P(NIPAM-co-AA)水凝胶基无机/有机纳米复合材料的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物基有机/无机纳米复合材料的组装以及相关的纳米技术在制备新型纳米复合材料中越来越受到研究者的关注。这是由于纳米无机物与聚合物基体之间的协同作用使得聚合物基复合材料把无机物的光、电、热等特性与高分子材料的韧性、易加工性、电绝缘性等性能巧g/k地结合起来,使材料既具有无机材料的优点(如刚性、高模量、尺寸稳定性、高热稳定性和特殊的光电磁性能等)又具有高分子材料的优点(如弹性、延展性、韧性、电绝缘性、易加工性等)。而且由于无机粒子在高分子基体中是以纳米粒子的形式均匀分布的,所以这种纳米复合材料在力学、热学、电学、光学、非线性光学等领域具有一定的应用。复合材料的性能在很大程度上取决于分散相尺寸和两相之间的界面作用,为了增强复合材料中各组分之间的相互作用,将一个或多个组分以纳米尺寸或分子水平均匀分散在另一组分的基体中,得到所谓的复合材料。复合材料的性质比相应的常规材料有了较大的改善,甚至表现出全新的性质。
     在制备有机/无机复合材料的诸多方法中,原位聚合法是目前较为可行的一种。原位聚合法可在温和条件下进行,可使两相分散均匀。该技术的实质是利用聚合物单体在外力作用下,如氧化、电、热、光、辐射、引发等,原位产生聚合或共聚,使得某一种或多种物质均匀分散在聚合物基体中,形成纳米复合材料。原位聚合技术的优点是:(1)制备工艺简单;(2)可制备较多体系的复合材料;(3)第二相或增强相表面洁净,分散均匀,相种类多,体积分数高;(4)可以制备金属或者陶瓷为第二相或增强相的聚合物基复合材料。
     基于以上研究背景基础上,本文采用溶胶-凝胶法制备了纳米TiO_2,研究了以PNIPAM、P(NIPAM-co-AA)为聚合物基体,先后以纳米TiO_2、无机粘土Clay为无机增强相,在引发剂作用下采用原位聚合法合成了几种聚合物基无机/有机纳米复合材料,主要研究内容包括以下三个方面:
     (1)以钛酸四丁酯为前驱物,冰醋酸为整合剂,盐酸作催化剂,乙醇作溶剂,采用溶胶-凝胶法制备了纳米TiO_2粉体,对TiO_2胶凝过程以及溶胶-凝胶转变机理进行了研究,初步探讨了影响溶胶-凝胶的实验因素。并且使用硅烷偶联剂对纳米TiO_2进行表面改性,使纳米TiO_2与偶联剂上的硅羟基缩聚形成Si-O-Ti键,从而将纳米TiO_2以化学健的形式引入至TiO_2/PNIPAM复合反应中。扫描电镜与透射电镜结果表明纳米TiO_2粒径均一、分散性良好;红外光谱显示硅烷偶联剂已经成功接枝到纳米TiO_2表面上;能谱分析结果证明了元素组成符合TiO_2的成分组成:XRD图谱显示了纳米TiO_2在不同温度下具有明显的晶型转变。
     (2)以PNIPAM为聚合物基体,表面经硅烷偶联剂改性后的纳米7i02为无机组分,在引发剂过硫酸氨(APS)引发作用下采用原位聚合法制备了不同纳米7i02含量的7i02/聚N-异丙基丙烯酰胺复合水凝胶。采用红外光谱、扫描电镜、紫外光谱、热重分析、动态粘弹谱仪(DMA)等表征了复合水凝胶的微观结构和形貌,测试了复合凝胶材料对紫外线的吸收、热稳定性、机械强度及其韧性。紫外吸收结果表明,纳米TiO_2粒子的引入,使得复合凝胶材料对紫外线吸收效果显著;热重分析测试显示了凝胶的热稳定性得到提高;DMA测试说明了复合凝胶的机械强度及其韧性得到明显改善。
     (3)以P(NIPAM-co-AA)为聚合物基体,无机粘土Clay为增强相,合成了一系列具有高吸水性和优异机械强度等性能的P(NIPAM-co-AA)/Clay复合水凝胶。利用粘土片层间阳离子的水化作用,使粘土的晶层结构在水中发生分离,其水分散体系与聚合物乳液均匀混合,晶层和聚合物乳液的粒子相互穿插,产生强烈的静电作用,从而形成纳米复合凝胶。其中,粘土取代传统有机交联剂BIS而扮演了无机组分和交联剂的双重角色,采用DMA、SEM、TG/DSC、IR和XRD等手段对复合凝胶进行了表征和测试。XRD曲线和IR光谱表明了粘土片层已被共聚物链段插层和剥离,形成了“三明治”插层结构,粘土片均匀分散在共聚物基质中;电镜照片显示了共聚物基质孔道更加密集,且孔道分散均匀;溶胀测试结果表明,随着粘土的加入,复合凝胶的溶胀度并没有受到很大影响,与传统共聚凝胶相比,甚至略有增加;机械性能测试结果说明,复合凝胶具有优异的机械强度和韧性,其模量随着粘土含量的增加而逐渐增大;同样,复合凝胶的热稳定性大大增强,TG/DSC曲线都表明了复合凝胶的热分解温度和熔点随着粘土含量的增加都有不同程度的提高,这归因于粘土与共聚物链段之间的作用并最终形成的插层结构。
Assembly of inorganic-organic nanocomposites and relative nanotechnology have taken great advantage in the synthesis of novel nanocomposites and therefore aroused increasing attention among researchers.Due to the synergism of the polymer matrix and nanoinorganics,polymer based composites combined the advantages of the inorganic materials(rigidity,high module,good dimension stability,high thermal stability,unique optical property,electronic and magnetic properties) and the organic polymers(flexibility,ductility,electrical insulation,toughness and processability),which are different from the single material and conventional composite materials. Moreover,these polymer based organic/inorganic nanocomposites have potential application in mechanical,thermal,electronic,optical,and nanolinear optical fields because the inorganic particles are well dispersed in polymer matrix in nanometer scale.The properties of composite were extremely determined by the dispersed particle size and the interracial action among the components in the nanocomposites,in order to increase the interfacial action among the components in the nanocomposites,the dispersion phase dimension was desired for nanometer level or molecule level. The properties of nanocomposites were improved greatly for the fine dispersion structure and strong interfacial interaction,even they owned some new special properties.
     In-situ polymerization is probablely a feasible method to prepare the inorganic-organic nanocomposite for its convenient condition and two phases could disperse homogeneously in composite system.The substance of the mentioned technic is polymerization or copolymerization happened during the monomers via external stimulation such as oxygenation,electricity,heat,ray, radiation and initiation.The superiorities of the in-situ polymerization are as follows:the first advantage is that the technic of preparation is simple,the second one is that this technic can be used to prepare the nanocomposites of the multi-system components,the third one is its variety types, uniform dispersion,lustration surface and high volume content of the second phase or enhanced phase in composite system,besides the forenamed merits,it is also can be applied for preparing the nanocomposite based on polymer matrix by using metal or ceramic as enhanced phase.
     Based upon above studies,in this thesis,we have prepared several kinds of polymer/inorganic nanocomposites,which are composed of PNIPAM,P(NIPAM-co-AA) as polymer matrix and nano TiO_2,Clay as enhanced phase via in-situ polymerization respectively.The thesis mainly includes following three parts:
     (1) Nano TiO_2 powder was prepared via sol-gel route,using TBT as precursor,HAc as chelated reagent,HCI as catalyzer,ethanol as solvent,also the mechanism of sol-gel route and the influenced preparation factors were discussed.The silane coupler was used to modify the surface of nano TiO_2, and the modified nano TiO_2 can be bond to the polymer by Si-O-Ti bond with the help of Si-OH of silane coupler.The SEM and TEM micrographs showed that the size of the nano TiO_2 particles dispersed uniformly and their distribution of particle size was really narrow.The IR spectrum revealed the Si-O-Ti bond between nano TiO_2 and silane coupler was formed.EDX results exhibited that the product was what we desired.XRD curves indicated the crystalloid of TiO_2 was affected mainly by the calcine temperature.
     (2) The composite hydrogels of poly(N-isopropylacrylamide)(PNIPAM) with nano-TiO_2 were prepared with PNIPAM as polymer matrix and nano TiO_2 as enhanced phase by the coupling copolymerization between PNIPAM and the pre-treated nano-TiO_2 particles with a silane coupling agent.The N,N' -methylene bisacrylamide was used as crosslinking agent.The morphology,optical and mechanical properties of the composite hydrogels were studied by SEM,UV-VIS,FT-IR,and Dynamic Mechanical Analysis(DMA) method,respectively.The UV results showed that the composite hydrogels had a good absorption of UV,and TG curves revealed the thermal stability of nanocomposite increased largely,more over,their mechanical strength and toughness were improved markedly through DMA tests.
     (3) A series of P(NIPAM-co-AA)/Clay nanocomposite hydrogels(abbreviated as NAC) with high swelling ratio and excellent mechanical strength were prepared with PfNIPAM-co-AA) as polymer matrix,inorganic clay as enhanced phase via in-situ polymerization,and their characterization were tested by DMA,SEM,TG/DSC,IR and XRD.During the preparation process, the clay dispersed uniformly in water via the hydration of the cation between the layers,the separated layers penetrated further with polymer matrix,then the nanocomposite hydrogels were formed.In unique NAC gels network,the inorganic clay acted as a multifunctional crosslinker in place of an organic cross-linker(BIS) used in OR gels.The NAC gels exhibited excellent swelling ratio and it had no detectable change as altering the clay concentration,while the swelling ratio of NAC decreased slightly when the clay concentration was up to 25 wt%,which was consistent with the conclusion of SEM micrographs.XRD curves and IR spectrums showed that the clay was exfoliated and intercalated by copolymers,and the sandwich structure was formed.Furthermore, DMA results revealed the composite hydrogel had an excellent mechanical strength in a wide range of clay concentration,while the hydrogel moduli was improved with increasing clay concentration.
引文
[1] X. L. Hu, J. C. Yu, J. M. Gong. Facile Decoring Route to Carbon Nano Test Tubes[J]. J. Phys. Chem. C 2007,111(16): 5830-5834.
    [2] C. C. Hsieh, K. F. Lin, A. T. Chien. Fabrication of PEO_(17)-OPV_3 Templated Titania Nano-Hollow Rods and Their Aggregating Microspheres[J].Macromolecules 2006, 39(8): 3043-3047.
    [3] M. Zhang, M. Yudasaka, S. Iijima. Dissociation of Electrolytes in a Nano-aqueous System within Single-Wall Carbon Nanotubes[J]. J. Phys. Chem. B 2005,109(13): 6037-6039.
    [4] Y. S. Zhang, L. S. Wang, X. H. Liu, Y. J. Yan. Synthesis of Nano/Micro Zinc Oxide Rods and Arrays by Thermal Evaporation Approach on Cylindrical Shape Substrate[J]. J. Phys. Chem. B 2005,109(27): 13091-13093.
    [5] L. Nicholas, M. Sudhir, X. J. Wang, D. Amala. Stresses at the Interface of Micro with Nano[J]. J. Am. Chem. Soc. 2007,129(35): 10660-10661.
    [6] S. M. Lee, Y. W. Jun, S. N. Cho, J. W. Cheon. Single-Crystalline Star-Shaped Nanocrystals and Their Evolution: Programming the Geometry of Nano-Building Blocks[J]. J. Am. Chem. Soc. 2002,124(38): 11244-11245.
    [7] H. M. Huang, J. N. Anker, K. M. Wang, R. Kopelman. Magnetically Assisted and Accelerated Self-Assembly of Strawberry-like Nano/Microparticles[J]. J. Phys.Chem. B 2006,110(40): 19929-19934.
    [8] M. Taleb, S. Hanan, A. Assaf, E. Yuval. Nano @ micro: General Method for Entrapment of Nanocrystals in Sol-Gel-Derived Composite Hydrophobic Silica Spheres[J]. Chem. Mater. 2005,17(2): 258-263.
    [9] C. C. Chang, S. J. Liu, J. J. Wu, C. H. Yang. Nano-tin Oxide/Tin Particles on a Graphite Surface as an Anode Material for Lithium-Ion Batteries[J]. J. Phys.Chem. C 2007,111(44): 16423-16427.
    [10] K. Kishimoto, T. Suzawa, T. Yokota, T. Mukai. Nano-Segregated Polymeric Film Exhibiting High Ionic Conductivities[J]. J. Am. Chem. Soc. 2005, 127(44):15618-15623.
    [11] X. H. Wang, Y. C. Zhou. Stability and Selective Oxidation of Aluminum in Nano-Laminate Ti_3AlC_2 upon Heating in Argon[J]. Chem. Mater. 2003, 15(19):3716-3720.
    [12] A. Masuda, K. Ushida, H. Koshino, K. Yamashita, T. Kluge. Novel Distance Dependence of Diffusion Constants in Hyaluronan Aqueous Solution Resulting from Its Characteristic Nano-Microstructure[J]. J. Am. Chem. Soc. 2001, 123(46):11468-11471.
    [13] G. Bokias, Y.Mylonas. Association of Positively Charged Copolymers Based on N-Isopropylacrylamide with Hydrophobically Modified Poly(sodiumacrylate) in Water[J]. Macromolecules 2001,34(4): 885-889.
    [14] J. S. Kim, S. Nayak, L. Andrew Lyon. Bioresponsive Hydrogel Microlenses[J]. J.Am. Chem. Soc. 2005,127(26): 9588-9592.
    [15] G. M. Liu, G. Z. Zhang. Collapse and Swelling of Thermally Sensitive Poly(N-isopropylacrylamide) Brushes Monitored with a Quartz Crystal Microbalance[J]. J. Phys. Chem. B 2005,109(2): 743-747.
    [16] J. F. Lutz, O. Akdemir, A. Hoth. Point by Point Comparison of Two Thermosensitive Polymers Exhibiting a Similar LCST: Is the Age of Poly(NIPAM) Over?[J]. J. Am. Chem. Soc. 2006,128(40): 13046-13047.
    [17] X. P. Qiu, C. Wu. Study of the Core-Shell Nanoparticle Formed through the "Coil-to-Globule" Transition of Poly(N-isopropylacrylamide) Grafted with Polyethylene oxide)[J]. Macromolecules 1997, 30(25): 7921-7926.
    [18] H. Ritter, O. Sadowski, E. Tepper. Influence of Cyclodextrin Molecules on the Synthesis and the Thermoresponsive Solution Behavior of NIsopropylacrylamide Copolymers with Adamantyl Groups in the Side-Chains[J]. Angew. Chem. Int. Ed.2003,42:3171-3173.
    [19] G. Shchukin Dmitry, B. Sukhorukov Gleb, H. Mohwald. Smart Inorganic/Organic Nanocomposite Hollow Microcapsules[J]. Angew. Chem. Int. Ed. 2003, 42:4472-4475.
    [20] I. Gill, A. Ballesteros. Immunoglobulin-Polydiacetylene Sol-Gel Nanocomposites as Solid-State Chromatic Biosensors[J]. Angew. Chem. Int. Ed. 2003, 42:3264-3267.
    [21]V.Ginzburg Valeriy,K.Myers,S.Malowinski,R.Cieslinski.High-Dielectric-Constant Self-Assembled Nodular Structures in Polymer/Gold Nanoparticle Films[J].Macromolecules 2006,39(11):3901-3906.
    [22]Z.X.Zhang,J.S.van Duijneveldt.Effect of Suspended Clay Particles on Isotropic-Nematic Phase Transition of Liquid Crystal[J].Soft Matter 2007,3:596-604.
    [23]K.M.Lee,C.D.Han.Rheology of Organoclay Nanocomposites:Effects of Polymer Matrix/Organoclay Compatibility and the Gallery Distance of Organoclay[J].Macromolecules 2003,36(19):7165-7178.
    [24]K.Murata,K.Haraguchi.Optical Anisotropy in Polymer-Clay Nanocomposite Hydrogel and Its Change On Uniaxial Deformation[J].J.Mater.Chem.2007,17:3385-3388.
    [25]P.Podsiadlo,Z.Q.Liu,D.Paterson,P.B.Messersmith,N.A.Kotov.Fusion of Seashell Nacre and Marine Bioadhesive Analogs:High-Strength Nanocomposite by Layer-by-Layer Assembly of Clay and _L-3,4-Dihydroxyphenylalanine Polymer[J].Adv.Mater.2007,19:949-955.
    [26]C.C.Esposito,P.Prinari,D.Carmoletta,G.Mensitieri,A.Maffezzoli.Synthesis and Characterization of Clay-Nanocomposite Solvent-Based Polyurethane Adhesives[J].International Journal of Adhesion & Adhesives 2008,28:91-100.
    [27]K.Haraguchi,H.J.Li,L.Y.Song,K.Murata.Tunable Optical and Sweliing/Deswelling Properties Associated with Control of the Coil-to-Globule Transition of Poly(N-isopropylacrylamide) in Polymer-Clay Nanocomposite Gels[J].Macromolecules 2007,40(19):6973-6980.
    [28]孙明卓,柯扬船,王皓.MMT/SiO_2复合载体制备聚乙烯纳米复合材料的探索研究[J].高分子材料科学与工程,2006,22(5):249-254.
    [29]史铁钧,吴德峰,王华林,徐鼐,任强,周亚斌.溶液聚合制聚丙烯酰胺/蒙脱土纳米复合材料[J].高分子材料科学与工程,2003,19(6):62-65.
    [30]任强,周亚斌,王华林,翟林峰.丙烯酸-丙烯酰胺原位插层共聚制备高吸水性蒙脱土纳米复合材料的研究[J].功能高分子学报,2003,16(4):469-475.
    [31]V.P.Cyras,L.B.Manfredi,M.T.Ton-That,A.Vazquez.Physical and Mechanical Properties of Thermoplastic Starch/Montmorillonite Nanocomposite Films[J].Carbohydrate Polymers 2008,73:55-63.
    [32]杨勇,朱子康,漆宗能.溶胶-凝胶法制备可溶性聚酰亚胺二氧化硅纳米复合 材料的研究及溶胶-凝胶转变过程和反应机理的研究[J].功能材料,1999,30(1):78-81.
    [33]张晶波,范勇,衷敬和,王芳.聚酰亚胺/氧化硅/氧化铝纳米复合薄膜的制备及性能研究[J].绝缘材料,2005,1:9-13.
    [34]X.M.Song,X.X.Wang,H.T.Wang,W.Zhong,Q.G.Du.PMMA-Silica Hybrid Thin Films with Enhanced Thermal Properties Prepared via a Non-Hydrolytic Sol-Gel Process[J].Materials Chemistry and Physics 2008,109:143-147.
    [35]J.C.Lin.Investigation of Impact Behavior of Various Silica-Reinforced Polymeric Matrix Nanocomposites[J].Composite Structures 2008,84:125-131.
    [36]X.F.Ding,D.X.Han,Z.J.Wang,X.Y.Xu,L.Niu,Q.Zhang.Micelle-Assisted Synthesis of Polyaniline/Magnetite Nanorods by in situ Self-Assembly Process[J].Journal of Colloid and Interface Science 2008,320:341-345.
    [37]D.Maier,A.B.Kulakov.In Situ Investigation of Phase Equilibria and Growth Mechanisms of Compositions near the Bi_2Sr_2Ca_2Cu_3O_x Stoichiometry by High-Temperature Optical Microscopy[J].Crystal Growth & Design 2005,(5):1751-1754.
    [38]C.Wang,N.T.Flynn,R.Langer.Controlled Structure and Properties of Thermoresposive Nanoparticle-Hydrogel Composites[J].Adv.Mater.2004,16(13):1074-1079.
    [39]Y.Lu,Y.Mei,M.Schrinner,M.Ballauff,M.W.Molller,J.Breu.In Situ Formation of Ag Nanoparticles in Spherical Polyacrylic Acid Brushes by UV Irradiation[J].J.Phys.Chem.C 2007,11127:7676-7681.
    [40]欧玉春,方晓萍,郭庭泰,冯宇鹏.高性能聚合物刚性粒子复合材料制备的新技术[J].工程塑料应用,2001,29(12):8-11.
    [41]Y.Zhou,L.Y.Hao,S.H.Yu,M.You,Y.R.Zhu,Z.Yao,Z.Y.Chen.A Novel in Situ Simultaneous Copolymerization-Decomposition Technique for Fabrication of Poly(acrylamide-co-styrene)-Semiconductor CdE(E=S,Se) Nanorod Nanocomposites[J].Chem.Mater.1999,11(12):3411-3413.
    [42]M.Abdullah,L.I.Wuled,K.Okuyama.In Situ Synthesis of Polymer Nanocomposite Electrolytes Emitting a High Luminescence with a Tunable Wavelength[J].J.Phys.Chem.B 2003,107(9):1957-1961.
    [43]黄文勇,庞浩,廖兵.聚氨酯/蒙脱土纳米复合弹性体材料-(I)聚醚多元醇插层蒙脱土影响因素的研究[J].高分子材料科学与工程,2005,21(1):190-193.
    [44]金星,戚嵘嵘,周持兴.原位插层聚合法制备聚苯乙烯-蒙脱土纳米复合材料[J].高分子材料科学与工程,2005,21(4):125-108.
    [45]李明,李元庆,付绍云。蒙脱土/二氧化钛/聚酰亚胺纳米杂化薄膜低温力学及热稳定性能研究[J].复合材料学报,2006,23(1):69-75.
    [46]Z.A.Kusmono,I.Mohd,W.S.Chow,T.Takeichi,Rochmadi.Influence of SEBS-g-MA on Morphology,Mechanical,and Thermal Properties of PA6/PP/Organoclay Nanocomposites[J].European Polymer Journal 2008,44:1023-1039.
    [47]W.R.Mariott,X.E.Y.Chen.Stereochemically Controlled PMMA-Exfoliated Silicate Nanocomposites Using Intergallery-Anchored Metallocenium Cations[J].J.Am.Chem.Soc.2003,125(51):15726-15727.
    [48]V.Bekiari,K.Pagonis,G.Bokias,P.Lianos.Study of Poly(N,-N'-dimethylacrylamide)/CdS Nanocomposite Organic/inorganic Gels[J].Langmuir 2004,20(19):7972-7975.
    [49]王云普,袁昆,裴小维.聚N-异丙基丙烯酰胺/纳米SiO_2复合水凝胶的合成[J].高分子学报,2005,(4):584-589.
    [50]姜宇,刘守信,房喻,王忆娟.纳米TiO_2/聚N-异丙基丙烯酰胺复合水凝胶的合成及其表征[J].化学学报,2007,65(21):2437-2442.
    [51]C.P.Davide,R.Comparelli,E.Fanizza,M.Lucia Curri,A.Agostiano,D.Laub.Photocatalytic Synthesis of Silver Nanoparticles Stabilized by TiO_2 Nanorods:A Semiconductor/Metal Nanocomposite in Homogeneous Nonpolar Solution[J].J.Am.Chem.Soc.2004,126(12):3868-3879.
    [52]J.Mijovic,H.K.Lee,J.Kenny,J.Mays.Dynamics in Polymer-Silicate Nanocomposites As Studied by Dielectric Relaxation Spectroscopy and Dynamic Mechanical Spectroscopy[J].Macromolecules 2006,39(6):2172-2182.
    [53]潘伟,翟普,刘立志.SiO_2纳米粉对碳黑/硅橡胶复合材料的压阻阻温特性的影响[J].材料研究学报,1997,11(4):397-401.
    [54]M.Jarn,S.Areva,V.Pore,J.Peltonen,M.Linden.Topography and Surface Energy Dependent Calcium Phosphate Formation on Sol-Gel Derived TiO_2Coatings[J].Langmuir 2006,22(19):8209- 8213.
    [55]V.Subramanian,E.E.Wolf,P.V.Kamat.Catalysis with TiO_2/Gold Nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration[J].J. Am. Chem. Soc. 2004,126(15): 4943-4950.
    [56] E. M. Moreno, M. Zayat, M. P. Morales, C. J. Serna, A. Roig, D. Levy.Preparation of Narrow Size Distribution Superparamagnetic γ-Fe_2O_3 Nanoparticles in a Sol-Gel Transparent SiO_2 Matrix[J]. Langmuir 2002, 18(12):4972-4978.
    [57] K. Kanie, A. Muramatsu. Organic-Inorganic Hybrid Liquid Crystals:Thermotropic Mesophases Formed by Hybridization of Liquid-Crystalline Phosphates and Monodispersed α-Fe_2O_3 Particles[J]. J. Am. Chem. Soc. 2005,127(33): 11578-11579.
    [58] H. Bryngelsson, J. Eskhult, L. Nyholm, M. Herranen, O. Aim, K. Edstrom.Electrodeposited Sb and Sb/Sb_2O_3 Nanoparticle Coatings as Anode Materials for Li-Ion Batteries[J]. Chem. Mater. 2007,19(5): 1170-1180.
    [59] M. Okamoto, P. H. Nam, P. Maiti, T. Kotaka, N. Hasegawa, A. Usuki. A House of Cards Structure in Poly(propylene)/Clay Nanocomposites under Elongational Flow[J]. Nano Lett. 2001,1(6): 295-298.
    [60] H. Eckert, M. Ward. Controlling the Length Scale through "Soft" Chemistry:From Organic-Inorganic Nanocomposites to Functional Materials[J]. Chem.Mater. 2001,13(10): 3059-3060.
    [61] L. F. O. Furtado, A. D. P. Alexiou, L. Goncalves, H. E. Toma, K. Araki.TiO_2-Based Light-Driven XOR/INH Logic Gates[J]. Angew. Chem. Int. Ed. 2006,45: 3143-3146.
    [62] D. V. Bavykin, J. M. Friedrich, F. C. Walsh. Protonated Titanates and TiO_2 Nanostructured Materials: Synthesis, Properties, and Applications[J]. Adv. Mater.2006,18: 2807-2824.
    [63] S. Yoo, S. A. Akbar, K. H. Sandhage. Nanocarving of Bulk Titania Crystals into Oriented Arrays of Single-Crystal Nanofibers via Reaction with Hydrogen-Bearing gas[J]. Adv. Mater. 2004,16(3): 260-264.
    [64] P. A. Van Hal, M. M. Wienk, J. M. Kroon, W. J. H. Verhees. Photoinduced Electron Transfer and Photovoltaic Response of a MDMO-PPV: TiO_2 Bulk-Heterojunction[J]. Adv. Mater. 2003, 15(2): 118-121.
    [65]H.S.Yun,K.Miyazawa,H.Zhou,I.Honma,M.Kuwabara.Synthesis of Mesoporous Thin TiO_2 Films with Hexagonal Pore Structures Using Triblock Copolymer Templates[J].Adv.Mater.2001,13(18):1377-1380.
    [66]Y.J.Sawada,K.Matsumoto,S.Kondo,H.Watanabe,T.Ozawa,K.Suzuki,B.Saito,T.Katsuki.Titanium-Salan-Catalyzed Asymmetric Epoxidation with Aqueous Hydrogen Peroxide as the Oxidant[J].Angew.Chem.Int.Ed.2006,45:3478-3480.
    [67]X.X.Li,Y.J.Xiong,Z.Q.Li,Y.Xie.Large-Scale Fabrication of TiO_2Hierarchical Hollow Spheres[J].Inorganic Chemistry 2006,45(9):3493-3495.
    [68]余萍,陈善华,刘思维,孙杰,陈显丹,宋艳.用液相沉积法在青铜表面制备TiO_2薄膜[J].材料保护,2007,40(5):20-24.
    [69]蒋武锋,苍大强,郝素菊,凌云汉,白新德,宗燕兵.液相沉积法在铝板上制备TiO_2纳米棒阵列薄膜[J].材料科学与工程学报,2006,124(16):805-807.
    [70]国伟林,王西奎.负载型纳米二氧化钛的液相沉积法制备及性能研究[J].化工技术与开发,2004,33(5):1-4.
    [71]Q.Q.Chen,W.C.He,J.M.Wang,Z.Tang,H.B.Shao,J.Q.Zhang.Carbon-Coated Li_3V_2(PO_4)_3 Composite Cathode Material for Lithium-ion Batteries:Sol-gel Synthesis and Performance[J].Chinese Journal of Inorganic Chemistry 2008,24(2):181-190.
    [72]C.Suciu,A.C.Hoffmann,A.Vik,F.Goga.Effect of Calcination Conditions and Precursor Proportions on the Properties of YSZ Nanoparticles Obtained by Modified Sol-Gel Route[J].Chemical Engineering Journal 2008,138:608-615.
    [73]V.G Gavalas,R.Andrews,D.Bhattacharyya,L.G.Bachas.Carbon Nanotube Sol-Gel Composite Materials[J].Nano Lett.2001,1(12):719-721.
    [74]赵学国,汪永清,张晓珍,吴也凡,周健儿.水热法合成纳米氧化铪及碳/氧化铪核壳结构纳米复合粉体的研究[J].无机化学学报,2008,24(2):311-315.
    [75]李冬红,袁坚,杨朝晖,上官文峰.水热法制备的Ti_(1-x)Co_xO_2稀磁半导体特性[J].功能材料,2008,2(39):224-226.
    [76]H.G Yang,H.C.Zeng.Self-Aligned Growth of Hexagonal TiO_2 Nanosphere Arrays on α-MoO_3(010) Surface[J].Chem.Mater.2003,15(16):3113-3120.
    [77]X.J.Wang,D.D.Hu,J.X.Yang.Synthesis of PAM/TiO_2 Composite Microspheres with Hierarchical Surface Morphologies[J].Chem.Mater.2007,19(10):2610-2621.
    [78]童遂放,罗小秋,黄志荣,刘桂玲.常压化学气相沉积法制备SiO_2涂层及其抗结焦性能[J].石油化工,2007,36(10):1012-1015.
    [79]贺进明,彭旭红,吕辉鸿,赵继华,沈伟国.微乳液法低温制备纳米金红石型二氧化钛的研究[J].无机化学学报,2008,24(2):191-194.
    [80]董翠芝,崔志敏,张庆军.微乳液法制备CdSe纳米线的表征[J].化工时刊,2008,22(1):1 8-20.
    [81]J.Du,X.M.Sang,C.Y.Tao,J.Gou.The Experimental Study on the Preparation of TiO_2 Gelatin by Polymeric Gel Method[J].Chemical Research and Application 2002,14(2):141-144.
    [82]J.Li,H.C.Zeng.Size Tuning,Functionalization,and Reactivation of Au in TiO_2Nanoreactors[J].Angew.Chem.Int.Ed.2005,44:4342-4345.
    [83]高濂,郑珊,张红青.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2003:55-100.
    [84]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2003:83-201.
    [85]柯扬船,皮特·斯状.聚合物-无机纳米复合材料[M].北京:化学工业出版社,2003:43-59.
    [86]K.Haraguchi,H.J.Li.Mechanical Properties and Structure of Polymer-Clay Nanocomposite Gels with High Clay Content[J].Macromeleculs 2006,39(5):1898-1905.
    [87]K.Haraguchi,H.J.Li.Control of the Coil-to-Globule Transition and Ultrahigh Mechanical Properties of PNIPA in Nanocomposite Hydrogels[J].Angew.Chem.Int.Ed.2005,44:6500-6504.
    [88]殷伟庆,陈明清,陆天虹,黄晓华.Tb(Ⅲ)与PNIPAM接枝核壳纳米微球相互作用的研究[J].化学学报,2006,64(20):2127-2131.
    [89]刘守信,房喻,柳明珠,王明珍,王转绒.具有伸展构象的温度和pH双重敏感的P(DEAM-co-MAA)水凝胶的合成与性质研究[J].化学学报,2006,64(15):1575-1580.
    [90]M.Shibayama,K.Isono,S.Okabe.SANS Study on Pressure-Induced Phase Separation of Poly(N-isopropylacrylamide) Aqueous Solutions and Gels[J].Macromolecules 2004,37(8):2909-2918.
    [91]J.J.Nie,W.J.Oppermann.Dynamic Fluctuations and Spatial Inhomogeneities in Poly(N-isopropylacrylamide)/Clay Nanocomposite Hydrogels Studied by Dynamic Light Scattering[J].J.Phys.Chem.B 2006,110(23):11167-11175.
    [92]M.Shibayama,K.Nagai.Shrinking Kinetics of Poly(N-isopropylacrylamide)Gels T-Jumped across Their Volume Phase Transition Temperatures[J].Macromolecules 1999,32(22):7461-7168.
    [93]J.J.Nie,B.Y.Du,W.Oppermann.Swelling,Elasticity,and Spatial Inhomogeneity of Poly(N-isopropylacrylamide)/Clay Nanocomposite Hydrogels[J].Macromolecules 2005,38(13):5729-5736.
    [94]S.W.Zhang,S.X.Zhou,Y.M.Weng.Synthesis of SiO_2/Polystyrene Nanocomposite Particles via Miniemulsion Polymerization[J].Langrnuir 2005,21(6):2124-2128.
    [95]M.Keshmiri,T.Troczynski.Synthesis of Narrow Size Distribution Sub-Micron TiO_2 Spheres[J].J.Non-Cryst.Solids 2002,311:89-92.
    [96]冯新星,陈建勇,张建春,郭玉海.溶胶-凝胶法制备纳米TiO_2/丝素复合膜及结构性能研究[J].化学学报,2006,64(22):2281-2286.
    [97]V.Bekiari,K.Pagonis,G.Bokias.Study of Poly(N,N'-dimethylacrylamide)/CdS Nanocomposite Organic/Inorganic Gels[J].Langrnuir 2004,20(19):7972-7975.
    [98]M.Shibayama,J.Suda,T.Karino.Structure and Dynamics of Poly(N-isopropylacrylamide)-Clay Nanoeomposite Gels[J].Macromolecules 2004,37(25):9606-9612.
    [99]O.Okay,W.Oppermann.Polyacrylamide-Clay Nanocomposite Hydrogels:Rheological and Light Scattering Characterization[J].Macromolecules 2007,40(9):3378-3387.
    [100]K.Haraguchi,M.Ebato,T.Takehisa.Polymer-Clay Nanocomposites Exhibiting Abnormal Necking Phenomena Accompanied by Extremely Large Reversible Elongations and Excellent Transparency[J].Adv.Mater.2006,18:2250-2254.
    [101]方少明,周立明,张留成,赵清香.丙烯酸酯类聚合物/蒙脱土纳米复合材料的研究[J].工程塑料应用,2005,33(3):16-18.
    [102]J.Yang,C.C.Chen,H.W.Ji,W.H.Ma,J.C.Zhao.Mechanism of TiO_2-Assisted Photocatalytic Degradation of Dyes under Visible Irradiation:Photoelectrocatalytic Study by TiO_2-Film Electrodes[J].J.Phys.Chem.B 2005,109(46):21900-21907.
    [103]孙镛,毕研迎,石凤。TiO_2-亲共聚物复合纳米粒子的合成与紫外光敏特性[J].化学学报,2007,65(1):67-71.
    [104]王振兴,丁士文,张美红,张玉卓.自组装合成纳米复合TiO_2-ZnO介孔材料及其光催化性能[J].化学学报,2005,63(3):243-248.
    [105]T.A.Egerton,N.J.Everall,I.R.Tooley.Characterization of TiO_2 Nanoparticles Surface Modified with Aluminum Stearate[J].Langrnuir 2005,21(7):3172-3178.
    [106]Y.Liu,M.F.Zhu,X.L.Liu,W.Zhang,B.Su.High Clay Content Nanocomposite Hydrogels with Surprising Mechanical Strength and Interesting Deswelling Kinetics[J].Polymer 2006,47:1-5.
    [107]K.Haraguchi,T.Takehisa.Nanocomposite Hydrogels:A Unique Organic-Inorganic Network Structure with Extraordinary Mechanical,Optical,and Swelling/De-swelling Properties[J].Adv.Mater.2002,14(16):1120-1125.
    [108]李海东,程凤梅,王宇明,罗靖.PVB/纳米TiO_2复合材料的制备与表征[J].中国塑料,2006,20(6):32-36.
    [109]郭广生,赵伟,王志华,王新朋,郭洪猷.PMMA/TiO_2纳米复合材料的制备[J].应用化学,2004,21(8):821-824.
    [110]L.X.Zhang,P.Liu,Z.X.Su.Preparation of PANI-TiO_2 Nanocomposites and Their Solid-Phase Photocatalytic Degradation[J].Polym.Degrad.Stab.2006,91:2213-2219.
    [111]X.Z.Zhang,Y.Y.Yang,F.J.Wang,T.S.Chung.Thermosensitive Poly(N-isopropylacrylamide-co-acrylicacid) Hydrogels with Expanded Network Structures and Improved Oscillating Swelling-Deswelling Properties[J].Langmuir 2002,18(6):2013-2018.
    [112]K.Haraguchi,H.J.Li,K.Matsuda,T.Takehisa,E.Elliott.Mechanism of Forming.Organic/Inorganic Network Structures during In-situ Free-Radical Polymerization in PNIPA-Clay Nanocomposite Hydrogels[J].Macromolecules 2006,38(8):3482-3490.
    [113]T.Y.Tsai,C.H.Li,C.H.Chang,W.H.Cheng.Preparation of Exfoliated Polyester/Clay Nanoeomposite[J].Adv.Mater.2005,17:1769-1773.
    [114]K.Minoru,M.Yotaro,U.Masanobu,O.Tomohiko.A New Chemoseleetive Anionic Polymerization Method for Poly(N-isopropylacrylamide)(PNIPAm) in Aqueous Media:Design and Application of Bulky Zincate Possessing Little Basicity[J].Macromolecules 2004,37(12):4339-4341.
    [115]P.Jiang,J.F.Bertone,V.L.Colvin.A Lost-Wax Approach to Monodisperse Colloids and Their Crystals[J].Science 2001,29:453-457.
    [116] W. A. Zhang, W. Luo, Y. E. Fang. Synthesis and Properties of a Novel Hydrogel Nanocomposites[J]. Materials letters 2005, 59: 2876-2880.
    [117]K. Haraguchi, S. Taniguchi, T. Takehisa. Reversible Force Generation in a Temperature-Responsive Nanocomposite Hydrogel Consisting of Poly(N-isopropylacrylamide) and Clay[J]. Chem. Phys. Chem. 2005, 6:238-241.
    [118] H. Tetsuka, T. Ebina, H. Nanjo, F. Mizukami. Highly Transparent Flexible Clay Films Modified With Organic Polymer: Structural Characterization and Intercalation Properties[J]. J. Mater. Chem. 2007,17: 3545-3550.
    [119] S. L. Ran, L. Gao. Mechanical Properties and Microstructure of TiN/TZP Nanocomposites[J]. Materials Science and Engineering 2007,447: 83-86.
    [120] Y. Miwa, A. R. Drews, S. Schlick. Detection of the Direct Effect of Clay on Polymer Dynamics: The Case of Spin-Labeled Poly(methylacrylate)/Clay Nanocomposites Studied by ESR, XRD, and DSC[J]. Macromolecules 2006,39(9): 3304-3311.
    [121] G. Garnweitner, B. Smarsly, R. Assink, W. Ruland, E. Bond. Self-Assembly of an Environmentally Responsive Polymer/Silica Nanocomposite[J]. J. Am. Chem.Soc. 2003, 125(19): 5626-5627.
    [122] Y. Ji, B. Q. Li, S. R. Ge, J. C. Sokolov, M. H. Rafailovich. Structure and Nanomechanical Characterization of Electrospun PS/Clay Nanocomposite Fibers[J]. Langmuir 2006,22(3): 1321-1328.
    [123] H. T. Lee, L. H. Lin. Waterbome Polyurethane/Clay Nanocomposites: Novel Effects of the Clay and Its Interlayer Ions on the Morphology and Physical and Electrical Properties[J]. Macromolecules 2006, 39(18): 6133-6141.
    [124] S. G. Lei, S. V. Hoa, M. T. Ton-That. Effect of Clay Types on the Processing and Properties of Polypropylene Nanocomposites[J]. Composites Science and Technology 2006, 66: 1274-1279.
    [125] K. Haraguchi, K. Matsuda. Spontaneous Formation of Characteristic Layered Morphologies in Porous Nanocomposites Prepared from Nanocomposite Hydrogels[J]. Chem. Mater. 2005, 17(5): 931-934.
    [126] K. Haraguchi, T. Takehisa, M. Ebato. Control of Cell Cultivation and Cell Sheet Detachment on the Surface of Polymer/Clay Nanocomposite Hydrogels[J].Biomacromolecules 2006, 7(11): 3267-3275.
    [127] G Garnweitner, B. Smarsly, R. Assink. Self-Assembly of an Environmentally Responsive Polymer/Silica Nanocomposite[J]. J. Am. Chem. Soc. 2003, 125(19):5626-5627.
    [128] K. Haraguchi, T. Takehisa, S. Fan. Effects of Clay Content on the Properties of Nanocomposite Hydrogels Composed of Poly(N-isopropylacrylamide) and Clay[J]. Macromolecules 2002, 35(27): 10162-10171.
    [129] M. Shibayama, T. Karino, S. Miyazaki. Small-Angle Neutron Scattering Study on Uniaxially Stretched Poly(N-isopropylacrylamide)-Clay Nanocomposite Gels[J].Macromolecules 2005, 38(26): 10772-10781.
    [130] C. Wang, T. Nolan, F. R. Langer. Controlled Structure and Properties of Thermoresponsive Nanoparticle-Hydrogel Composite[J]. Adv. Mater. 2004,16(13): 1074-1079.
    [131] J. X. Yang, D. D. Hu, Y. Fang, C. L. Bai, H. Y. Wang. Novel Method for Preparation of Structural Microspheres Poly(N-isopropylacrylamide-co-acrylic acid)/SiO_2[J]. Chem. Mater. 2006,18(20): 4902-4907.
    [132] H. Tsutsui, M. Moriyama, D. Nakayama, R. Ishii, R. Akashi. Synthesis and Temperature-Responsive Properties of Novel Semi-interpenetrating Polymer Networks Consisting of a Poly(acrylamide) Polymer Network and Linear Poly(acrylic acid) Chains[J]. Macromolecules 2006,39(6): 2291-2297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700