., Chung S.L. High thermal conductivity epoxy molding compound filled witha combustion synthesized AlN powder [J]. Journal of Applied Polymer Science,2006,102(5):4734-4740.
    [132]李国一,陈精华,林晓丹,等.导热有机硅电子灌封胶的制备与性能研究[J].有机硅材料,2010,24(5):283-287.
    [133]陈元章.绝缘导热灌封硅橡胶的应用[J].航天工艺,1997,2:40-42.
    [134]涂志秀,刘安华,王鹏,等.甲基乙烯基硅橡胶加成硫化研究[J].弹性体,2006,16(5):47-50.
    [135]戚云霞.加成型室温硫化硅橡胶的制备及改性[D].济南:山东大学,2006.
    [136]徐志君,范元蓉,唐颂超.加成型液体乙烯基硅橡胶的研制-I.乙烯基硅油等对物理机械性能的影响[J].合成橡胶工业,2002,25(5):286-288.
    [137] Lee B, Liu J.Z., Sun B., et al. Thermally conductive and electrically insulating EVAcomposite encapsulants for solar photovoltaic (PV) cell [J]. eXPRESS Polymer Letters,2008,2(5):357-363.
    [138] Levresse P., Feke D.L., Manas-Zloczower I. Analysis of the formation of bound poly(dimethylsiloxane) on silica [J]. Polymer,1998,39(17):3919-3924.
    [139] Wang J.C., Pan X.C., Xe Y., et al. Studies on the application properties of calciumsulfate whisker in silicone rubber composites [J]. Journal of Elastomers and Plastics,2012,44(1):55-66.
    [140] Kato N., Meguriya N. Addition curable self-adhesive silicone rubber composition [P].USA:8,580,889,2012.
    [141]张卫勤,李光宪,左红军,等.聚乙烯接枝改性及其与铝的粘结性[J].化学与粘合,2001,4:145-148.
    [142] Chen M.A., Li H.Z., Zhang X.M. Improvement of shear strength ofaluminium-polypropylene lap joints by grafting maleic anhydride onto polypropylene [J].International Journal of Adhesion and Adhesives,2007,27(3):175-187.
    [143] Lasalle V.L., Failla M.D., Vallés E.M., et al. Chemical modification ofstyrene-butadiene-styrene (SBS) rubber by reactive grafting with maleic anhydride [J].Journal of Adhesion Science and Technology,2003,17(12):1713-1726.
    [144] Flory P.J., Rehner J. Statistical mechanics of cross-linked polymer networks. I.rubberlike elasticity [J]. The Journal of Chemical Physics,1943,11(11):512-520.
    [145] Mazan J., Leclerc B., Galandrin N., et al. Diffusion of free polydimethylsiloxane chainsin polydimethylsiloxane elastomer networks [J]. European Polymer Journal,1995,31(8):803-807.
    [146] Yi S.L., Su Y., Wan Y.H. Preparation and characterization of vinyltriethoxysilane (VTES)modified silicalite-1/PDMS hybrid pervaporation membrane and its application in ethanolseparation from dilute aqueous solution [J]. Journal of Membrane Science,2010,360(1-2):341-351.
    [147] Zhu M., Gu A., Liang G., et al. High-performance transparent solvent-free siliconeresins with stable storage and low viscosity based on new hyperbranched polysiloxanes [J].High Performance Polymers,2013,25(5):594-608.
    [148] Chen D.Z., Yi S.P., Wu W.B., et al. Synthesis and characterization of novel roomtemperature vulcanized (RTV) silicone rubbers using Vinyl-POSS derivatives as crosslinking agents [J]. Polymer,2010,51(17):3867-3878.
    [149] Nyczyk A., Paluszkiewicz C., Pyda A., et al. Preceramic polysiloxane networksobtained by hydrosilylation of1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane [J].Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2011,79(4):801-808.
    [150] Kim J.S., Yang S.C., Bae B.S. Thermal stability of sol-gel derived methacrylateoligosiloxane-based hybrids for LED encapsulants [J]. Journal of Sol-Gel Science andTechnology,2010,53(2):434-440.
    [151] Zhao F.C., Zeng X.R., Li H.Q., et al. Preparation and characterization ofnano-SiO2/fluorinated polyacrylate composite latex via nano-SiO2/acrylate dispersion [J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2012,396:328-335.
    [152] Yang X.F., Yao C. Synthesis and comparative properties of poly(dimethylsiloxane)grafted alkyl acrylate [J]. Journal of Applied Polymer Science,2007,106(6):3600-3604.
    [153] Deng X.B., Luo R., Chen H.L., et al. Synthesis and surface properties ofPDMS–acrylate emulsion with gemini surfactant as co-emulsifier [J]. Colloid andPolymer Science,2007,285(8):923-930.
    [154] Han Y.M., Zhang J.Y., Yang Q.Y., et al. Novel polymethoxylsiloxane-based crosslinkingreagent and its in-situ improvement for thermal and mechanical properties of siloxaneelastomer [J]. Journal of Applied Polymer Science,2008,107(6):3788-3795.
    [155] Gao L.J., Zhou L.M., Fang S.M., et al. New copoly(urethane-methacrylate)s obtainedby adjusting the content of the poly(1,2-propanediol ortho-phthalate): transparent, thermal,and mechanical properties [J]. Journal of Applied Polymer Science,2013,128(6):3900-3905.
    [156] Hao X.J., Jeffery J.L., Wilkie J.S., et al. Functionalised polysiloxanes as injectable, insitu curable accommodating intraocular lenses [J]. Biomaterials,2010,31(32):8153-8163.
    [157] Zhang B.T., Liu B.L., Deng X.B., et al. A novel approach for the preparation oforganic-siloxane oligomers and the creation of hydrophobic surface [J]. Applied SurfaceScience,2007,254(2):452-458.
    [158] Ramli M.R., Othman M.B.H., Arifin A., et al. Cross-link network ofpolydimethylsiloxane via addition and condensation (RTV) mechanisms. Part I: Synthesisand thermal properties [J]. Polymer Degradation and Stability,2011,96(12):2064-2070.
    [159] Yactine B., Boutevin B., Ganachaud F. Do-it-yourself functionalized silicones part1:basic methods for characterization of commercial products [J]. Polymers for AdvancedTechnologies,2009,20(1):66-75.
    [160] Rao H.X., Liu F.N., Zhang Z.Y. Oxygen-enriching properties of silicone rubbercrosslinked membrane containing cobalt [J]. Journal of Membrane Science,2007,296(1-2):15-20.
    [161] Liu J.S., Wu S.P., Dong E. Effect of coupling agent as integral blend additive onsilicone rubber sealant [J]. Journal of Applied Polymer Science,2013,128(4):2337-2343.
    [162] Awaja F., Gilbert M., Kelly G., et al. Adhesion of polymers [J]. Progress in PolymerScience,2009,34(9):948-968.
    [163]王润珩,高忠良,陈连周.粘接过程中配位键力的研究[J].粘接,1999,20(6):8-11.
    [164]李士学.粘接过程的配价键力作用[J].粘接,1983,4(2):1-7.
    [165] Plueddemann E.P. Novel organosilicon compounds [P]. USA:4,659,851,1987.
    [166] Stein J., Wengrovius J.H., Willey P.R. Silicon-and nitrogen-containing adhesionpromotors and compositions containing them [P]. USA:5,567,752,1996.
    [167] Yoshitake M. Silatrane derivative, method for manufacturing same, adhesion promoter,and curable silicone composition [P]. USA:5,567,752,1996.
    [168] Burkus S.F., Rubinsztajn S., Gulinski J., et al. Functionalized MQ resin as an adhesionenhancing additive [P]. USA:5,945,555,1999.
    [169] Zhao S.G., Zhou C.J., Zhang J.M., et al. Investigation of allyl-capped carbosilanedendrimers used as crosslinker for silicone rubber [J]. Journal of Applied Polymer Science,2006,100(3):1772-1775.
    [170] Zhao S.G., Zhou C.J., Zhang J.M., et al. Mechanical properties of silicone rubber usingcarbosilane dendrimers as the cross-linker [J]. Chinese Chemical Letters,2005,16(10):1383-1385.
    [171] Zhang B.T., Liu B.L., Deng X.B., et al. A novel approach for the preparation oforganic-siloxane oligomers and the creation of hydrophobic surface [J]. Applied SurfaceScience,2007,254(2):452-458.
    [172] Yan P., Qiu L.Y. Preparation and characterization of polysiloxane-acrylate latexes withMPS-PDMS oligomer as macromonomer [J]. Journal of Applied Polymer Science,2009,114(2):760-768.
    [173] Jana S., Lim M.A., Baek I.C., et al. Non-hydrolytic sol-gel synthesis ofepoxysilane-based inorganic-organic hybrid resins [J]. Materials Chemistry and Physics,2008,112(3):1008-1014.
    [174] Otts D.B., Heidenreich E., Urban M.W. Novel waterborne UV-crosslinkable thiol-enepolyurethane dispersions: Synthesis and film formation [J]. Polymer,2005,46(19):8162-8168.
    [175] Fu Q., Liu J.H., Shi W.F. Preparation and photopolymerization behavior ofmultifunctional thiol-ene systems based on hyperbranched aliphatic polyesters [J].Progress in Organic Coatings,2008,63(1):100-109.
    [176] Zhang B.J., Zhuo D.X., Gu A.J., et al. Preparation and properties of addition curablesilicone resins with excellent dielectric properties and thermal resistance [J]. PolymerEngineering and Science,2012,52(2):259-267.
    [177] Wang W.J., Perng L.H., Hsiue G.H., et al. Characterization and properties of newsilicone-containing epoxy resin [J]. Polymer,2000,41(16):6113-6122.
    [178] Feng S.Y., Du Z.D. Effects of some phenylethynylsilicon compounds on heat-curablesilicone rubber. I.1,3-bis (methylphenylethynylvinyl) disiloxane [J]. Journal of AppliedPolymer Science,1991,43(7):1323-1326.
    [179] Zhao F., Bi W.N., Zhao S.G. Influence of crosslink density on mechanical properties ofnatural rubber vulcanizates [J]. Journal of Macromolecular Science: Part B Physics,2011,50(7):1460-1469.
    [180] Maxwell R.S., Cohenour R., Sung W., et al. The effects of γ-radiation on the thermal,mechanical, and segmental dynamics of a silica filled, room temperature vulcanizedpolysiloxane rubber [J]. Polymer Degradation and Stability,2003,80(3):443-450.
    [181] Vondrá ek P., Sch tz M. NH3-modified swelling of silica-filled silicone rubber [J].Journal of Applied Polymer Science,1979,23(9):2681-2694.
    [182] Polmanteer K.E., Lentz C.W. Reinforcement studies-effect of silica structure onproperties and crosslink density [J]. Rubber Chemistry and Technology,1975,48(5):795-809.
    [183]苏正涛,刘君,孔毅.硅橡胶-金属高温硫化粘接的研究[J].粘接,1999,20(2):5-7.
    [184]苏正涛,申玉生.缩合型室温硫化硅橡胶的粘接性能及粘接机理分析[J].橡胶工业,1998,45(11):663-665.
    [185] Matinlinna J.P., Ozcan M., Lassila L.V.J., et al. The effect of a3-methacryloxypropyltrimethoxysilane and vinyltriisopropoxysilane blend andtris(3-trimethoxysilylpropyl)isocyanurate on the shear bond strength of composite resin totitanium metal [J]. Dental Materials,2004,20(9):804-813.
    [186]潘慧铭,黄素娟.表面、界面的作用与粘接机理(二)[J].粘接,2003,24(3):41-46.
    [187]赵元刚,陆南平.无卤阻燃电子电器用加成型有机硅灌封胶[P]. CN:102408869,2011.
    [188] Morita Y., Kato T., Ueki H. Curable organopolysiloxane composition, method of curingthereof, semiconductor device, and adhesion promoter [P]. USA:7,842,755,2010.
    [189] Wojcik A.B., Klein L.C. Transparent inorganic/organic copolymers by the Sol-Gelprocess: copolymers of tetraethyl orthosilicate (TEOS), vinyl triethoxysilane (VTES) and(meth)acrylate monomers [J]. Journal of Sol-Gel Science and Technology,1995,4(1):57-66.
    [190] Ishida H., Chiang C.H., Koenig J.L. The structure of aminofunctional silane couplingagents:1.γ-aminopropyltriethoxysilane and its analogues [J]. Polymer,1982,23(2):251-257.
    [191]盛旭敏,张卫勤,邹雄,等.硅橡胶阻燃材料的研究[J].特种橡胶制品,2004,25(2):9-11.
    [192]王福强,徐雪梅,揣成智,等.氢氧化镁粒径及偶联剂对PP/Mg(OH)2复合材料性能的影响[J].塑料工业,2010,38(5):59-62.
    [193] Hamdani S., Longuet C., Perrin D., et al. Flame retardancy of silicone-based materials[J]. Polymer Degradation and Stability,2009,94(4):465-495.
    [194]董红,伍川,吴海福,等. Al(OH)3对双组分加成型液体硅橡胶热稳定性的影响[J].南京工业大学学报(自然科学版),2011,33(3):62-68.
    [195]亢庆卫,罗权焜.氢氧化铝复合阻燃剂对热硫化硅橡胶性能的影响[J].有机硅材料,2004,18(6):1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700