地板用南美龙凤檀无机化改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木材是一种生态环境材料,可再生,是可持续利用的材料。但是,木材本身存在着许多缺陷,如干缩湿胀、耐腐性差、易燃烧等,特别是速生木材的缺陷尤为显著。因此,通过对木材材质的改良,实现木材的高效利用,既具有重要理论价值,同时具有广阔的应用前景。
     本论文正是在这种基础上,选择南美龙凤檀进行无机化改性研究,通过在南美龙凤檀木材微纤丝间隙和纤维的胞腔中沉积纳米二氧化硅制备二氧化硅/木材复合材料,最终达到提高木材的尺寸稳定性、表面硬度、剪切强度、压缩强度和阻燃性性能目的。首先试验比较研究了木材预处理与否、微波干燥和烘箱干燥、溶胶-凝胶法和原位形成法两种二氧化硅引入方法以及性能测试评价方法等。初步的实验表明通过对南美龙凤檀的预先用无水乙醇浸泡处理,而后进行微波干燥处理,放到干燥箱中冷却到室温后放入蒸馏水中浸泡,最后进行木材原位复合处理形成的二氧化硅/木材复合材料物理性能综合表现最好。这是因为乙醇浸泡预处理能够溶出木材中含有的树脂、树胶和其他一些堵塞或半堵塞木材导管和纹孔等木材传导组织的有机物,可以疏通木材的流体通道,提高浸渍效率和阻燃性能;而微波的快速干燥也能够打通更多的连通空隙;这些都有利于更多的二氧化硅通过原位生成的方式填充到木材微纤丝间隙和纤维的胞腔中,从而使处理后木材的综合性能更好。
     随后研究了微波干燥功率、微波干燥时间间隔、微波处理时间和配方等实验参数对二氧化硅/木材性能的影响,确定了最优化实验条件是:微波功率800W,微波干燥时间4min,微波处理时间间隔4min,生成二氧化硅的配方正硅酸乙酯、无水乙醇、冰乙酸摩尔比1:1:0.01。经过最优化条件处理的南美龙凤檀与未处理原木性能相比,吸水率从未处理的7.85%下降到2.16%,表面硬度从428 kgf/mm2提高到了575 kgf/mm2,剪切强度从13.02Mpa提高到18.35Mpa,压缩强度从100.05Mpa提高到128.47Mpa,燃烧后失重率从17.58%下降到5.87%,阴燃时间从99.58秒下降到3.58秒。
     对复合后的样品进行红外分析,观察到了硅氧官能团的振动峰,说明的确有含硅氧成分进入了木材内部;通过高倍光学显微镜和场发射扫面电镜观察,在木材断面的微纤丝间隙和纤维的胞腔中观察到了纳米二氧化硅的颗粒,进一步说明经过实验处理纳米二氧化硅的确沉积在了南美龙凤檀木材微纤丝间隙和纤维的胞腔中,充分解释了二氧化硅无机改性的南美龙凤檀木综合性能提高的原因。
Wood is a environment ecological, renewable material that can be sustainably used. However, there are many defects, such as dry shrinkage and wet expansion, poor decay resistance, and easy to burn. Therefore, the improvement of wood materials will be of defective material for wood, wood materials through improvements in the achievement of the efficient use of timber. Therefore, modification of the timber, not only has important theoretical value, but also has broad application prospects.
     It is in this context, this paper based on the choice of cumaru for modification of inorganic, through the deposition of the nano-silica both the wood and fiber microfibril gap compounded silica / wood composites. Ultimately to improve wood dimensional stability, surface hardness, shear strength, compressive strength and flame retardant. First of all, a comparative researched of the timber pre-treatment, microwave drying and oven drying, the introduction of silica through sol-gel and in situ-forming methods, and evaluation methods such as performance testing. Preliminary experiments showed that the cumaru was soaking with ethanol, microwave drying and then put in drier after cooling to room temperature, soaked in distilled water, finally to the formation silicon dioxide/wood composite material, physical properties of the best overall performance. This is due to the dissolution of ethanol pretreatment soaking timber containing the resins, gums and other wood plug or semi-plugged ducts and pits organizations, such as organic conductive timber, the fluid timber can be clear-channel and improve the efficiency of impregnation; Rapid microwave drying can also open up more gaps in connectivity; these are more conducive to in situ generated silica way through the wood filler and fiber microfibril gap in the cell, so that the treated wood better overall performance.
     Then studied the power of microwave drying, microwave drying time and interval, microwave formula, experimental parameters on the silicon dioxide / wood properties to determine the optimal experimental conditions are: microwave power of 800W, microwave processing time interval 4min, microwave processing time 4min, TEOS:ETOH:CH3COOH=1:1:0.01. After the optimum conditions to deal with the cumaru performance compared with the untreated wood, water absorption fell from 7.85% to 2.16%, the surface hardness increased from 428 kg/mm2 to 575 kg/mm2, shear strength from 13.02Mpa to 18.35Mpa, compressive strength from 100.05Mpa to 128.47Mpa, combustion weight loss rate dropped from 17.58% to 5.8%, flameless combustion time dropped from 99.58s to 3.58s.
     After the composite infrared analysis of samples, observed in Si-O vibration peaks of functional groups that have silicon and oxygen composition within the timber; Through high-optical microscope and SEM, in the timber section of the microfibril and fiber space cell observed nano-silica particles. The further experiments are indeed nano-silica deposited on the cumaru microfibril and fiber space cell. So we can explaine that the cumaru by modification of inorganic improved physical properties.
引文
1.国家林业局森林资源管理司.第六次全国森林资源清查及森林资源状况.绿色中国.2005, (2): 10~12
    2.符韵林,赵广杰.二氧化硅/木材复合材料的微细构造和物性.北京林业大学博士论文.2006, 6: 3~15
    3.王国光,水森,岳林海.X射线衍射分析非晶二氧化硅结构及其物化性质的研究.无机化学学报.2002, 18(10): 991~996
    4. W.Stober, A.Fink. Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science. 1968, 26: 62~69
    5. David Lawrence Green.The Dynamics of Nanophase Formation During Stober Silica Synthesis. University of Maryland. Doctor. 2001, 1: 1~7
    6.江泽慧,彭镇华.世界主要树种木材科学特性.2001, 9: 103~205
    7.彭海源,崔永志,孙铁华等.速生杨木增硬处理初报.东北林学院学报.1985, 13(l): 144~148
    8.邱玉玲,董岩,姜日顺.稀土改性杨木材质初探.东北林业大学学报.1993, 21(l): 85~89
    9.周平,张志毅,梁树平.毛白杨无机复合木材研究.北京林业大学学报.2000, 22(6): 39~42
    10. Furuno T, Uehara T, JodaiS. Impregnation by water glass and application of aluminum sulfate and calcium chloride as reacts.Combination of wood and silicate.1991, 37(5): 462~472
    11. Furuno T, Shimada K, Uehara T, etal. Water-mineral composite using water glass. Combination of wood and silicate II. 1992, 38(5): 448~457
    12.陈小兵,余双平,邓淑华等.纳米粉体干燥方法的研究进展.无机盐工业.2004, 36(1): 7~9
    13.陈志林,王群,左铁铺,等.无机质复合木材的复合工艺与性能.复合材料学报, 2003, 20(4): 128~132
    14.陈志林.陶瓷化复合木材复合方法与性能的基础性研究.北京工业大学.2003, 30~35
    15.符连社,张洪杰,邵华等.溶胶-凝胶法及其在生物材料方面的应用.化学通报, 1998, 12: 26~31
    16.符韵林,赵广杰,全寿京.二氧化硅/木材复合材料的微细构造与物理性能.复合材料学报.2006, (b): 30~35
    17.符韵林,赵广杰.二氧化硅/木材复合材料的晶胞与Martix区域的变化.材料科学与工艺.2006, 20~25
    18.符韵林,赵广杰.木材/二氧化硅复合材料的微细构造.北京林业大学学报.2006, (a): 15~20
    19.符韵林,赵广杰.溶胶-凝胶法在木材/无机纳米复合材料上的运用.林产工业.2005, 32(l): 6~9
    20.甘国友,郭玉忠,苏云生.溶胶-凝胶法薄膜制备工艺及其应用.昆明理工大学学报.1997, 22(l): 142~145
    21.高朋召,王红洁,金志浩.SiO2溶胶-凝胶转变过程的动力学研究及应用.复合材料学报.2003, 20(4): 122~127
    22.陈同来,陈铮.催化方式和水硅比对正硅酸乙酯的溶胶凝胶过程的影响.华东船舶工业学院学报(自然科学版).2003, 17(3): 62~65
    23.过梅丽.高聚物与复合材料的动态力学热分析.北京化学工业出版社.2002, 10~12
    24.黄智华,丘坤元.溶胶-凝胶化学与无机有机杂化高聚物材料的合成.大学化学.1995, 10(5): 1~6
    25.李坚,邱坚.生物矿化原理与木材纳米复合材料.林业科学.2005, 41(1): 189~193
    26.廖秋霞,卢灿辉,许晨.原位溶胶-凝胶制备木材-PMMA-SiO2复合材料及其显微结构.福建化工.2001, 21~23
    27.林健.催化剂对正硅酸乙酯水解-聚合机理的影响.无机材料学报.1997, 12(3): 363~369
    28.吕宁.溶胶-凝胶法制备木材/无机复合材料.北京林业大学.2004, 60~80
    29.吕文华,赵广杰.木材蒙脱土(MMT)纳米插层复合材料的制备构想.林业科学.2005, 41 (l): 181~188
    30.邱坚,李坚.超临界干燥制备木材-SiO2气凝胶复合材料及其纳米结构.中国林学会木材科学分会第九次学术研讨会论文集.哈尔滨, 2004
    31. AustU, MoritZ T, PoPPU. Direct synthesis of ceramic membranes by sol-gel process. Journal of sol-gel science and technology.2003,26(l/3): 715~720
    32. BemardsT.N.M, Van Bommel M.J, Janesn, J.A.J. The effect of HF in a Two-Step Sol-Gel Process of TEOS. Journal of sol-gel Science and technology.1998, 13(l/3): 749~752
    33. Masayuki, Nogmai. Sol-Gel Process of TEOS. Journal of non-cryst solids.1985, 69(2~3): 415
    34. MiyafujiH, Sakas. Fire-resisting properties in several TiO2 wood-inorganic composites and their chemistry. Wood Seience&Technology.1997, 31(6): 449~455
    35. MiyafujiH, SakaS. Wood-Inorganic Composites prepared by the sol-gel Process.VFive-resisting Properties of the wood-.inorganic composites. MokuZaiGakkaishi.1996, 42(l): 74~80
    36. OgisoK, SkaaS. Effects of ultrasonic treatments on preparation of wood-inorganic composite. Wood-Inorganic Composite. Mokuzai Gakkaishi.2006, 39(3): 301~307
    37. Rietveld H.M. Sol-Gel Process of TEOS. Journal of applied Crystallography.1999, 3: 65~71
    38. Rietveld .H.M. Sol-Gel Process of TEOS. Journal of Cryst.1997, 22: 151~152
    39. W.Stober, A.Fink. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. Journal of Colloid and Interface Science. 1968, 26: 62~69
    40. David Lawrence Green. The Dynamics of Nanophase Formation During Stober Silica Synthesis. University of Maryland. Doctor. 2001, 3: 1~7
    41.张坤.二氧化硅均匀颗粒的制备及其胶体颗粒的组装.华东师范.硕士论文. 2005, 2: 9~24
    42. T.Matsoukas, E.Gulari. Dynamics of Growth of Silica Particle from Ammonia-Catalyzed Hydrolysis of Tetra-ethyl-orthosilicate. Jounal of Colloid and Interface Science. 1988, 124(1): 252~261
    43. T.Matsoukas, E.Gulari. Monomer-addition Growth with a Slow Initiation Step: A Growth Model for Silica Particles from Alkoxides. Jounal of Colloid and Interface Science. 1989, 132(1): 13~21
    44. G..H.Bogush, C.F.Zukoski. Preparation of Monodisperse Silica Particles: Control of Size and Mass Fraction. Jounal of Colloid and Interface Science. 1988, 104: 95~106
    45. G..H.Bogush, C.F.Zukoski. Studies of the Kinetics of the Precipitation of Uniform Silica Particles through the Hydrolysis and Condensation of Silicon Alkoxides. Jounal of Colloid and Interface Science. 1991, 142(1): 1~18
    46. G..H.Bogush, C.F.Zukoski. Uniform Silica Particle Precipitation:an Aggregative Growth Model. Jounal of Colloid and Interface Science. 1991, 142(1): 19~34
    47. A.V.Bladderen, J.V.Geest. Monodisperse Colloidal Silica Spheres From Tetraalkoxysilanes: Particle Formation and Growth Mechanisam. Jounal of Colloid and Interface Science. 1992, 154(2): 481~501
    48. Herbert Giesche. Synthesis of Monodispersed Silica Powders I: Particle Properties and Reaction Kinetic. Journal of the European Ceramic Society. 1994, 189~205
    49. Sridhar Sadasivan. Alcoholic Solvent Effect on Silica Synthesis-NMR and DLS Investigation. Journal of Sel-Gel Science and Technology. 1998, 12: 5~14
    50. A.N.Sathyagal, A.V.McCormick. Effect of Nucleation Profile on Particle-Size Distribution. AICHE Jounal. 1998, 44(10): 2312~2322
    51. Daisuke Nagao, Yoshinori Kon. Electrostatic Interactions in Formaiton of Particles from Tetraethyl Orthosilicate. Jounal of Chemical Engineering of Japn. 2000, 33(3): 468~473
    52. Hacene Boukari. Polydispersity during the Formation and Growth of the Stober silica Particles from Small-Angle X-Ray Scattering Measurements. Journal of Colloid and Interface Science.2000, 229: 129~139
    53. D.L.Green. Volume Fraction and Nucleation of Stober Silica Nanoparticles. Journal of Colloid and Interface Science. 2003, 266: 346~358
    54.赵瑞玉,董鹏.单分散SiO2体系制备中TEOS水解动力学研究.物理化学学报. 1995, 11(7): 616~617
    55. Herbert Giesche. Synthesis of Monodispersed Silica Powders II-Controlled Growth Reaction and Continuous Production Process. Journal of the European Ceramic Society. 1994, 205~214
    56. Paul A.Buinig. A Simple Preparation of Small, Smooth Silica Spheres in a Seed Alcosol for Stober Synthesis. Journal of Colloid and Interface Science. 1996, 179: 318~321
    57. E.Mine, M.Konno. Secondary Particle Generation at Low Monomer Concentrations in Seeded Growth Reaction of Tetraethyl Orthosilicate. Journal of Chemical Engineering of Japan. 2001, 34(4): 545~548
    58.王洁瑛,赵广杰,杨琴玲等.饱和水气干状态杉木的压缩成型及其热处理永久固定.北京林业大学学报.2000, 22(l): 72~75
    59.王洁瑛,赵广杰.空气介质热处理杉木压缩木材的蠕变.北京林业大学学报.2002, 24(2): 52~58
    60.王西成,程之强,莫小洪等.木材/二氧化硅原位复合材料的界面研究.材料工程.1998, (5): 16~18
    61.王西成,程之强等.陶瓷化木材的化学方法.材料研究学报.2000, 14(1): 51~55
    62.王西成,田杰.陶瓷化木材的复合机理.材料研究学报.1996, 10(4): 435~439
    63.徐莉.正硅酸乙酯溶胶~凝胶过程中催化剂的作用.南京林业大学学报.1998, 22(4): 67~70
    64.曾庆冰,李效东,陆逸.溶胶~凝胶法基本原理及其在陶瓷材料中的应用.高分子材料科学工程.1998, 14(2): 138~143

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700