麦胚蛋白聚集行为及其钙离子螯合肽的制备与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿物元素钙对人体健康非常重要,膳食中缺乏钙元素会导致多种疾病。金属螯合肽在改善矿物元素缺乏上具有潜在应用价值,目前越来越多的具有促进和提高矿物元素生物利用度的金属螯合肽被发现和鉴定。食物源螯合肽因其营养、安全已经被用于钙强化相关的功能食品和保健品的开发。本研究采用蛋白酶水解麦胚蛋白释放出具有钙离子螯合活性的麦胚肽,可为相关食物源螯合肽的研究和开发提供实验依据。
     为了获得麦胚蛋白的最佳提取方案,论文采用含有2个独立变量(溶解pH值和沉淀pH值)的中心组合设计模型和双变量相关分析同时考察了碱溶和酸沉pH值对麦胚蛋白得率和功能性质的影响及其相关性。结果表明,碱溶pH值和酸沉pH值对麦胚蛋白得率影响均显著(p<0.05),且碱溶pH值与得率(r=0.785,p=0.000)、吸油性(r=0.752,p=0.000)、乳化性(r=0.697,p=0.001)均呈正线性相关;酸沉pH值与吸水性(r=-0.863,p=0.000)呈负相关;麦胚蛋白各功能性质中仅吸油性与乳化性(r=0.753,p=0.000)、吸水性与起泡性(r=0.503,p=0.034)正线性相关;得率只与吸油性(r=0.820,p=0.000)、乳化性(r=0.683,p=0.002)呈正线性相关,其余不显著;当S/P=9.5/4.0(S=碱溶pH值,P=酸沉pH值)时,麦胚蛋白具有最高得率值36.64%,同时泡沫稳定性表现出最大值91.67%,但最大吸水性(3.99g g-1)出现在S/P=10.2/3.3,吸油性、乳化性和起泡性(分别为2.98g g-1,0.207,150%)的最大值在S/P=9.5/3.0,乳化稳定性(76.09%)的最大值则在S/P=10.5/4.0。这使得加工者可以在不显著影响产量的前提下通过适当调节pH值来获得实际所需功能特性的分离蛋白。
     利用金属盐控制蛋白质聚集体的形成来提高溶液的溶解性对于蛋白质在食品中的应用是非常重要的。实验考察了麦胚球蛋白(WGG)在酸化、热处理和Ca2+诱导条件下的聚集-解聚集、溶解性、表面特性和蛋白微结构性质的变化。得到如下结论:麦胚球蛋白溶液在pH5.0(即等电点,pI)和95℃热处理时,具有最大浊度(A400=1.3)和最小溶解性(20.3%);加入50mmol/L CaCl2至WGG的分散液中,溶解度呈现先增加和后下降的趋势:相对于不加钙的WGG溶液,pHpI (pH6.0~9.0)的溶解度从20.3%降低到12.2%,Ca2+促进聚集;不同热处理(55~95℃,pH2.0)条件下,浊度随加热温度的升高而显著增加(p<0.05);加入50mmol/L CaCl2后,溶解度显著提高(p<0.05);在pH(pH1.0~5.0)和酸热(pH2.0,55~95℃)处理条件下的解聚集指数(代表聚合物解聚集程度)均是一个恒定值y=0.5;Ca2+浓度(100mmol/L)对溶解度影响显著(p<0.05),由95℃时对照样品(不加Ca2+)的26.9%提高到66.8%;麦胚球蛋白聚集-解聚集过程中的疏水性(H0)、δ-电位和蛋白微观形态(SEM)变化结果表明,WGG由粗糙的不规则大团块降解为均匀分散的微粒,加入二价阳离子Ca2+可以通过增强静电斥力促进蛋白聚集体的解离。
     以麦胚蛋白为原料,利用蛋白酶限制性酶解技术和金属离子螯合技术制备麦胚肽-钙络合物,并采用现代分析技术如紫外-可见(UV-Vis)光谱法和傅立叶变换红外(FTIR)光谱来表征该络合物的结构特性。由碱性蛋白酶(Alcalase2.4L)制备的水解度为21.5%的麦胚蛋白酶解液具有最高的钙结合能力和络合物得率,分别为18.0mg (g蛋白)-1、32.5%;经超滤膜截留后的组分P2(3K     通过体外模拟胃肠道消化实验比较了麦胚肽-钙络合物与无机钙和葡萄糖酸钙体外消化后钙的生物利用度(包括释放量、可溶性以及透析度)。结果表明,麦胚肽-钙络合物有着更高的生物利用度:胃中消化2h后,钙的释放率达90%以上;胃肠中消化8h后的溶解度和透析率分别维持在80%和43%的高水平;麦胚肽-钙络合物依赖于胃酸的酸化能缓慢释放Ca2+,相对于CaCO3和葡萄糖酸钙的快速释放能减少对胃的刺激;在植酸、草酸和膳食纤维等抑制剂的影响下,麦胚肽-钙络合物仍具有较高的生物利用度:植酸存在时,胃肠道消化2h后其溶解性和透析率分别降低至77%和35%;添加草酸后,分别降低到75%和24%;膳食纤维影响较大,分别降低到45%和21%;但生物利用度均高于CaCO3和葡萄糖酸钙,是理想的钙补充剂;麦胚肽-钙络合物在模拟胃肠道消化过程中具有生物稳定性,是吸收和输送钙元素的良好载体。
Mineral calcium is an important element for human health. Deficiency of dietary calciumcan lead to numerous diseases. Mineral chelating peptides have shown potential application inthe management of mineral deficiencies. An increasing number of chelating peptides with theability to facilitate and enhance the bioavailability of minerals are being discovered andidentified. Food-derived chelating peptides have been used for development of functionalfoods and health products fortified with calcium due to their safety and multi-functionality. Inthis work, wheat germ protein is going to be hydrolyzed by proteinase to release the calciumchelating peptides, which might provide an experimental evidence for the related research anddevelopment of food-derived chelating peptides.
     A central composite design with two independent variables (solubilisation pH andprecipitation pH) and bivariate correlations were selected for the correlation analysis of theprotein separation conditions and the functional properties. The results showed that wheatgerm protein yield was sensitive to both solubilisation pH and precipitation pH (p<0.05). Theyield (r=0.785, p=0.000), fat absorption (FA, r=0.752, p=0.000) and emulsification (EA,r=0.697, p=0.697) of isolates showed a high positive linear correlation with solubilisation pH;whereas water absorption (r=0.863, p=0.000) showed a negative correlation to precipitationpH; For all the functional properties of wheat germ protein, only fat absorption toemulsification (r=0.753, p=0.753), water absorption to foaming capacity (r=0.503, p=0.503)were linear correlation; The protein yield showed high positive correlation with FA (r=0.820,p=0.000) and EA (r=0.683, p=0.683) but did not have significant correlations with otherproperties. In addition, when wheat germprotein showed the highest yield (36.64%) in9.5/4.0(solubilisation pH and precipitation pH), only foaming stability showed maximum (91.67%)and other functional properties were not necessarily the best, such as the maximum of waterabsorption (3.99g g-1) was at the extraction condition of10.2/3.3, while fat absorption,emulsifying activity, foaming capacity were at9.5/3.0(2.98g g-1,0.207,150%, respectively),and the maximum value of emulsifying stability (76.09%) was at10.5/4.0. This allowsprocessers to adjust pH values according to the protein isolate property requirements withoutaffecting the yields greatly.
     Metal salt was used to control the formation of protein aggregates to improve thesolubility, it is very important for the application of the protein in food. Effects of CaCl2ondisaggregation of wheat germ globulin (WGG) solution heat-treated ranging from55°C to95°C at pH2.0were investigated by turbidity, solubility, H0(surface hydrophobicity),-potential and microstructure. Maximum turbidity (A400=1.3) and minimum solubility (20.3%)occurred at the isoelectric point (pI5.0) and95°C. The turbidity of WGG at pH ranging from1.0to5.0(below pI) in the presence of CaCl2was rapidly decreased, while significantincrease in pH ranging from6.0to9.0(above pI). The addition of CaCl2to dispersions ofWGG produced an increase and followed a decrease in solubility: for pHpI (pH6.0~9.0) the decrease was20.3%to12.2%(p<0.05). A strong increase in the turbidity during heating was observed at low pH (2.0) for proteins with nocalcium ion. In the presence of50mmol/L CaCl2, solubility of thermally treatednative WGGsignificantly increased. The disaggregation extent of the aggregations, reported as thedisaggregation index, was observed as a constant (y=0.5) between pH-induced (from pH1.0to the pI) treatment or heat-induced (from55to95°C) treatment for WGG. At Ca100mmol/L a significant increase in the solubility of WGG was detected (66.8%at95°C)compared with its control without calcium (26.9%); The chages of hydrophobic (H0), zetapotential and the protein microstructure (SEM) of WGG during theaggregation-disaggregation process were investigated. The results suggested that theelectrostatic repulsion between the particles issufficiently strong to disintegrate proteinaggregates, leading to a degradation of large lumps and ahomogeneous distribution of WGGparticles.
     To produce and evaluate wheat germ protein-calcium complex from enzymatichydrolysis of wheat germ protein, the restrictive enzymolysis technology, metal chelatetechnology and analytical techniques such asultraviolet-visible (UV-vis) spectroscopy andFourier transforminfrared (FTIR) spectroscopy had been accepted. It is demonstrated that theamount of Ca bound depended greatly on the type of enzyme, degree of hydrolysis (DH),amino acid composition, and molecular mass distribution of different hydrolysates. Wheatgerm protein hydrolysate prepared by Alcalase2.4L at DH of21.5%had the maximum levelof Ca bound and the highest yield of complex (18.0mg (g protein)-1,32.5%), and wassubsequently fractionated through ultrafiltration membranes with molecular weight cutoffs.Calcium binding capacity of portions P2(3K     In vitro gastrointestinal digestion experimentwas used to evaluate the wheat germpeptides on calcium bioavailability, comparing inorganic calcium and calcium gluconate. Thecalcium bioavailability included the release quantity, solubility and dialyzability. The resultsshowed that wheat germ peptide-calcium complex had a higher bioavailability: The releaserate of peptide-calcium complex was more than90%after2h of the stomach digestion; In thegastrointestinal digestion after8h the solubility and dialyzability remained at ahigh level with80%and43%, respectively; Wheat germ peptide-calcium complex was more slowly torelease of Ca2+under the gastricacid than CaCO3and calcium gluconate, which could reducethe stimulation of the stomach; Under the influence of inhibitors such as phytic acid, oxalicacid and dietary fiber, wheat germ peptide-calcium complex still had a high bioavailability;At the present of phytic acid, its solubility and dialyzability reduced to77%and35%respectively during gastrointestinal digestion for2h; After adding oxalic acid, reduced to75% and24%, respectively; Dietary fiber, reduced to45%and21%respectively; However, thebioavailability of wheat germ peptide-calcium complexwere higher than CaCO3and calciumgluconate. It means that wheat germ peptide-calcium complex is the ideal calciumsupplements; Wheat germ peptide-calcium complex had remarkable biological stabilityduring simulated gastrointestinal digestion, thus the calcium chelating peptides from wheatgerm protein is a good indicator for enhancement of calcium absorption.
引文
1徐志宏,魏振承,张雁等.几种蛋白质功能性质的比较研究[J].食品科学,2007,27(12):249-252
    2许晖,郑桂富.金属离子和pH对亚麻蛋白溶解性和持水性的影响[J].食品工业科技,2003,24(4):21-23
    3朱旻鹏,关彦明,王俊伟等.金属离子和pH值对芝麻饼分离蛋白功能性的影响[J].粮食加工,2009,34(1):41-43
    4胡志和,安涛.金属离子及pH值对菜籽蛋白溶解性及持水性的影响[J].食品科学,2000,21(2):12-15
    5Nayak R, Kenney P, Slider S, et al. Myofibrillar protein solubility of model beef batters asaffected by low levels of calcium, magnesium and zinc chloride. Journal of foodscience,1998,63(6):951-954
    6刘海梅,熊善柏,谢笔钧.钙离子对白鲢鱼糜热诱导凝胶化的影响[J].食品科学,2006,27(8):87-90
    7Xiong Y, Brekke C. Protein Extractability and Thermally Induced Gelation Properties ofMyofibrils Isolated from Pre‐and Postrigor Chicken Muscles. Journal of foodscience,1991,56(1):210-215
    8刘西海.金属离子对蛋清蛋白质结构的影响研究[J].中国家禽,2012,34(001):27-31
    9Srinivasan M, Singh H, Munro P A. Sodium caseinate-stabilized emulsions: factorsaffecting coverage and composition of surface proteins. Journal of agricultural andfood chemistry,1996,44(12):3807-3811
    10Ye A, Singh H. Interfacial composition and stability of sodium caseinate emulsions asinfluenced by calcium ions. Food Hydrocolloids,2001,15(2):195-207
    11Dickinson E, Davies E. Influence of ionic calcium on stability of sodium caseinateemulsions. Colloids and Surfaces B: Biointerfaces,1999,12(3):203-212
    12Dickinson E, Golding M. Influence of calcium ions on creaming and rheology ofemulsions containing sodium caseinate. Colloids and Surfaces A: Physicochemicaland Engineering Aspects,1998,144(1):167-177
    13Agboola S O, Dalgleish D G. Calcium‐Induced Destabilization of Oil‐in‐WaterEmulsions Stabilized by Caseinate or by β‐Lactoglobulin. Journal of food science,1995,60(2):399-404
    14Baumy J, Brule G. Binding of bivalent cations to α-lactalbumin and β-lactoglobulin:effect of pH and ionic strength. Le Lait,1988,68(1):33-48
    15Mu T H, Tan S S, Chen J W, et al. Effect of pH and NaCl/CaCl2on the solubility andemulsifying properties of sweet potato protein. Journal of the Science of Food andAgriculture,2009,89(2):337-342
    16Raikos V, Campbell L, Euston S R. Effects of sucrose and sodium chloride on foamingproperties of egg white proteins. Food Research International,2007,40(3):347-355
    17Guo L, Harnedy P A, Li B, et al. Food protein-derived chelating peptides: biofunctionalingredients for dietary mineral bioavailability enhancement. Trends in Food Science&Technology,2014,37(2):92-105
    18Daengprok W, Garnjanagoonchorn W, Naivikul O, et al. Chicken eggshell matrixproteins enhance calcium transport in the human intestinal epithelial cells, Caco-2.Journal of agricultural and food chemistry,2003,51(20):6056-6061
    19Bass J K, Chan G M. Calcium nutrition and metabolism during infancy. Nutrition,2006,22(10):1057-1066
    20Bendich A. Calcium supplementation and iron status of females. Nutrition,2001,17(1):46-51
    21Bozalio lu S, zkan Y, Turan M, et al. Prevalence of zinc deficiency and immuneresponse in short-term hemodialysis. Journal of Trace Elements in Medicine andBiology,2005,18(3):243-249
    22Tay E L, Peset A, Papaphylactou M, et al. Replacement therapy for iron deficiencyimproves exercise capacity and quality of life in patients with cyanotic congenitalheart disease and/or the Eisenmenger syndrome. International journal of cardiology,2011,151(3):307-312
    23Megías C, Pedroche J, Yust M M, et al. Affinity purification of copper chelating peptidesfrom chickpea protein hydrolysates. Journal of agricultural and food chemistry,2007,55(10):3949-3954
    24Shenkin A. Basics in clinical nutrition: Physiological function and de ficiency states oftrace elements. e-SPEN, the European e-Journal of Clinical Nutrition and Metabolism,2008,3(6):255-258
    25L nnerdal B. Dietary factors influencing zinc absorption. The Journal of nutrition,2000,130(5):1378S-1383S
    26Barton J C, Conrad M E, Parmley R. Calcium inhibition of inorganic iron absorption inrats. Gastroenterology,1983,84(1):90-101
    27Poitou Bernert C, Ciangura C, Coupaye M, et al. Nutritional deficiency after gastricbypass: diagnosis, prevention and treatment. Diabetes&metabolism,2007,33(1):13-24
    28Hurrell R. How to Ensure Adequate Iron Absorption from Iron‐fortified Food.Nutrition reviews,2002,60(s7): S7-S15
    29Keller J L, Lanou A J, Barnard N D. The consumer cost of calcium from food andsupplements. Journal of the American Dietetic Association,2002,102(11):1669-1671
    30Bovell-Benjamin A C, Viteri F E, Allen L H. Iron absorption from ferrous bisglycinateand ferric trisglycinate in whole maize is regulated by iron status. The Americanjournal of clinical nutrition,2000,71(6):1563-1569
    31McDonagh D, FitzGerald R J. Production of caseinophosphopeptides (CPPs) fromsodium caseinate using a range of commercial protease preparations. InternationalDairy Journal,1998,8(1):39-45
    32A t-oukhatar N, Bouhallab S, Bureau F, et al. Bioavailability of caseinophosphopeptidebound iron in the young rat. The Journal of nutritional biochemistry,1997,8(4):190-194
    33Pérès J-M, Bouhallab S d, Bureau F, et al. Mechanisms of absorption ofcaseinophosphopeptide bound iron. The Journal of nutritional biochemistry,1999,10(4):215-222
    34García-Nebot M J, BarberáR, Alegría A. Iron and zinc bioavailability in Caco-2cells:Influence of caseinophosphopeptides. Food Chemistry,2013,138(2):1298-1303
    35Lee Y S, Noguchi T, Naito H. Phosphopeptides and soluble calcium in the small intestineof rats given a casein diet. British Journal of Nutrition,1980,43(03):457-467
    36Wang C, Li B, Ao J. Separation and identification of zinc-chelating peptides fromsesame protein hydrolysate using IMAC-Zn2+and LC–MS/MS. Food Chemistry,2012,134(2):1231-1238
    37Torres-Fuentes C, Alaiz M, Vioque J. Affinity purification and characterisation ofchelating peptides from chickpea protein hydrolysates. Food Chemistry,2011,129(2):485-490
    38Torres-Fuentes C, Alaiz M, Vioque J. Iron-chelating activity of chickpea proteinhydrolysate peptides. Food Chemistry,2012,134(3):1585-1588
    39Megías C, Pedroche J, Yust M M, et al. Production of copper-chelating peptides afterhydrolysis of sunflower proteins with pepsin and pancreatin. LWT-Food Science andTechnology,2008,41(10):1973-1977
    40Chen D, Liu Z, Huang W, et al. Purification and characterisation of a zinc-bindingpeptide from oyster protein hydrolysate. Journal of Functio nal Foods,2013,5(2):689-697
    41Wu H, Liu Z, Zhao Y, et al. Enzymatic preparation and characterization of iron-chelatingpeptides from anchovy (Engraulis japonicus) muscle protein. Food ResearchInternational,2012,48(2):435-441
    42Jung W-K, Kim S-K. Calcium-binding peptide derived from pepsinolytic hydrolysates ofhoki (Johnius belengerii) frame. European Food Research and Technology,2007,224(6):763-767
    43Lee S H, Song K B. Article isolation of a calcium-binding peptide from enzymatichydrolysates of porcine blood plasma protein. Journal of the Korean Society forApplied Biological Chemistry,2009,52(3):290-294
    44Hebert E M, Saavedra L, Ferranti P. Bioactive peptides derived from casein and wheyproteins. Biotechnology of lactic acid bacteria: novel applications. Wiley-Blackwell,Ames,2010:233-249
    45Guo L, Hou H, Li B, et al. Preparation, isolation and identification of iron-chelatingpeptides derived from Alaska pollock skin. Process Biochemistry,2013,48(5):988-993
    46Storcksdieck S, Bonsmann G, Hurrell R. Iron‐Binding Properties, Amino AcidComposition, and Structure of Muscle Tissue Peptides from in vitro Digestion ofDifferent Meat Sources. Journal of food science,2007,72(1): S019-S029
    47Kim N-H, Jung S-H, Kim J, et al. Purification of an iron-chelating peptide from spirulinaprotein hydrolysates. Journal of the Korean Society for Applied Biological Chemistry,2014,57(1):91-95
    48Lee S-H, Song K B. Purification of an iron-binding nona-peptide from hydrolysates ofporcine blood plasma protein. Process Biochemistry,2009,44(3):378-381
    49Zhang T, Li Y, Miao M, et al. Purification and characterisation of a new antioxidantpeptide from chickpea (Cicer arietium L.) protein hydrolysates. Food Chemistry,2011,128(1):28-33
    50Huang G, Ren L, Jiang J. Purification of a histidine-containing peptide with calciumbinding activity from shrimp processing byproducts hydrolysate. European FoodResearch and Technology,2011,232(2):281-287
    51Huang G, Ren Z, Jiang J. Separation of iron-binding peptides from shrimp processingby-products hydrolysates. Food and bioprocess technology,2011,4(8):1527-1532
    52Jung W-K, Karawita R, Heo S-J, et al. Recovery of a novel Ca-binding peptide fromAlaska Pollack (Theragra chalcogramma) backbone by pepsinolytic hydrolysis.Process Biochemistry,2006,41(9):2097-2100
    53Jung W-K, Lee B-J, Kim S-K. Fish-bone peptide increases calcium solubility andbioavailability in ovariectomised rats. British Journal of Nutrition,2006,95(01):124-128
    54Charoenphun N, Cheirsilp B, Sirinupong N, et al. Calcium-binding peptides derivedfrom tilapia (Oreochromis niloticus) protein hydrolysate. European Food Research andTechnology,2013,236(1):57-63
    55Suen R-B, Lin S-C, Hsu W-H. Hydroxyapatite-based immobilized metal affinityadsorbents for protein purification. Journal of chromatography A,2004,1048(1):31-39
    56Lv Y, Liu Q, Bao X, et al. Identification and characteristics of iron-chelating peptidesfrom soybean protein hydrolysates using IMAC-Fe3+. Journal of agricultural and foodchemistry,2009,57(11):4593-4597
    57Chen Y, Mant C T, Hodges R S. Preparative reversed-phase high-performance liquidchromatography collection efficiency for an antimicrobial peptide on columns ofvarying diameters (1mm to9.4mm ID). Journal of chromatography A,2007,1140(1):112-120
    58Blat D, Weiner L, Youdim M B, et al. A novel iron-chelating derivative of theneuroprotective peptide NAPVSIPQ shows superior antioxidant andantineurodegenerative capabilities. Journal of medicinal chemistry,2007,51(1):126-134
    59Yu Y, Fan D. Characterization of the Complex of Human-like Collagen with Calcium.Biological trace element research,2012,145(1):33-38
    60Jin Y-G, Fu W-W, Ma M-H. Preparation and structure characterization of soluble bonecollagen peptide chelating calcium. African Journal of Biotechnology,2011,10(50):10204-10211
    61Ren Z-y, Huang G-r, Jiang J-x, et al. Preparation and Characteristic of Iron-BindingPeptides from Shrimp Processing Discards Hydrolysates. Advance Journal of FoodScience&Technology,2011,3(5):348-354
    62Nara M, Morii H, Tanokura M. Coordination to divalent cations by calcium-bindingproteins studied by FTIR spectroscopy. Biochimica et Biophysica Acta(BBA)-Biomembranes,2013,1828(10):2319-2327
    63Seo Y, Shin K, Rhee A, et al. Effects of dietary Fe-soy proteinate and MgO on eggproduction and quality of eggshell in laying hens. Asian-Aust J Anim Sci,2010,23:1043-1048
    64Nara M, Tanokura M. Infrared spectroscopic study of the metal-coordination structuresof calcium-binding proteins. Biochemical and biophysical research communications,2008,369(1):225-239
    65Kordys D R, Bobay B G, Thompson R J, et al. Peptide binding proclivities of calciumloaded calbindin-D28k. Febs Letters,2007,581(24):4778-4782
    66Nagano A, Sato H, Tanioka Y, et al. Characterization of a Ca binding-amphipathicsilk-like protein and peptide with the sequence (Glu)8(Ala-Gly-Ser-Gly-Ala-Gly)4with potential for bone repair. Soft Matter,2012,8(3):741-748
    67Wyttenbach T, Grabenauer M, Thalassinos K, et al. The effect of calcium ions andpeptide ligands on the relative stabilities of the calmodulin dumbbell and compactstructures. The Journal of Physical Chemistry B,2009,114(1):437-447
    68Xia Y, Bamdad F, G nzle M, et al. Fractionation and characterization of antioxidantpeptides derived from barley glutelin by enzymatic hydrolysis. Food Chemistry,2012,134(3):1509-1518
    69Lv Y, Bao X L, Yang B C, et al. Effect of Soluble Soybean ProteinHydrolysate‐Calcium Complexes on Calcium Uptake by Caco‐2Cells. Journal offood science,2008,73(7): H168-H173
    70POUTZ M, Clydesdale F. Effect of enzymatic digestion, pH and molecular weight on theiron solubilizing properties of chicken muscle. Journal of food science,1988,53(4):1081-1085
    71Seth A, Mahoney R R. Binding of iron by chicken muscle protein digests: the size of theiron‐binding peptides. Journal of the Science of Food and Agriculture,2000,80(11):1595-1600
    72Glahn R P, Van Campen D R. Iron uptake is enhanced in Caco-2cell monolayers bycysteine and reduced cysteinyl glycine. The Journal of nutrition,1997,127(4):642-647
    73de la Hoz L, Ponezi A N, Milani R F, et al. Iron-binding properties of sugar cane yeastpeptides. Food Chemistry,2014,142:166-169
    74Sigel H, Martin R B. Coordinating properties of the amide bond. Stability and structureof metal ion complexes of peptides and related ligands. Chemical Reviews,1982,82(4):385-426
    75Nemirovskiy O, Gross M. Determination of calcium binding sites in gas-phase smallpeptides by tandem mass spectrometry. Journal of the American Society for MassSpectrometry,1998,9(10):1020-1028
    76Crichton R R, Chaarloteaux‐Wauters M. Iron transport and storage. European Journalof Biochemistry,1987,164(3):485-506.
    77Sigel A, Sigel H, Sigel R. Metallothioneins and related chelators. metal ions in lifesciences.5. In: RSC Publishing, Cambridge;2009
    78Zachariou M, Hearn M T. Application of immobilized metal ion chelate complexes aspseudocation exchange adsorbents for protein separation. Biochemistry,1996,35(1):202-211
    79Vattem D A, Seth A, Mahoney R R. Chelation and reduction of iron by chicken muscleprotein digests: the role of sulphhydryl groups. Journal of the Science of Food andAgriculture,2001,81(15):1476-1480
    80Perrin D.633. The stability of complexes of ferric ion and amino-acids. Journal of theChemical Society (Resumed),1958:3125-3128
    81Benito P, Miller D. Iron absorption and bioavailability: an updated review. NutritionResearch,1998,18(3):581-603
    82Perego S, Zabeo A, Marasco E, et al. Casein phosphopeptides modulate calcium uptakeand apoptosis in Caco2cells through their interaction with the TRPV6calciumchannel. Journal of Functional Foods,2013,5(2):847-857
    83Swain J H, Tabatabai L B, Reddy M B. Histidine content of low-molecular-weight beefproteins influences nonheme iron bioavailability in Caco-2cells. The Journal ofnutrition,2002,132(2):245-251
    84Cosentino S, Gravaghi C, Donetti E, et al. Caseinphosphopeptide-induced calciumuptake in human intestinal cell lines HT-29and Caco2is correlated to cellulardifferentiation. The Journal of nutritional biochemistry,2010,21(3):247-254
    85Perego S, Cosentino S, Fiorilli A, et al. Casein phosphopeptides modulate proliferationand apoptosis in HT-29cell line through their interaction with voltage-operated L-typecalcium channels. The Journal of nutritional biochemistry,2012,23(7):808-816
    86Hansen M, Sandstr m B, L nnerdal B. The effect of casein phosphopetides on zinc andcalcium absorption from high phytate infant diets assessed in rat pups and caco-2cells.Pediatric Research,1996,40(4):547-552
    87Choi I, Jung C, Choi H, et al. Effectiveness of phosvitin peptides on enhancingbioavailability of calcium and its accumulation in bones. Food Chemistry,2005,93(4):577-583
    88Bj rn-Rasmussen E, Hallberg L. Effect of animal proteins on the absorption of food ironin man. Annals of Nutrition and Metabolism,1979,23(3):192-202
    89Layrisse M, Martínez-Torres C, Leets I, et al. Effect of histidine, cysteine, glutathione orbeef on iron absorption in humans. The Journal of nutrition,1984,114(1):217-223
    90Taylor P G, Martinez-Torres C, Romano E L, et al. The effect of cysteine-containingpeptides released during meat digestion on iron absorption in humans. The Americanjournal of clinical nutrition,1986,43(1):68-71
    91Al‐Hooti S, Sidhu J, Al‐Saqer J, et al. Effect of raw wheat germ addition on thephysical texture and objective color of a designer food (pan bread). Food/Nahrung,2002,46(2):68-72
    92Rizzello C G, Nionelli L, Coda R, et al. Use of sourdough fermented wheat germ forenhancing the nutritional, texture and sensory characteristics of the white bread.European Food Research and Technology,2010,230(4):645-654
    93Sidhu J S, Al-Hooti S N, Al-Saqer J M. Effect of adding wheat bran and germ fractionson the chemical composition of high-fiber toast bread. Food Chemistry,1999,67(4):365-371
    94P narl, bano lu, ner M D. Effect of storage on the selected properties of macaronienriched with wheat germ. Journal of Food Engineering,2004,64(2):249-256
    95Arshad M U, Anjum F M, Zahoor T. Nutritional assessment of cookies supplementedwith defatted wheat germ. Food Chemistry,2007,102(1):123-128
    96Ayar A, Elgün A, Yazici F. Production of a high nutritional value, aromatised yogurt withthe addition of non-fat wheat germ. Australian journal of dairy technology,2005,60(1):14-18
    97Schmalenberg K, Nebus J, Desai S, et al. Restoring dry, damaged hair with a novelnatural wheat protein and wheat germ oil-containing shampoo and conditioner line.Journal of the American Academy of Dermatology;2010,62(3S): AB77-AB77
    98Grewe E, LeClerc J. Commercial wheat germ, its composition. Cereal Chem,1943,20:423.
    99Zhu K X, Zhou H M, Qian H F. Comparative study of chemical composition andphysicochemical properties of defatted wheat germ flour and its protein isolate.Journal of Food Biochemistry,2006,30(3):329-341
    100Mak Y, Skylas D J, Willows R, et al. A proteomic approach to the identification andcharacterisation of protein composition in wheat germ. Functional&integrativegenomics,2006,6(4):322-337
    101Zhu K, Zhou H. Purification and characterization of a novel glycoprotein from wheatgerm water-soluble extracts. Process Biochemistry,2005,40(3):1469-1474
    102Hettiarachchy N, Griffin V, Gnanasambandam R. Preparation and functional propertiesof a protein isolate from defatted wheat germ. Cereal Chemistry,1996,73(3):364-367
    103袁道强,王丹丹.超声波法提取小麦胚芽蛋白的研究[J].食品研究与开发,2007,28(3):1-4
    104Pomeranz Y, Carvajal M, Hoseney R, et al. Wheat germ in breadmaking. I.Composition of germ lipids and germ protein fractions. Cereal Chemistry,1970,47:373-380
    105辛志宏,吴守一,马海乐等. α-淀粉酶法制备小麦胚芽蛋白的研究[J].食品科技,2005,(6):11-13
    106栾广忠,吴耘红.碱性蛋白酶Alcalase水解WGP制备ISWGPH的研究[J].齐齐哈尔大学学报:自然科学版,2000,16(1):8-10
    107Zhu K-X, Sun X-H, Chen Z-C, et al. Comparison of functional properties andsecondary structures of defatted wheat germ proteins separated by reverse micellesand alkaline extraction and isoelectric precipitation. Food Chemistry,2010,123(4):1163-1169
    108Vani B, Zayas J. Wheat germ protein flour solubility and water retention. Journal offood science,1995,60(4):845-848
    109Claver I P, Zhou H M. Enzymatic hydrolysis of defatted wheat germ by proteases andthe effect on the functional properties of resulting protein hydrolysates. Journal ofFood Biochemistry,2005,29(1):13-26
    110T m sk zi S, Lasztity R, Süle E, et al. Functional properties of native and modifiedwheat germ protein isolates and fractions. Food/Nahrung,1998,42(03‐04):245-247
    111Gnanasambandam R Z, JF. Quality characteristics of meat batters and frankfurterscontaining wheat germ protein flour. Journal of food quality,1994,17(2):129-142
    112Rocha-garza A E, Zayas J F. Effect of wheat germ protein flour on the qualitycharacteristics of beef patties cooked on a griddle. Journal of food processing andpreservation,1995,19(5):341-360
    113Cheng Y-h, Wang Z, Xu S-y. Antioxidant properties of wheat germ protein hydrolysatesevaluated in vitro. Journal of Central South University of Technology,2006,13(2):160-165
    114施传信,宋旸,韩进诚.小麦胚生物活性肽产品开发研究进展[J].商丘师范学院学报,2012,27(6):69-72
    115代卉,施用晖,韩芳.小麦肽免疫活性及抗氧化作用的研究[J].天然产物研究与开发,2009,21(3):473-476
    116Matsui T, Li C H, Osajima Y. Preparation and characterization of novel bioactivepeptides responsible for angiotensin I‐converting enzyme inhibition from wheatgerm. Journal of Peptide Science,1999,5(7):289-297
    117辛志宏,马海乐,吴守一等.从小麦胚芽蛋白中分离和鉴定血管紧张素转化酶抑制肽的研究[J].食品科学,2003,24(7):130-133
    118Kinsella J E. Functional properties of soy proteins. Journal of the American OilChemists’Society,1979,56(3):242-258
    119Aluko R, Yada R. Structure-function relationships of cowpea (Vigna unguiculata)globulin isolate: influence of pH and NaCl on physicochemical and functionalproperties. Food Chemistry,1995,53(3):259-265
    120Ragab D M, Babiker E E, Eltinay A H. Fractionation, solubility and functionalproperties of cowpea (Vigna unguiculata) proteins as affected by pH and/or saltconcentration. Food Chemistry,2004,84(2):207-212
    121Selmane D, Christophe V, Gholamreza D. Extraction of proteins from slaughterhouseby-products: Influence of operating conditions on functional properties. Meat science,2008,79(4):640-647
    122Ge Y, Sun A, Ni Y, et al. Some nutritional and functional properties of defatted wheatgerm protein. Journal of agricultural and food chemistry,2000,48(12):6215-6218
    123Zhu K-X, Zhou H-M, Qian H-F. Proteins extracted from defatted wheat germ:nutritional and structural properties. Cereal Chemistry,2006,83(1):69-75
    124Dua S, Mahajan A, Mahajan A. Improvement of functional properties of rapeseed(Brassica campestris Var. Toria) preparations by chemical modification. Journal ofagricultural and food chemistry,1996,44(3):706-710
    125Li C, Enomoto H, Ohki S, et al. Improvement of functional properties of whey proteinisolate through glycation and phosphorylation by dry heating. Journal of dairy science,2005,88(12):4137-4145
    126Sun X D, Arntfield S D. Dynamic oscillatory rheological measurement and thermalproperties of pea protein extracted by salt method: Effect of pH and NaCl. Journal ofFood Engineering,2011,105(3):577-582
    127Aluko R, Yada R. Some physicochemical and functional properties of cowpea (Vignaunguiculata) isoelectric protein isolate as a function of pH and salt concentration.International journal of food sciences and nutrition,1997,48(1):31-39
    128Jiang J, Chen J, Xiong Y L. Structural and emulsifying properties of soy protein isolatesubjected to acid and alkaline pH-shifting processes. Journal of agricultural and foodchemistry,2009,57(16):7576-7583
    129Abugoch L E, Romero N, Tapia C A, et al. Study of some physicochemical andfunctional properties of quinoa (Chenopodium quinoa Willd) protein isolates. Journalof agricultural and food chemistry,2008,56(12):4745-4750
    130Karaca A C, Low N, Nickerson M. Emulsifying properties of chickpea, faba bean, lentiland pea proteins produced by isoelectric precipitation and salt extraction. FoodResearch International,2011,44(9):2742-2750
    131Aluko R E, Mofolasayo O A, Watts B M. Emulsifying and foaming properties ofcommercial yellow pea (Pisum sativum L.) seed flours. Journal of agricultural andfood chemistry,2009,57(20):9793-9800
    132Kumagai T, Kawamura H, Fuse T, et al. Production of rice protein by alkalineextraction improves its digestibility. Journal of nutritional science and vitaminology,2006,52(6):467-472
    133Kubota M, Saito Y, Masumura T, et al. Improvement in the in vivo digestibility of riceprotein. Bioscience, biotechnology, and biochemistry,2009,74(3):614-619
    134Xia N, Wang J-M, Gong Q, et al. Characterization and In Vitro digestibility of riceprotein prepared by enzyme-assisted microfluidization: Comparison to alkalineextraction. Journal of Cereal Science,2012,56(2):482-489
    135Li H, Song C, Zhou H, et al. Optimization of the aqueous enzymatic extraction ofwheat germ oil using response surface methodology. Journal of the American OilChemists' Society,2011,88(6):809-817
    136Ahmedna M, Prinyawiwatkul W, Rao R M. Solubilized wheat protein isolate:functional properties and potential food applications. Journal of agricultural and foodchemistry,1999,47(4):1340-1345
    137Tomotake H, Shimaoka I, Kayashita J, et al. Physicochemical and functional propertiesof buckwheat protein product. Journal of agricultural and food chemistry,2002,50(7):2125-2129
    138Pearce K N, Kinsella J E. Emulsifying properties of proteins: evaluation of aturbidimetric technique. Journal of agricultural and food chemistry,1978,26(3):716-723
    139Naczk M, Diosady L, Rubin L. Functional Properties of Canola Meals Produced by aTwo‐phase Solvent Extraction System. Journal of food science,1985,50(6):1685-1688
    140Kato A, Nakai S. Hydrophobicity determined by a fluorescence probe method and itscorrelation with surface properties of proteins. Biochimica et Biophysica Acta(BBA)-Protein Structure,1980,624(1):13-20
    141Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with the Folinphenol reagent. Journal of Biological Chemistry,1951,193(1):265-275
    142Laemmli U K. Cleavage of structural proteins during the assembly of the head ofbacteriophage T4. nature,1970,227(5259):680-685
    143Chen L, Houston D. Solubilization and recovery of protein from defatted rice bran.Cereal Chemistry,1970,47:73-79
    144De Groot A P, Slump P. Effects of severe alkali treatment of proteins on amino acidcomposition and nutritive value. The Journal of nutrition,1969,98(1):45-56
    145Hrynets Y, Omana D A, Xu Y, et al. Comparative study on the effect of acid-andalkaline-aided extractions on mechanically separated turkey meat (MSTM): Chemicalcharacteristics of recovered proteins. Process Biochemistry,2011,46(1):335-343
    146Lin C, Zayas J. Functionality of defatted corn germ proteins in a model system: fatbinding capacity and water retention. Journal of food science,1987,52(5):1308-1311
    147Zhang T, Jiang B, Mu W, et al. Emulsifying properties of chickpea protein isolates:Influence of pH and NaCl. Food Hydrocolloids,2009,23(1):146-152
    148Manamperi W A, Wiesenborn D P, Chang S K, et al. Effects of protein separationconditions on the functional and thermal properties of canola protein isolates. Journalof food science,2011,76(3): E266-E273
    149Omana D A, Xu Y, Moayedi V, et al. Alkali-aided protein extraction from chicken darkmeat: chemical and functional properties of recovered proteins. Process Biochemistry,2010,45(3):375-381
    150Adebowale K, Lawal O. Foaming, gelation and electrophoretic characteristics ofmucuna bean (Mucuna pruriens) protein concentrates. Food Chemistry,2003,83(2):237-246
    151Lin T M, Park J W. Solubility of salmon myosin as affected by conformational changesat various ionic strengths and pH. Journal of food science,1998,63(2):215-218
    152Tang C-H, Wang X-Y, Yang X-Q, et al. Formation of soluble aggregates from insolublecommercial soy protein isolate by means of ultrasonic treatment and their gellingproperties. Journal of Food Engineering,2009,92(4):432-437
    153Ju Z Y, Kilara A. Gelation of pH-aggregated whey protein isolate solution induced byheat, protease, calcium salt, and acidulant. Journal of agricultural and food chemistry,1998,46(5):1830-1835
    154Shah D, Shaikh A R, Peng X, et al. Effects of arginine on heat‐induced aggregation ofconcentrated protein solutions. Biotechnology progress,2011,27(2):513-520
    155Liu C M, Zhong J Z, Liu W, et al. Relationship between functional properties andaggregation changes of whey protein induced by high pressure microfluidization.Journal of food science,2011,76(4): E341-E347
    156Sitohy M, Chobert J M, Haertlé T. Improvement of solubility and of emulsifyingproperties of milk proteins at acid pHs by esterification. Food/Nahrung,2001,45(2):87-93
    157Parker A, Boulenguer P, Kravtchenko T P. Effect of the addition of high methoxy pectinon the rheology and colloidal stability of acid milk drinks. In: Food Hydrocolloids:Springer;1993:307-312
    158Griffin M C, Lyster R L, Price J C. The disaggregation of calcium‐depleted caseinmicelles. European Journal of Biochemistry,1988,174(2):339-343
    159Hettiarachchy N, Kalapathy U. Functional properties of soy proteins.1998,708:80-95
    160Simons J-W F, Kosters H A, Visschers R W, et al. Role of calcium as trigger in thermalβ-lactoglobulin aggregation,. Archives of biochemistry and biophysics,2002,406(2):143-152
    161Phan-Xuan T, Durand D, Nicolai T, et al. Heat induced formation of beta-lactoglobulinmicrogels driven by addition of calcium ions. Food Hydrocolloids,2014,34:227-235
    162Osborne T. The Vegetable Proteins. Montana USA: Kessinger Publishing.2010.20-130
    163A ón M, de Lamballerie M, Speroni F. Effect of high pressure on solubility andaggregability of calcium-added soybean proteins. Innovative Food Science&Emerging Technologies,2012,16:155-162
    164Molina M a I, Wagner J R. The effects of divalent cations in the presence of phosphate,citrate and chloride on the aggregation of soy protein isolate. Food ResearchInternational,1999,32(2):135-143
    165Dissanayake M, Ramchandran L, Piyadasa C, et al. Influence of heat and pH onstructure and conformation of whey proteins. International Dairy Journal,2013,28(2):56-61
    166Ohnishi S, Ito T. Calcium-induced phase separations in phosphatidylserine-phosphatidylcholine membranes. Biochemistry,1974,13(5):881-887
    167Tolkach A, Kulozik U. Effect of pH and temperature on the reaction kinetic parametersof the thermal denaturation of β-lactoglobulin. Milchwissenschaft,2005,60(3):249-252
    168Chronakis I S. Network formation and viscoelastic properties of commercial soyprotein dispersions: effect of heat treatment, pH and calcium ions. Food ResearchInternational,1996,29(2):123-134
    169Condés M C, Speroni F, Mauri A, et al. Physicochemical and structural properties ofamaranth protein isolates treated with high pressure. Innovative Food Science&Emerging Technologies,2012,14:11-17
    170Lu X, Lu Z, Yin L, et al. Effect of preheating temperature and calcium ions on theproperties of cold-set soybean protein gel. Food Research International,2010,43(6):1673-1683
    171Tokle T, Decker E A, McClements D J. Utilization of interfacial engineering to producenovel emulsion properties: Pre-mixed lactoferrin/β-lactoglobulin protein emulsifiers.Food Research International,2012,49(1):46-52
    172Wu B-c, Degner B, McClements D J. Creation of reduced fat foods: Influence ofcalcium-induced droplet aggregation on microstructure and rheology of mixed fooddispersions. Food Chemistry,2013,141(4):3393-3401
    173Norde W, Lyklema J. Why proteins prefer interfaces. Journal of Biomaterials Science,Polymer Edition,1991,2(3):183-202
    174Malhotra A, Coupland J N. The effect of surfactants on the solubility, zeta potential, andviscosity of soy protein isolates. Food Hydrocolloids,2004,18(1):101-108
    175Schmitt C, Moitzi C, Bovay C, et al. Internal structure and colloidal behaviour ofcovalent whey protein microgels obtained by heat treatment. Soft Matter,2010,6(19):4876-4884
    176Mession J-L, Blanchard C, Mint-Dah F-V, et al. The effects of sodium alginate andcalcium levels on pea proteins cold-set gelation. Food Hydrocolloids,2013,31(2):446-457
    177Miller G D, Jarvis J K, McBean L D. The importance of meeting calcium needs withfoods. Journal of the American College of Nutrition,2001,20(2):168S-185S
    178Guéguen L, Pointillart A. The bioavailability of dietary calcium. Journal of theAmerican College of Nutrition,2000,19(sup2):119S-136S
    179Byrne L A. Analytical assessment of peptide metal interactions and subsequentstability. Doctoral Dissertation, National University of Ireland,2010
    180Chen H-T, Hsieh K-C, Chang J-K, et al. Conformations of divergent peptides withmineral binding affinity. In: Google Patents;2011
    181Bao X L, Lv Y, Yang B C, et al. A study of the soluble complexes formed duringcalcium binding by soybean protein hydrolysates. Journal of food science,2008,73(3):C117-C121
    182Rui X. Calcium binding of peptides derived from enzymatic hydrolysates of wheyprotein concentrate. International Journal of Dairy Technology,2009,62(2):170-173
    183Crichton R. Interactions between iron metabolism and oxygen activation; CibaFoundation Symposium65-Oxygen Free Radicals and Tissue Damage, Wiley OnlineLibrary,1979.57-76
    184Ashmead H D. Amino acid chelation in human and animal nutrition: CRC Press;2012
    185Jeon S J, Kim W-G, Song K B. Isolation of a Calcium-binding Substance from Anchovy.Journal of the Korean Society for Applied Biological Chemistry,2010,53(4):516-518
    186Brandolini A, Hidalgo A. Wheat germ: not only a by-product. International journal offood sciences and nutrition,2012,63(S1):71-74
    187Zhu K, Zhou H, Qian H. Antioxidant and free radical-scavenging activities of wheatgerm protein hydrolysates (WGPH) prepared with alcalase. Process Biochemistry,2006,41(6):1296-1302
    188Markwell M A K, Haas S M, Bieber L, et al. A modification of the Lowry procedure tosimplify protein determination in membrane and lipoprotein samples. Analyticalbiochemistry,1978,87(1):206-210
    189Nielsen S S. Food analysis laboratory manual. Netherlands: Kluwer AcademicPublisher,2003
    190Adler-Nissen J. Enzymic hydrolysis of food proteins. London and New York: ElsevierApplied Science Publishers,1986
    191Yang B, Yang H, Li J, et al. Amino acid composition, molecular weight distribution andantioxidant activity of protein hydrolysates of soy sauce lees. Food Chemistry,2011,124(2):551-555
    192Zhuang Y, Sun L, Zhao X, et al. Antioxidant and melanogenesis‐inhibitory activitiesof collagen peptide from jellyfish (Rhopilema esculentum). Journal of the Science ofFood and Agriculture,2009,89(10):1722-1727
    193Guerard F, Dufosse L, De La Broise D, et al. Enzymatic hydrolysis of proteins fromyellowfin tuna (Thunnus albacares) wastes using Alcalase. Journal of MolecularCatalysis B: Enzymatic,2001,11(4):1051-1059
    194Doucet D, Otter D E, Gauthier S F, et al. Enzyme-induced gelation of extensivelyhydrolyzed whey proteins by Alcalase: peptide identification and determination ofenzyme specificity. Journal of agricultural and food chemistry,2003,51(21):6300-6308
    195Choi D-W, Lee J-H, Chun H-H, et al. Isolation of a calcium-binding peptide frombovine serum protein hydrolysates. Food Science and Biotechnology,2012,21(6):1663-1667
    196Yan M, Li B, Zhao X, et al. Characterization of acid-soluble collagen from the skin ofwalleye pollock (Theragra chalcogramma). Food Chemistry,2008,107(4):1581-1586
    197Silverstein R, Webster F. Spectrometric identification of organic compounds. USA:John Wiley&Sons,2006
    198Camara-Martos F, Amaro-Lopez M. Influence of dietary factors on calciumbioavailability. Biological trace element research,2002,89(1):43-52
    199Hartmann R, Meisel H. Cytochemical assessment of phosphopeptides derived fromcasein as potential ingredients for functional food. Food/Nahrung,2002,46(6):427-431
    200Roig M, Alegr a A, BarberáR, et al. Calcium bioavailability in human milk, cow milkand infant formulas—comparison between dialysis and solubility methods. FoodChemistry,1999,65(3):353-357
    201Roig M, Alegr a A, Barberá R, et al. Calcium dialysability as an estimation ofbioavailability in human milk, cow milk and infant formulas. Food Chemistry,1999,64(3):403-409
    202Perales S, BarberáR, Lagarda M J, et al. Bioavailability of calcium from milk-basedformulas and fruit juices containing milk and cereals estimated by in vitro methods(solubility, dialyzability, and uptake and transport by Caco-2cells). Journal ofagricultural and food chemistry,2005,53(9):3721-3726
    203Rao B N, Prabhavathi T. An in vitro method for predicting the bioavailability of ironfrom foods. The American journal of clinical nutrition,1978,31(1):169-175
    204Hazell T, Johnson I. In vitro estimation of iron availability from a range of plant foods:influence of phytate, ascorbate and citrate. Br J Nutr,1987,57:223-233
    205Pantako T O, Amiot J. Correlation between in-vitro solubility and absorption in rat ofcalcium, magnesium and phosphorus from milk protein diets. Sciences des Aliments,1994,14(2):139-158
    206Revision U S P C C o. United States pharmacopeia, the national formulary. USA:United States Pharmacopeial Convention,1985
    207Perales S, BarberáR, Lagarda M J, et al. Availability of iron from milk-based formulasand fruit juices containing milk and cereals estimated by in vitro methods (solubility,dialysability) and uptake and transport by Caco-2cells. Food Chemistry,2007,102(4):1296-1303
    208Glahn R P, Rassier M, Goldman M I, et al. A comparison of iron availability fromcommercial iron preparations using an in vitro digestion/Caco-2cell culture model.The Journal of nutritional biochemistry,2000,11(2):62-68
    209张维睿,杨桂芹,王宏山.微量元素氨基酸螯合物的营养功能及在动物生产中的应用[J].饲料研究,2005,(2):18-20
    210Keane L A, Potter N N, Sherbon J W. Estimation of calcium status in selected foodsystems. Journal of food science,1988,53(4):1111-1112
    211Shen L-h, Luten J, Robberecht H, et al. Modification of an in-vitro method forestimating the bioavailability of zinc and calcium from foods. Zeitschrift fürLebensmittel-Untersuchung und Forschung,1994,199(6):442-445
    212李元敏.关于人体钙摄入量的最新资料[J].国外医学:药学分册,2002,29(5):266-268
    213Han J, Kim E, Cheong M, et al. Bioavailability and Digestibility of Organic CalciumSources by Bone Health Index. Korean Journal of Nutrition,2010,43(1):12-25
    214Frontela C, Ros G, Martínez C. Phytic acid content and―in vitro‖iron, calcium andzinc bioavailability in bakery products: The effect of processing. Journal of CerealScience,2011,54(1):173-179
    215Persson H, Nair B M, Fr lich W, et al. Binding of mineral elements by some dietaryfibre components—In vitro (II). Food Chemistry,1987,26(2):139-148
    216Weaver C, Heaney R, Nickel K, et al. Calcium bioavailability from high oxalatevegetables: Chinese vegetables, sweet potatoes and rhubarb. Journal of food science,1997,62(3):524-525
    217Siener R, Heynck H, Hesse A. Calcium-Binding Capacities of Different Brans underSimulated Gastrointestinal pH Conditions. In Vitro Study with45Ca. Journal ofagricultural and food chemistry,2001,49(9):4397-4401
    218Weaver C M, Heaney R P, Ahd D T, et al. Wheat Bran Abolishes the InverseRelationship between Calcium Load Size and Absorption Fraction in Women. Journalof nutrition,1996,126(1):303-307
    219Ao J, Li B. Stability and antioxidative activities of casein peptide fractions duringsimulated gastrointestinal digestion in vitro: Charge properties of peptides affectdigestive stability. Food Research International,2013,52(1):334-341
    220Boutrou R, Coirre E, Jardin J, et al. Phosphorylation and Coordination Bond of MineralInhibit the Hydrolysis of the β-Casein (125) Peptide by Intestinal Brush-BorderMembrane Enzymes. Journal of agricultural and food chemistry,2010,58(13):7955-7961
    221杨燊,邓尚贵,秦小明.低值鱼蛋白多肽-钙螯合物的制备和抗氧化,抗菌活性研究[J].食品科学,2008,29(1):202-206
    222夏松养,谢超,霍建聪等.鱼蛋白酶水解物的钙螯合修饰及其功能活性[J].水产学报,2008,32(3):471-477
    223许庆陵,曾庆祝,闫磊等.罗非鱼多肽-锌配合物的制备及其生物活性[J].食品科学,2010,(10):75-80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700