补体C3的免疫共振散射光谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:绪论
     介绍了共振散射技术发展历史、分析应用以及发展前景。综述了金纳米微粒的制备、表征、组装和生物标记中的应用以及补体C3的分析进展。
     第二部分:免疫共振散射光谱分析法简便快速测定补体C3
     利用补体C3与羊抗人C3抗体在pH 6.0的Na2HPO4-C6H8O7缓冲溶液和聚乙二醇(PEG)存在下发生特异性反应生成免疫抗体抗原复合物,导致体系在340nm处的共振散射峰增强,建立了一个测定补体C3的免疫共振散射光谱法。C3的浓度在0.167-3.33μg·mL-1的范围内,与340nm处的共振散射强度呈线性,回归方程为I340nm=0.1603C+12.42,R2=0.9926,检出限为0.058μg·mL-1。该方法具有试样用量少、简单快速的特点,用于定量分析人血清中的补体C3,得到的结果较为满意。
     第三部分:快速灵敏的免疫纳米金共振散射光谱探针测定补体C3
     采用改良柠檬酸钠还原法制备了粒径约为10.0nm的胶体金颗粒,在pH 7.5条件下制备了金标记羊抗人C3抗体共振散射光谱探针。在pH值为5.6的Na2HPO4-C6H8O7缓冲溶液中及PEG存在下,金标记上羊抗人C3抗体与补体C3发生特异性结合,形成胶体金免疫复合物,导致体系在580nm处的共振散射强度急剧增强。补体C3浓度在0.00833-0.200μg·mL-1范围内与共振散射强度的增大值呈良好线性关系,检出限为0.0028μg·mL-1。此法用于人血清测定补体C3具有简便、快速等特点。获得较满意的结果。
     第四部分:纳米金标免疫抗体催化增强反应的共振散射光谱研究及其超痕量检测补体C3
     在pH 7.5条件下用金纳米颗粒标记羊抗人补体C3获得C3共振散射光谱探针。当pH值为5.6的Na2HPO4-C6H8O7缓冲溶液及PEG存在条件下,金标记羊抗人补体C3与补体C3发生特异性结合生成胶体金免疫复合物。以12000rpm速度离心分离获得未反应的金标抗上层溶液。以它作晶种,在pH 2.97柠檬酸钠-盐酸缓冲溶液-53.33μg·mL-1 HAuCl4-74.13μg·mL-1NH2OH·HCl溶液中及37℃条件下反应3分钟内,免疫金纳米微粒粒径表面积迅速增大,大大提高了585nm处金纳米微粒的共振散射强度I585nm。结果表明,随着C3浓度增大,离心上层溶液中金标抗浓度降低,I585nm线性降低。其降低值△I585nm与补体C3浓度在5.0-160.0pg·mL-1范围内呈良好线性关系,检出限为1.52pg·mL-1。本法具有灵敏、快速和高的特异性,用于定量分析人血清补体C3,结果满意。
PartⅠIntroduction
     Some basic knowledge of historical investigation of light scattering, resonance scattering and the application of resonance scattering technology in studying analytical chemistry and nanoparticles were introduced. Summarized the preparation, identification and assembly of gold nanoparticles and its application in biochemical analysis in recent years. The analytical progress of C3 was also reviewed.
     PartⅡRapid immune resonance scattering spectral assay of complement 3
     In pH 6.0 Na2HPO4-C6H8O7 buffer solutions, goat anti-human complement 3 would combine with complement 3(C3) and produce immunocomplex particles, which resulted in resonance scattering (RS) effect at 340nm, 360nm and 470nm. By the experiment, we found in the presence of appropriate concentration polyethyleneglyco (PEG), which could enhance the RS intensities and sensitivity for analysis of C3. Maxium RS intensity was produced at 60 mg·mL-1 PEG-10000. Under the optimal conditions, the intensities△IRS were proportional to the concentration C3, linear relationship was found between intensity of RS and the concentration in the range of 0.167-3.33μg·mL-1 for C3, regression equation was△I340nm=0.1603C+12.42, correlation coefficient R2=0.9926, and the detection limit reached 0.058μg·mL-1. The method was successfully applied to quantitative determination of C3 in human sera, with satisfactory results. The method was simple, rapid and reliable for human sera assay.
     PartⅢA rapid and sensitive immunonanogold resonance scattering spectral probe for C3.
     An improved trisodium citrate reduction method was used to prepare about 10 nm size gold nanoparticles and it was used to label goat anti-human complement 3 (anti-C3) in the pH 7.5 to obtain a sensitive and selective immunoresonance scattering spectral probe. It is based on the immune reaction between labeled anti-C3 and C3 in the pH 5.6 Na2HPO4-C6H8O7 buffer solutions. As added C3 the gold labeled-antiC3 would form immunogold complex in the action of polyethylene (PEG), resulting in enhancing the resonance scattering (RS) intensities at 580 nm greatly. Well linear relationships between the enhanced RS intensities (△IRS) and the C3 concentration in the range of 0.00833-0.200μg·mL-1 were obtained, with a detection limit of 0.00280μg·mL-1C3. The rapid and sensitive assay was applied to quantification of C3 in human sera, with satisfactory results.
     PartⅣUltrasensitive immunoresonance spectral determination of C3 based on nano-gold labeling catalytic enhancement
     In the condition of pH 7.5 goat anti-human C3 was labeled by nano-gold to obtain an immunoresonance scattering spectral probe for C3. The immune reaction between gold-labeled antibodies and the antigens took place in pH 5.6 Na2HPO4-C6H8O7 buffer solution in the presence of polyethylene (PEG). Centrifuged at 12000rpm, we obtained supernatant of unreacted gold labeled anti-C3. In pH 2.97 sodium citrate buffer solution, the immunogold in the supernatant, as a seed catalysed the immunereaction between 53.33μg·mL-1 HAuCl4 and 74.13μg·mL-1NH2OH·HCl for 3 min at 37℃, to form larger size and surface gold particles, resulting in enhancement the resonance scattering (RS) intensities at 585 nm greatly. With increasing C3, the concentration of gold labeled-antiC3 in supernatant decreased and I585nm decreased either. Linear relationships between the decreased RS intensities (△IRS) and the C3 concentration in the range of 5.0-160.0pg·mL-1 were obtained, the detection limit reached at 1.52pg·mL-1 C3. The sensitive assay was applied to quantification of C3 in human sera, with satisfactory results.
引文
[1] 谢济运. 共振散射光谱分析. 柳州师专学报 [J],2003, 18(3): 83-88.
    [2] 李原芳, 黄承志,胡小莉. 共振散射光散射技术的原理及其在生化研究和分析中的应用 [J].分析化学,1998,26(12): 1508-1512.
    [3] C.F. Bohren, D.R. Huffman. Absorption scattering of light by small particles [M], New York: John Wiley and Sons, 1983, 4.
    [4] H. C. Van de Hulst. Light scattering by small particles [M]. New York:Wiley,1957:2-5.
    [5] J. Swithenbank. A laser diagnostic technique for the measurement of droplet and particle size distribution. AIAA paper [J], 1976, 76: 69.
    [6] C. F. Bohren, D. R. Huffman. Absorption scattering of light by small particles [M], New York: John Wiley and Sons, 1983: 2-6.
    [7] 武建劳,郇宜贤,傅克德等. 表面增强拉曼散射概述 [J]. 光散射学报,1994, 6(1): 52-62.
    [8] 张立萍. 共振瑞利散射在分析科学中的应用 [J]. 华北煤炭医学院学报,2005,7(5): 590-591.
    [9] S. G. Stanton, R. J. Pecora. Resonance enhanced dynamic Rayleigh scattering [J]. Chem. Phys., 1981, 75: 5615.
    [10] G. Plazek. In handuch der Radiiologie, Vol-VI, Marx E. (A kademische verlagsgesellschaft, Leipzig, 1934), English translation by A. Werbin: Rayleigh and Raman, UCRL Teamsl. No. 5, 261.
    [11] D. R. Bauer, B. Hudson, R. Pecora. Resonance enhanced depolarized Rayleigh scattering fromdiphenylolyenes [J]. J.Chem.Phys., 1975, 63: 588.
    [12] G. A. Miller. Function theory of the resonance enhancement of Rayleigh scattering in absorbing media [J]. J. Phys.Chem., 1978, 85: 616-618.
    [13] J. Anglister, I. Z. Steinberg. Resonance Rayleigh scattering of cyanine dyes in solution [J]. J. Chem. Phys., 1983, 78(9): 5358-5368.
    [14] J. Anglisyer, I. Z. Steinberg. Depolarized Rayleigh scattering in absorption bands measured in lylopence solution [J]. Chem. Phy. Lett., 1979, 65: 50.
    [15] R. F. Pasternack, C. Bustamante, P. J. Collings, A. Giannett, E. J. Gibbs. Porphin assemblies on DNA as studied by a resonance lightscattering technique [J]. J. Am. Chem. Soc., 1993, 115: 5393 - 5399.
    [16] R. F. Pasternack, P. J. Collings. Resonance light scattering: a new technique for studying chromophore aggregation [J]. Science, 1995, 269: 935-939.
    [17] R. F. Pasternack, K. S. Schaefer, P. Hambright. Resonance light-scattering studies of porphrin diacid aggregates [J]. Inorg. Chem., 1994, 33: 2062-2065.
    [18] J. C. De Paula, J. H. Robblee, R. F. Pasternack. Aggregation of chlorophyll a probed by resonance light scattering spectroscopy [J]. Biophys. J., 1995, 68: 335-341.
    [19] G. Arena, L. M. Scolaro, R. F. Pasternack, R. Romeo. Synthesis, characterization and interaction with DNA of the novel metallo intercalator cationic complex (2,2’:6’,2”-terpyridine) methylplatinum (II) [J]. Inorg. Chem., 1995, 34: 2994.
    [20] N. B. Li, H. O. Luo, S. P. Liu. Resonance Rayleigh Scattering Technology as a New Method for the Determination of the Inclusion Constant of β-cyclodextrin [J]. Spectrochim. Acta, Part A, 2002, 58: 501-507.
    [21] 刘绍璞,胡小莉,范莉,罗红群. 阳离子表面活性剂与核酸反应的共振 Rayleigh 散射光谱特征及其分析应用 [J]. 中国科学(B 辑), 2002,32(1):18-26.
    [22] 周贤杰, 刘绍璞. 银纳米微粒与酚藏花红相互作用的共振瑞利散射光谱研究 [J].西南师范大学学报 (自然科学版). 2003,28 (2):265.
    [23] N. B. Li, S. P. Liu, H. Q. Luo. A new method for the determination of first and second CMC in CTAB solution by resonance Rayleigh scattering technology [J]. Anal. Lett., 2002, 35(7): 1229-1238.
    [24] 范莉,刘绍璞,龙秀芬,胡小莉. 某些变色酸双偶氮染料-蛋白质体系的共振瑞利散射及其分析应用 [J].分析化学,2002,30(1):81-85
    [25] S. P. Liu, Z. Y. Zhang, Q. Liu, H. Q. Luo, et al. Spectrophotometric Determination of Vitamin B1 in a Pharmaceutical Formulation Using Triphenylmethane Acid Dyes [J]. J. Pharm. Biomed. Anal, 2002, 30(3): 685-694.
    [26] F. Li, S. P. Liu, D. C. Yang, X. L. Hu, Resonance Rayleigh scattering method for the determination of raloxifene with evens blue [J]. Chinese J. of Chem., 2002, 20: 1552-1556.
    [27] S. P. Liu, Y. Z. Zhu, H. Q. Luo, L. Kong. Resonance Rayleigh-scattering method for the determination of vitamin B1 with mathyl orange [J]. Anal. Sci., 2002, 18(9): 971-976.
    [28] H. Q. Luo, S. P. Liu, N. B. Li, Z. F. Liu, Resonance Rayleigh scattering frequency doubling scattering and second-order scattering spectra of the heparin-crystal violet system and their analytical application [J]. Anal. Chim. Acta, 2002, 468(2): 275-286.
    [29] C. Z. Huang, Y. F. Li, Resonance light scattering technique used for biochemical and pharmaceutical analysis [J] Anal. Chim. Acta, 2003, 500:105-117.
    [30] 马春骐,刘英,李克安等. 瑞利光散射及其在生物化学分析中的应用研究 [J]. 科学通报,1999,44(7):682.
    [31] 蒋治良,纳米微子与共振散射光谱学 [M]. 桂林:广西师范大学出版社,2003,11.
    [32] 杨睿,刘绍璞. 某些分子光谱分析法测定蛋白质的进展 [J]. 分析化学,2001,29(2): 232-234.
    [33] C. Z. Huang, W. Lu, Y. F. Li, Y. M. Huang. On the factors affecting the enhanced resonance light scattering signals of the interactions between proteins and multiply charged chromophores using water blue as an example [J]. Anal. Chim. Acta, 2006, 556: 469-475.
    [34] H. Q. Ma, K. A. Li, S. Y. Tong. Microdeermiantion of protein by resonance light scattering spectroscopy with bromophenol blue [J]. Anal. Biochem, 1996, 239: 86-91.
    [35] 杨传孝,李原芳,黄承志. 丽春红 G 用于人血清样品中总蛋白的共振光散射测定 [J]. 分析化学, 2003, 31(2): 148-152.
    [36] 冯宁川,龚国权. 亮黄-曲通 X-100 体系共振瑞利散射法测定蛋白质 [J]. 分析化学, 2002,30(4):425-427.
    [37] 李舒婷,蒙法艳,孔祥荣,李贞,陈韵,赵书林. 邻苯二酚紫共振散射法测定蛋白质含量 [J].西南师范大学学报(自然科学版),2004,22(2):55-58.
    [38] 龙秀芬,刘绍璞. 磷锑钼蓝共振瑞利散射法测定蛋白质 [J]. 西南师范大学学报(自然科学版),2000, 25(4):155-159.
    [39] 杨睿,刘绍璞,龙秀芬. 曲利本蓝-蛋白质体系的共振瑞利散射及其分析应用 [J]. 西南师范大学学报(自然科学版),1999,2(2):179-182.
    [40] 刘晓辉,高俊杰, 余萍. 偶氮胭脂红 B 与蛋白质的共振瑞利散射研究 [J]. 沈阳理工大学学报, 2005,24(4):63-66.
    [41] 张红医,刘保生,张红蕾, 赵勇. 酸性品红共振光散射法测定蛋白质 [J]. 光谱学与光谱分析,2002,22(6):1054-1056.
    [42] 王晓霞,沈含熙,郝永梅. 苋菜红-蛋白质体系的共振光散射光谱研究及其分析应用 [J]. 分析化学,2000,28(11):1388-1390.
    [43] 吴会灵,李文友,何锡文. 乙醇敏化钛黄与蛋白质作用的共振光散射光谱研究及其分析应用 [J].化学学报,2002,60(10):1822-1827.
    [44] 魏永巨,李克安,童沈阳. 蛋白白质-铬天青 S 体系的弹性散射及其初步分析应用 [J]. 化学学报,1998,56: 290-297.
    [45] C. Q. Ma, K. A. Li, S. Y. Tong. Rayleigh light scattering spectroscopy application to the determination of proteins using bromophrogallol red [J]. Bull. Soc. Jpn., 1997, 70: 129-133
    [46] Z. X. Guo, H. X. Shen. Sensitive and simple determination of protein by resonance Rayleigh scattering with 4-azochromotropic acid phenylfluorone [J]. Anal. Chim. Acta, 2000, 408: 177-182.
    [47] 刘绍璞,范莉,胡小莉,刘忠芳,陈粤华. 某些氨梭络合型染料与蛋白质相互作用的共振瑞利散射研究 [J]. 化学学报,2004,62(17):1635-1640.
    [48] C. Z. Huang, C. X. Yang, Y. F. Li. Determination of Proteins with Ponceau G by Compensating for the Molecular Absorption Decreased Resonance Light Scattering Signals [J]. Anal. Lett, 2003, 36: 1557-1571.
    [49] Y. Liu, J. H. Yang, S. F. Liu, X. Wu, B.Y. Su, T. Wu. Resonance light scattering technique for the determination of protein with rutin and cetylpyridine bromide system [J]. Spectrochim. Acta. Part A, 2005, 61: 641-646.
    [50] 李振中,陈媛媛,周苏梅. 蛋白质-阳离子表面活性剂缔合微粒体系的光谱特性及分析应用 [J]. 应用化学,2005, 22(12): 1304-1307.
    [51] 胡庆红,江波. 阴离子表面活性剂与蛋白质的共振瑞利散射及分析应用 [J]. 分析化学,2003,31(9):1123-1126.
    [52] R. T. Liu, J. H. Yang, C. X. Sun, et al., Resonance light-scattering method for the determination of BSA and HSA with sodium dodecyl benzene sulfonate or sodium lauryl sulfate [J]. Anal. Bioanal. Chem., 2003, 377: 375-379.
    [53] R. P. Jia, L. J. Dong. A highly sensitive assay for protein with dibromochloro-arsenazo-Al3+ using resonance light scattering technique and its application [J]. Talanta, 2002, 57: 693-700.
    [54] X. F. Long, S. P. Liu, L. Long, Z. F. Liu. S. P. Bi. A study on the interaction of proteins with some heteropoly compounds and their analytical application by resonance Rayleigh scattering method [J]. Talanta, 2004, 63: 279-286.
    [55] 梁爱惠,邹节明,王力生,覃爱苗. 磷钼杂多酸与蛋白质相互作用的共振散射光谱研究 [J]. 应用化学, 2002,19(8): 768-771.
    [56] Z. L. Peng, S. P. Liu. Resonance scattering spectral determination of HAS with a mew scattering enhanced reagent of K3[Fe(CN)6] [J]. Chinese Journal of Chemistry, 2002, 20: 1566-1572.
    [57] 邹节明,王力生,覃爱苗. 蛋白质与三氯乙酸相互作用的共振散射光谱研究及分析应用 [J]. 分析化学,2003,31(1):70-73.
    [58] 翟好英,章表明. 卤铂酸-人血清蛋白蛋白体系的瑞利散射光谱研究及分析应用 [J]. 贵金属,2004, 25(2):5-10.
    [59] L. Y. Wang, L. Wang, L. Dong, Y. L. Hu, T. T. Xia, C. Q. Zhu. Determination of γ-globulin at nanogram levels by its enhancement effect on the resonance light scattering of functionalized HgS nanoparticles [J]. Talanta, 2004, 62: 237-240.
    [60] L. Y. Wang, L. Wang, H. Q. Chen, L. Li, L. Dong, et al. Direct quantification of γ-globulin in human blood serum by resonance light scattering techniques without separation of human serum albumin [J]. Anal.Chim. Acta, 2003, 493: 179-184.
    [61] Z. L. Jiang, S. J. Sun, A. H. Liang, W. X. Huang, A. M. Qin. Gold-labeled nanoparticle-based immunoresonance scattering spectral assay for trace apolipoprotein AI and apolipoprotein B [J]. Clin.Chem., 2006, 52(7): 1389-1394.
    [62] M. Hou, S. J. Sun, Z. L. Jiang. A new and selective and sensitive nanogold-labeled immunoresonance scattering spectral assay for trace prealbumin [J]. Talanta, doi: 10.1016/j.talanta. 2006.11.016.
    [63] Z. L. Jiang, S. J. Sun, A. H. Liang, C. J. Liu. A new immune resonance scattering spectral assay for trace fibrinogen with gold nanoparticle label [J]. Anal. Chim. Acta, 2006, 571: 200-205.
    [64] 蒋治良,陈媛媛,梁爱惠,陶慧林,唐宁莉,钟福新. 痕量纤维蛋白原的银纳米标记免疫共振散射光谱分析 [J]. 中国科学(B 辑),2006,36(5): 419-424.
    [65] 马春琪, 刘瑛,李克安,童沈阳. 瑞利光散射及其在生物化学分析中的应用研究 [J]. 科学通报, 1999, 44(7): 682-690.
    [66] 达毛拉·杰力里,黄承志. 酚藏花红 DNA 作用的共振光散射特征及微量 DNA 的光散射测定 [J]. 分析化学, 1999, 27(10): 1204-1207.
    [67] 黄承志,李原芳,李念兵等. 耐尔蓝硫酸盐在核酸分子表面的长距离组装及核酸的三波长共振光散射测定 [J]. 分析化学,1999,27(11): 1241-1247.
    [68] C. Z. Huang,Y. F. Li,X. D. Liu. Determination of nucileic acids at nanogram levels with safranine T by a resonance light-scattering technique [J]. Anal.Chim. Acta,1998,375: 89-97.
    [69] Y. T. Wang, F. L. Zhao, K. A. Li, S. Y. Tong. Molecular spectroscopic study of DNA binding with meutral red and application to assay nucleic acids [J]. Anal. Chim. Acta,1999,396: 75-81.
    [70] 向海艳,陈小明,李松青, 夏殊, 刘安喜. 亚甲基蓝共振光谱散射法测定脱氧核糖核酸 [J]. 分析化学,2000,28(11): 1398-1401.
    [71] 李天剑,沈含熙. 乙基紫-脱氧核糖核酸共振发光体系的研究及其分析应用 [J]. 高等学校化学学报,1998,19(10): 1570-1573.
    [72] 刘绍璞,龙秀芬,胡小莉,范莉. 核酸-某些碱性三苯甲烷染料体系的 RRS 及其分析应用 [J]. 西南师范大学学报(自然科学版), 2001, 26(2): 164-169.
    [73] 刘晨,胡颧,陈小明. 结晶紫共振光散射法测定脱氧核糖核酸 [J]. 分析试验室,2001, 20(2): 30-33.
    [74] W. J. Zhang, H. P. Xu, S. Q. Wu, X. G. Chen. Determination of nucleic acids with crystal violet by a resoonance light-scattering technique [J]. Analyst, 2001, 126: 513-517.
    [75] W. J. Zhang, H. P. Xu, C. X. Xue, et al., Resonance Light scattering for the determination of nucleic acids with methyl violet [J]. Analytical Letters, 2001, 34: 553-568.
    [76] 万新军, 刘金水, 王伦. 吖啶橙共振光散射法测定脱氧核糖核酸 [J]. 光谱学与光谱分析, 2005, 25(5): 754-756.
    [77] 刘晨,陈小明,向海艳,李松青,夏殊,刘安喜. 枚苯胺共振光散射法测定 DNA [J]. 光谱学与光谱分析,2001,21(5): 697-700.
    [78] 曾金祥, 陈小明, 蔡昌群, 罗和安. 碱性品红共振光散射法测定 DNA 研究 [J]. 分析科学学报, 2005, 21(6): 664-666.
    [79] C. Z. Huang, Y. F. Li, S. Y. Deng, S. R. Liu. Assembly of methylene blue on nucleic acid template as studied by resonance light-scattering technique and determination of nucleic acids of nanograms [J]. Bull.Chem.Soc.Jpn., 1999, 72: 1501-1508.
    [80] 陈展光,丁卫锋,韩雅莉,卢 峰,廖栩泓,陈小明. 两性离子表面活性剂作为共振光散射探针测定脱氧核糖核酸 [J]. 分析化学,2005,33(4): 519-522.
    [81] R. T. Liu, J. H. Yang, C. X. Sun, et al. Resonance light-scattering method for the determination of BSA and HSA with sodium dodecyl benzene sulfonate or sodium lauryl sulfate [J]. Anal. Bioanal. Chem., 2003, 377: 375-379.
    [82] 冯素玲,刘雪平,樊 静. 十六烷基溴化吡啶与脱氧核糖核酸作用的共振光散射光谱及其分析应用 [J]. 分析化学,2005,33(3): 377-380.
    [83] 刘绍璞,胡小莉,罗红群,范莉. 阳离子表面活性剂与核酸反应的共振 Rayleigh 散射及其分析应用 [J]. 中国科学(B 辑),2002,32(l): 18-26.
    [84] 黄新华,舒为群,李原芳, 黄承志. 溴代十六烷基三甲基铵敏化亮绿-脱氧核糖核酸作用的共振光散射增强研究 [J]. 分析化学,2001,29(3): 271-275.
    [85] C. Z. Huang, K. A. Li, S. Y. Tong. Determination of nucleic acids in nanogram by their enhancement effect on the resonance light-Scattering of cobalt (II) /4-[(5-Chloro- 2-pyridyl) azo]-l,3-diaminobenzene complex [J]. Anal. Chem., 1997, 69(3): 514-520.
    [86] 陈小兰,李东辉,朱庆枝, 杨黄浩, 郑洪, 许金钩. 用四氨基铝酞菁共振光散射技术测定纳克级核酸 [J]. 高等学校化学学报,2001,22(6): 901-904.
    [87] Y. Q. Cheng, Z. P. Li, Y. Q. Su, Y. S. Fan. Ferric nanoparticle-based resonance light scattering determination of DNA at nanogram levels [J]. Talanta, 2007, 71(4): 1757-1761.
    [88] S. P. Liu, Z. Y. Zhang, H. Q. Luo, et al. Resonance Rayleigh-scattering method for the determination of vitamin B, with methyl orange [J]. Anal. Sci., 2002, 18: 971-976.
    [89] 孔玲,刘绍璞. 同多钨酸根共振瑞利散射法测定硫酸奎宁.广西师范大学学报(自然科学版)[J]. 2003,21(3): 178-179.
    [90] 邹节明,袁伟恩,蒋治良等. 舒血宁中总黄酮的共振散射光谱分析 [J]. 中草药,2003,34(11): 987.
    [91] 邹节明,潘宏程,蒋治良等. 盐酸小檗碱-十二烷基苯磺酸钠缔合微粒体系的共振散射光谱研究及分析应用 [J]. 分析化学,2003,31(12):1348.
    [92] 孔玲,刘绍璞,孔贤杰. 同多钼酸根共振瑞利散射光谱法测定盐酸小檗碱 [J]. 西南师范大学学报(自然科学版), 2003,28(2): 252-257.
    [93] 范莉, 刘绍璞, 杨大成. 测定新药雷洛昔芬的曲利本红共振瑞丽散射法 [J]. 分析测试学报, 2003, 22(1): 27-30.
    [94] 胡小莉,刘绍璞,罗红群. 曲利本红与氨基糖苷类抗生素相互作用的共振瑞利散射光谱及其分析应用 [J]. 化学学报,2003,61:1287-1293.
    [95] 蒋治良,邹明静,梁爱惠,沈星灿. 硫酸软骨素-阳离子表面活性剂缔合微粒体系的共振散射光谱研究及分析应用 [J]. 化学学报,2006,64(2): 111-116.
    [96] 何佑秋,刘绍璞,刘忠芳,胡小莉,鲁群岷. 金纳米微粒作为探针共振瑞利散射光谱法测定卡那霉素 [J]. 化学学报,2005,63(11):997-1002.
    [97] S. P. Liu, X. L. Hu, H. Q. Luo. Resonance Rayleigh scattering measurement of aminoglycoside antibiotics with evans blue [J]. Anal. Sci., 2003, 19: 927-932.
    [98] S. P. Liu, X. L. Hu, N. B. Li. Resonance Rayleigh scattering method for the determination ofaminoglycoside antibotics with trypan blue [J]. Anal. Lett., 2003, 36: 2805-2821
    [99] X. L. Hu, S. P. Liu, N. B. Li. Resonance Rayleigh scattering spectra for studying the interaction of aminoglycoside antibiotics with pontamine sky blue and their analytical applications [J]. Anal. Bioanal. Chem., 2003, 376: 42-48.
    [100] G. Mie. Beitrage zur optik truber medien speziel kolloidaler met-allosungen [J]. Ann. Phys., 1908, 25: 377-445.
    [101] S. Z. Zhang, F. L. Zhao, K. A. Li, et al. A study on the interacting between concanavalin A and glycogen by light scattering technique and its analytical application [J]. Talanta, 2001, 54: 333-342.
    [102] L. P. Wu, Y. F. Li, C. Z. Huang, Q. Zhang. Visual detection of Sudan dyes based on the plasmon resonance light scattering signals of silver nanoparticles [J]. Anal. Chem., 2006, 78: 5570-5577.
    [103] S. P. Liu, H. Q. Luo, N. B. Li, et al. Resonance Rayleigh scattering study of the interaction of heparin with basic diphenyl naphthylmethane dyes [J]. Anal. Chem., 2001, 73(16): 3907-3914.
    [104] 王照丽,李树伟,张万诚,谭舒敏. 共振散射法测定汞-硫氰酸盐-罗丹明 B 体系中的汞 [J]. 四川师范大学学报(自然科学版), 2002,25(3): 295-297.
    [105] S. P. Liu, Q. Liu, Z. F. Liu, M. Li, C. Z. Huang. Resonance Rayleigh scattering of chromium (Ⅵ)-iodide-basic triphenylmethane dye systems and their analytical application [J]. Anal.Chim. Acta, 1999, 379: 53-61.
    [106] Z. P. Wang, Y. H. Qian, G. S. Chen, K. L. Cheng. Studies on simultaneous fluorenscence spectrophotometric determination of ultratrace niobium(V), tantalum(V), and zirconium(IV) using partial least squares algorithm [J] . MicroChem. J., 1998, 60: 271-281.
    [107] S. P. Liu, Z. F. Liu, H. Q. Luo. Resonance Rayleigh scattering method for the determination of trace amounts of cadmium with iodide-rhodamine dye systems [J]. Anal. Chim. Acta, 2000, 407: 255-260.
    [108] 刘绍璞,周光明,刘忠芳,李明. 共振瑞利散射法测定硫氰酸盐-碱性三苯甲烷染料体系中痕量钼 [J]. 高等学校化学学报, 1998, 19(7):1040-1044.
    [109] 刘绍璞,刘忠芳. 钼(V)- 硫氰酸盐-碱性三苯甲烷染料体系的二级散射光谱及其分析应用 [J]. 西南师范大学学报(自然科学版), 1998,23(4): 412-417.
    [110] X. F. Long, S. P. Bi, H. Y. Ni, X. C. Tao. Resonance Rayleigh scattering determination of trace amount of Al in natural waters and biological samples based on the formation of an Al(Ⅲ)-morin-surfactantcomplex [J]. Anal. Chim. Acta, 2004, 59: 89-97.
    [111] Q. E. Cao, Y. K. Zhao, X. J. Yao, Z. D. Hu, Q. H. Xu. The synthesis and application of 1-(o-nitrophenyl)-3-(2-thiazolyl) triazene for the determination of palladium(II) by the resonance enhanced Rayleigh light scattering technique [J] . Spectrochim. Acta Part A, 2000, 56: 1319-1327.
    [112] 李怡,曹秋娥,丁中涛. 铑-钨酸盐-罗丹明 B 缔合体系的共振光散射现象及其应用 [J]. 分析实验室,2004,23(11): 49-51.
    [113] 王丹,罗红群,李念兵,刘绍璞. 碘化物-甲基紫体系共振瑞利散射法测定痕量铅 [J]. 西南师范大学学报(自然科学版), 2004,29(6):1005-1008.
    [114] 王丹,罗红群,李念兵. 碘化物-罗丹明 6G 体系共振瑞利散射法测定痕量铅 [J]. 环境化学,2005,24(1):97-100.
    [115] 翟好英,蒋治良. Ag(Ⅰ )-DDTC 螯合物微粒体系的光谱特性及其分析应用 [J]. 应用化学,2005, 22(8): 852-856.
    [116] 蒋治良,杨明媚,莫琪. 微量银的光化学共振散射光谱分析 [J]. 贵金属,2000,21(3):34-37.
    [117] 钟福新,蒋治良,李芳,李廷盛,梁宏. 银纳米粒子的光化学制备及共振散射光谱研究 [J]. 光谱学与光谱分析,2000,20(5):724-726.
    [118] 翟好英. 金(Ⅲ)-卤化物-吖啶红体系光谱特性及应用 [J]. 广西师范大学学报(自然科学版), 2005,23(3):61-65.
    [119] Z. L. Jiang, Q. Y. Liu, S. P. Liu. Resonance scattering spectral analysis of chlorides based on the formation of (AgCl)nucleu(Ag)shell nanoparticle [J]. Spectrochim. Acta. Part A,2002,58: 2759-2764.
    [120] A. H. Liang, Z. L. Jiang, B. M. Zhang, Q. Y. Liu, X. Lu. A new resonance scattering spectral method for the determiantion of trace amounts of iodate with rhodamine 6G [J]. Anal. Chim. Acta, 2005, 530: 131-134.
    [121] 蒋治良,刘庆业, 梁爱惠. 吖啶橙缔合微粒共振散射光谱法测定痕量 NO2-量 [J]. 广西师范大学学报(自然科学版), 2004, 22(4): 57-60.
    [122] S. P. Liu, Z. F. Liu, C. Z. Huang. Resonance Rayleigh scattering for indirect determination of trace amounts of selenium (II) with iodide-basic triphenylmethane dyes systems [J]. Anal. Sci., 1998, 14: 799-802.
    [123] 蒋治良,李芳,梁宏. 磷钼杂多酸-罗丹明 S 体系的共振散射光谱研究 [J]. 化学学报,2000,58(8):1059-1062.
    [124] 黄永炎,蒋治良. 砷钼杂多酸-罗丹明 B 三元离子缔合物的二级散射光谱研究 [J]. 分析科学学报,2000,16(2):546.
    [125] 蒋治良,李芳,梁宏. 绿色银纳米粒子的共振散射光谱研究 [J]. 化学学报,2001,59(3): 438-411.
    [126] 蒋治良. 金纳米粒子的分频共振散射光谱研究 [J]. 光子学报,2001,30(4):460.
    [127] 蒋治良,冯忠伟,刘庆业,蒋毅民,梁宏. 金纳米粒子的非线性共振散射及光强度函数研究 [J]. 无机化学学报,2001,17(3):355-360.
    [128] 蒋治良,冯忠伟,李廷盛,李芳,钟福新,谢济运,义祥辉. 金纳米粒子的共振散射光谱 [J]. 中国科学(B 辑),2001,31(2):183-188.
    [129] 蒋治良,刘庆业,刘绍璞. 金原子团簇的共振散射强度函数研究 [J]. 西南师范大学学报(自然科学版),2001,26(2): 174-178.
    [130] 蒋治良. 液相纳米粒子非线性光散射方程的研究 [J]. 分析测试技术与仪器,2000,6(4):200-205.
    [131] Z. L. Jiang, Q. Y. Liu, S. P. Liu. Catalytic resonance scattering spectral method for the determination of trace amounts of Se [J]. Talanta, 2002, 58: 635-640.
    [132] Z. L. Jiang, G. X. Huang. Resonance scattering spectra of micrococcus lysodeikticus and its application to assay of lysozyme activity [J]. Clin. Chim. Acta, 2007, 376: 136-141.
    [133] 庞小兵,黄玉明,黄承志. 流动注射与共振散射联用技术测定肝素 [J]. 广西师范大学学报(自然科学版),21,特(2):84-85.
    [134] D. S. Riskey, M. A. Strege. Chiral Seperations of Polar compounds by Hydrophilic Interaction Chromatogrsphy with Evaperative Light scattering Detection [J]. Anal. Chem., 2000, 72: 1726-1739.
    [135] B. Szostek, J. Zajac, J. A. Koropchak. Coupling condensation light scattering detection with capillary electrophoresis using electrospray [J]. Anal. Chem., 1997, 69: 2955-2962.
    [136] M. Faraday. Philos. Trans Roy. Soc [M]. London, Ser. A 1857, 147: 145.
    [137] J. Turkevitch, P. C. Stevenson, J. Hiller. Nucleation and growth process in the synthesis of colloidal gold [J]. Discuss. Faraday Soc, 1951, 11: 55-75.
    [138] G. Frens. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions [J]. Nature Phys. Sci., 1973, 241: 20-22.
    [139] T. Yonezawa, T. Kunitake. Practical preparation of anionic mercapto ligand-stabilized gold nanoparticles and their immobilization [J]. Colloids Surf. A: Physicochem. Eng. Asp. 1991, 149: 193-199.
    [140] S. Wang, Y. L. Li, C. M. Du, et al. Self-organization of gold nanoparticles protected by 9-(5-thiopentyl)-carbazolE [J]. Chin. Chem. Letters, 2001, 12 (12): 1141-1144.
    [141] P. R. Selvakannan, S.Mandal, R. Pasricha, S. D. Adyanthaya, M. Sastry. One-step synthesis of hydrophobized gold nanoparticles of controllable size by the reduction of aqueous chloroaurate ions by hexadecylaniline at the liquid-liquid interface [J]. Chem. Commun., 2002, 9(13): 1334-1335.
    [142] X. H. Dai, Y. W. Tan, J. Xu. Formation of gold nanoparticles in the presence of o-anisidine and the dependence of the structure of poly(o-anisidine) on synthesis conditions [J]. Langmuir, 2002, 18(23): 9010-9016.
    [143] J. L. Gardea-Torresdey, K. J. Tiemann1, G. Gamez1, K. Dokken1, S. Tehuacanero, M. Jos′e-Yacam′an. Gold nanoparticles obtained by bio-precipitation from gold(III) solutions [J]. J. Nanoparticle Research, 1999, 1: 397-404.
    [144] L. A. Dykman, A. A. Lyakhov, V. A. Bogaytev, et al. Synthesis of colloidal gold using high-molecular weight reducing agents [J]. Colloid J., 1998, 60(6): 700-704.
    [145] 兰新哲,金志浩,赵西成,苟林峰. PVP 保护还原法制备金溶胶 [J]. 稀有金属材料与工程,2003,32(1): 50-53.
    [146] 陈文兴,吴雯,陈海相,沈之荃. 丝素蛋白原位还原制备纳米贵金属胶体及表征 [J]. 中国科学(B 辑),2003,33(3):185-191.
    [147] K. Nakamura, Y. Mori. Preparation of gold nanoparticle in organic suspension and clay gel solution [J]. J. Chem. Eng. Jap., 2001, 34(12): 1538-1544.
    [148] J. Wang, K.G. Neoh, E. T. Kang. Preparation of nanosized metallic particles in polyaniline [J]. J. Colloid. Inter. Sci., 2001, 239: 78-86.
    [149] K. Esumi, T. Hosoya, A. Suzki, et al. Preparation of hydrophbitically modified poly dendrimerencapsulated gold nanoparticles in organic solvents [J]. Colloid. Inter. Sci., 2000, 229(1): 303-306.
    [150] K. R. Brown, M. J. Natan. Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surface [J]. Langmuir, 1998, 14:726.
    [151] 朱梓华,朱涛,刘忠范. 大粒径单分散金纳米粒子的水相合成 [J]. 物理化学学报,2004,20(2):211-213.
    [152] 冯忠伟,蒋治良,凌绍明,李芳. Ag/Au 复合纳米粒子的制备 [J]. 贵金属, 2001, 22(1): 17-20.
    [153] 纪小会,王连英,袁 航,马 岚,白玉白 X,李铁津. Au/Ag 核-壳结构复合纳米粒子形成机制的研究 [J]. 化学学报,2003,61(10):1556-1560.
    [154] X. C. Xu, W. S. Yang, J. Liu, et al. Synthesis of a high-permeance NaA Zeolite memberance by microwave heating [J]. Adv. Mater,2000,3(12):195-197.
    [155] 蒋治良,冯忠伟. 液相金纳米粒子的分频和倍频散射光研究 [J]. 广西师范大学学报(自然科学版),2002,18(4):60-65.
    [156] 覃爱苗,蒋治良,邹节明,王力生,廖雷,尹文清. 用聚丙烯酰胺微波高压合成金纳米粒子 [J]. 应用化学,2002,19(12):1150-1153.
    [157] 杨立平,涂伟霞. 微波法合成纳米金胶体颗粒的调控研究 [J]. 物理化学学报,2006,22(4):513-516.
    [158] K. Mallick, Z. L. Wang, T. Pal. Seed-mediated successive growth of gold particles accomplished photochemical approach for size-controlled synthesis [J]. J. Photochemistry and Photobiology A-Chemistry, 2001, 140(1):75-80.
    [159] S. Mossmer, J. P. Spatz, M.Moller, T. Aberle, J. Schmidt, W. Burchard. Solution behavior of Poly(styrene)-block-poly(2-vinylpyridine) micelles containing gold nanoparticles [J]. Macromolecules, 2000, 33: 4791-4798.
    [160] S. Meltzer, R. Resh, B. E. Koel, M. E. Thompson, A. Madhukar, A. A. G. Requicha, P. Will. Fabrication of nanostructures by hydroxylamine seeding of gold nanoparticle templates [J]. Langmuir, 2001, 17: 1713-1718.
    [161] 刘庆业,覃爱苗,蒋治良,何佑秋,刘绍璞. 聚乙二醇光化学法制备金纳米微粒及共振散射光谱研究 [J]. 光谱学与光谱分析,2005,25(11):1857-1860.
    [162] T. K. Sau, A. Pal, N. R. Jana, Z. T. Wang. Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles [J]. J. Naonoparticle Research,2001,3(4):257-261.
    [163] 吴泓橙,董守安,董颖男,唐 春,杨生春. 金纳米粒子的阳光光化学合成和晶种媒介生长 [J].高等化学学报,2007,28(1):10-15.
    [164] A. Pal. Photochemical synthesis of gold nanoparticles via controlled nucleation using a bioactive molecule [J]. Materials Letter,2004,58:529-534.
    [165] A. Lattes, I. Rico, A. de Savignac, A. Samii. Formamide, a water substitute in micelles and microemulsions: structural analysis using a Diel-Alder reaction as a chemical probe [J]. Tetrahedron. 1987, 43: 1725-1735.
    [166] A. Taleb, C. Petit, M. P. J. Pileni. Optical properties of self-assembled 2D and 3D superlattices of silver nanoparticles [J]. J. Phys. Chem. B, 1998, 102: 2214-2220.
    [167] F. Chen, G.Q. Xu, T. S. A. Hor. Preparation and assembly of colloidal gold nanoparticles in CTAB stabilized reverse microemulsion [J]. Mater. Lett., 2003, 57: 3282-3286.
    [168] B. H. Sohn, J. M. Choi, S. Yoo. S. H. Yun, et al. Directed self-assembly of two kinds of nanoparticles utilizing monolayer films of diblock copolymer micelles [J]. J. Am. Chem. Soc., 2003, 125: 6368-6369.
    [169] Y. Moris, S. I. Okamoto, T. Aashi. Preparation of gold nanoparticles in water-in-oil microemulsion [J]. Kagaku kogaku Ronbunshu, 2001, 27(6): 736-741.
    [170] A. Manna, T. Imae, T. Yogo, K. Aoi, M. Okazaki. Synthesis of gold nanoparticles in a Winsor II type microemulsion and their characterization [J]. J. Colloid Interface Sci., 2002, 256: 297-303.
    [171] V. Arcoleo, V. T. Liveri, AFM investigation of gold nanoparticles synthesized in water/AOT/n-heptanes [J]. Chem. Phys. Lett., 1996, 258: 223-227.
    [172] F. Porta, L.Prati, M. Rossi, G. Scari. Synthesis of Au(0) nanoparticles from W/O microemulsion [J]. Colloids Surf., 2002, 211: 43-48.
    [173] S. Liu, J. V. M. Weaver, M. Save, S. P. Armes. Synthesis of pH- responsive shell cross-linked micelles and their use as nanoreactors for the preparation of gold nanoparticles [J]. Langmiur, 2002, 18: 8350-8357.
    [174] G. Carrot, J. C. Valmalette, C. J. G. Plummer, S. M. Scholz, J. Dutta, et al. Gold nanoparticle synthesis in graft copolymer micelles [J]. Colloid Polym. Sci., 1998, 276: 853-859.
    [175] C. L.Chiang. Controlled growth of gold nanoparticles in AOT/C12E4/Isooctane mixed reverse micelles [J]. J. Colloid Surf. Sci., 2001, 239: 334-341.
    [176] C. L. Chiang. Controlled growth of gold nanoparticles in Aerosol-OT/Sorbitan monooleate/isooctane mixed reverse micelle [J]. J. Colloid Interface Sci., 2000, 230: 60-66.
    [177] F. Gronhn, B. J. Bauer, Y. Akpalu, et al. Dendrimer templates for the formation of gold nanoclusters [J]. Macromolecules, 2000, 33: 6042-6050.
    [178] R. Y. Wang, J. Yang, Z. Zhang, et al. Dendron-controlled nucleation and growth of gold nanoparticles [J]. Angew. Chem. Int. Ed, 2001, 40: 549-552.
    [179] 张冬柏, 齐利民, 马季铭. 液晶模板法制备 Au 纳米线 [J]. 高等学校化学学报, 2003, 24(12): 2143-2146.
    [180] M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. J. Whyman. Synthesis of thiol-derivatied gold nanoparticles in a two phase liquid-liquid system [J]. J. Chem. Soc., Chem. Commun., 1994,7: 801-802.
    [181] M. C. Daniel, D. Astruc. Gold nanoparticles: Assembly, supramolecular chemisty, quantum-size-related properties, and application toward biology, catalysis and nanotechnology [J]. Chem. Rev, 2004, 104: 293-346.
    [182] S. Chen, 4-Hydroxythiophenol-protected gold nanoclusters in aqueous media [J]. Langmiur, 1999,24 15:7551-7557.
    [183] S. Chen, R.W. Murray. Arenethiolate monolayer-protected gold clusters. [J] Langmiur, 1999, 15: 682-689.
    [184] M. J. Hostetler, S. J. Green, J. J. Stokes, R. W. Murray. Monolayers in three dimensions: synthesis, and electrochemistry o f w-funtionalized alkanethiolate-stabilized gold cluster compounds [J]. J. Am. Chem. Soc., 1996, 118: 4212-4213.
    [185] A. C. Templeton, W. P. Wuelfing, R. W. Murray. Monolayers-protected cluster molecules [J]. Acc. Chem. Res., 2000, 33: 27-36.
    [186] M. Brust, J. Fink, D. Bethell, D. J. Schiffirn, C. J. Kiely. Synthesis and reactions of functionalized gold nanoparticles [J]. J. Chem. Soc., Chem. Commun., 1995, 16: 1655-1656.
    [187] O. Tzhayik, P. Sawant, S. Efrima, E. Kovalev, et al. Xanthate capping of silver, copper, and gold colloids [J]. Langmiur, 2002, 18: 3364-3369.
    [188] T. Yonezawa, K. Yasui, N. Kimizuka. Controlled formation of smaller gold nanoparticles by the use of four-chained disulfide stabilizer [J]. Langmiur, 2001, 17: 271-273.
    [189] R. Balssubramanian, B. Kim, S.L. Tripp, X. Wang, et al. Dispersion and stability studies of resorcinarene-encapsulated gold nanoparticles [J]. Langmiur, 2002, 18: 3676-3681.
    [190] K. R. Brown, M. J. Natan. Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces [J]. Langmiur, 1998, 14: 726-728.
    [191] N. R. Jana, L. Gearheart, C. J. Murphy. Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles [J]. Chem. Mater, 2001, 13: 2313-2322.
    [192] H. Shi, L. Zhang, W. Cai. Preparation and optical absorption of gold nanoparticles within pores of mesoporous silica [J]. Materials Research Bulletin, 2000, 35: 1689-1695.
    [193] 王健, 朱涛, 张续等. 表面增强拉曼散射强度与金纳米粒径关系 [J]. 物理化学学报, 1999, 15(5): 476-480.
    [194] K. Nakamura, T. Kawabata, Y. Mori. Size distribution analysis of colloidal gold by small-angle-X-ray scattering and light absorbance [J]. Powder Technol., 2003, 131: 120-128.
    [195] C. L. Cleveland, U. Landman, M. N. Shafigullin, P. M. Stephens, R. L. Whetten. Structural evolution of larger gold clusters [J]. Z. Phys. D, 1997, 40: 503-508.
    [196] Z. J. Liang, A. Susha, F. Caruso. Gold nanoparticle-based core-shell and hollow spheres and ordered assemblies thereof [J]. Chem. Mater., 2003, 15(16): 3176-3183.
    [197] 蒋治良,冯忠伟, 李廷盛, 李芳, 钟福新, 谢济运, 义祥辉. 金纳米粒子的共振散射光谱 [J]. 中国科学(B 辑), 2001, 31(2): 183-188.
    [198] 彭剑淳,刘晓达,丁晓萍,付占江,王全立. 可见光光谱法评价胶体金粒径及分布 [J]. 军事医学科学院院刊, 2000, 24(3): 211-212.
    [199] 李芳, 李廷盛, 梁宏. 共振散射光强度与金粒子粒径的关系 [J]. 高等学校化学学报, 2000, 21(10): 1488-1490.
    [200] 胡效亚,陈洪渊. 纳米团簇研究新进展及其在分析化学中的应用 [J]. 大学化学,2002,17(2):1-12.
    [201] M. J. Hostetler, S. J. Green, J. J. Stokes, et al. Monolayers in three dimensions: synthesis and electrochemistry of ω-functionalized Alkanethiolate-stabilized gold cluster compounds [J]. J. Am. Chem. Soc., 1996, 118: 4212-213.
    [202] C. B. Murray, C. R. Kagan, M. G. Bawendi. Self-organization of CdSe nanocrystallites into three-dimension quantum dot superlattice [J]. Science, 1995, 270: 1335-1338.
    [203] S. Chen. Langmiur-Blodgett fabrication of two-dimensional robust cross-linked nanoparticles assemblies [J]. Langmiur, 2001, 17(9): 2878-2884.
    [204] M. Brust, D. Bethell, D. J. Schiffrin, et al. Novel gold-thiol nano-networks with non-metallic electronic properties [J]. Adv. Mater, 1995, 7(9): 795-797.
    [205] C. A. Mirkin, R. L. Letsinger, R. C. Mucic, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials [J]. Nature, 1996, 382: 607-609.
    [206] M. Lahav, T. Gabriel, A. N. Shipway, et al. Assembly of a Zn(II)-porphyrin-bipyridinium dyad and Au-nano-particles superstructures on conductive surfaces [J]. J. Am. Chem. Sco., 1999, 121(1): 258-259.
    [207] A. K. Boal, F. Iihan, J. E. Derouchey, et al. Self-assembly of nanoparticles into structured spherical and network aggregates [J]. Nature, 2000, 404: 746-748.
    [208] T. Teranishi, M. Haga, Y. Shiozawa, et al. Self-organization of Au nanoparticles protected by 2,6-bis(1’-(8-thioloctyl) benzimidazol-2-yl)pyridine [J]. J. Am. Chem. Sco., 2000, 122(17): 4237-4238.
    [209] 王桐信,张德清,徐伟,李书宏,朱道本. 一种形成金纳米粒子链状结构聚集体的新组装方法[J]. 科学通报,2002,47(21): 1635-138.
    [210] S. Liu, T. Zhu, R. Hu, Z. Liu. Evaporation-induced self-assembly of gold nanoparticles into a highly organized two-dimensional array [J]. Phys. Chem. Chem. Phys., 2002, 4: 6059-6062.
    [211] 胡瑞省,刘善堂,朱梓华,朱涛,刘忠范. 金纳米粒子在平整硅基表面上的组装 [J]. 物理化学学报, 2000, 16(3): 202-206.
    [212] C. J. Kiely, J. Fink, M. Brust, D. Bethell, D. J. Schiffrin. Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters [J]. Nature, 1998, 396: 444-446.
    [213] 周学华,刘春艳,张志颖,江 龙,李津如. 有序纳米金颗粒的多层组装 [J]. 感光科学与光化学, 2004, 22(4): 251-258.
    [214] Y. J. Liu, A. B. Wang, R. Claus. Molecular self-assembly of TiO2/polymer nanocomposite films [J]. J. Phys. Chem. B, 1997, 101(8): 1385-1388.
    [215] 徐 力,郭 轶,解仁国,纪小会,庄家骐,杨文胜,李铁津. Lys-Lys 诱导的金纳米粒子组装 [J]. 化学学报,2003,61(4):469-472.
    [216] J. Liu, J. Alvarez, W. Ong, A. E. Kaifer. Network aggregates formed by C60 and gold nanoparticles capped withγ-cyclodextrin hosts [J]. Nano. Lett., 2001, 1: 57-60.
    [217] C. A. Mirkin, R. L. Letsinger, R. C.Mucic, J. J. Storhoff. A DNA-based method for rationally assembling nanoparticles into macrocopicmaterials [J]. Nature, 1996, 382: 607- 609.
    [218] 崔亚丽,胡道道,房喻. 特定多核苷酸序列检测新方法 [J]. 自然杂志,2003,23(6):335-339.
    [219] R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles [J]. Science, 1997, 277: 1078-1081.
    [220] W. D. Geoghegan, S. Ambegaonkar, N. J. Calvanico. Passiver gold agglutination-an alternative to passive hemagglutination [J]. J. Immunol. Methods, 1980, 34(1): 11-21.
    [221] G. Dansher, J. O. R. Norgaard. Light microscopic visualization of colloidal gold on resin embedded tissue [J]. J. Histochem Cytomchem, 1983, 31: 1394-1398.
    [222] C. S. Holgate, P. Jackson, P. N. Cowen, C. C. Bird. Immunogold-silver staining: new method of immunostaining with enhanced sensitivity [J]. J. Histochem Cytomchem, 1983, 31: 938-944.
    [223] S. Shen, S. Wang, W. B. Chang. Application of colloidal gold on immunoassay [J]. Journal of Wuhan University. 2000, 46(4): 393-399.
    [224] R. J. Binder. Ultrastructural localization of intracellular antigens by the use of protein A-gold complex [J]. Histochem. Cytochem, 1978, 26: 1074-1081.
    [225] C. S. Holgate. Immunogold-silver staining: new method of immuostaining with enhanced sensitivity [J]. Histochem. Cytochem, 1983, 31: 938-944.
    [226] 方萍,胡丽萍,陈保平,梁浩粦,雷森林,江艳,梁惠,陈晓 . 免疫金银增强染色技术在电镜中的应用 [J]. 1996,5(3):361-364.
    [227] 李少玲,张向红,郝晶,武玉玲,高英茂 . 改良的免疫电镜胶体金技术 [J]. 山东医科大学学报, 2000, 38(2): 224.
    [228] 丁明孝,梁凤霞,焦仁杰,翟中和. 胶体金标记-DNA、RNA、蛋白质和糖的定性定位的研究 [J]. 电子显微学报,1994,13(5):377.
    [229] M. L. John, G. P. James, G. B. Eric, et al. A mitotic formation of the Golgi Apparatus in Hela cell [J]. J.Cell Biol., 1987, 104: 865.
    [230] 卢光新. 胶体金标记探针的制备方法及其应用 [J]. 青海大学学报(自然科学学版), 2004, 22(3): 43-46.
    [231] 徐颖,胡东维,娄沂春,方月鲜,李德葆. 胚凝集素与纤维素酶胶体金探针的混合一步法标记[J]. 电子显微学报, 2000, 19(2): 179-182.
    [232] 李晓华. 胶体金标记及应用 [J]. 生物学通报, 2004,39(12): 54-55.
    [233] 杨云,聂立波 . 纳米金在生物标记分析中的应用进展 [J]. 株洲工学院学报 , 2006, 20(4):123-127.
    [234] 蔡强,吴维明,陈裕泉. 纳米的电检测方法与免疫检测中的应用 [J]. 传感技术学报, 2003, 2: 124-128.
    [235] S. J. Park, T. A. Taton, C. A. Mirkin. Arry-based electrical detection of DNA with nanoparticle [J].Science, 2002, 295(22): 1503-1506.
    [236] 楚 霞,傅 昕,沈国励,俞汝勤. 基于银增强金标记物的阳极溶出伏安免疫分析用于补体第三成分的测定 [J]. 高等化学学报,2005,26(9):1637-1639.
    [237] O. D. Velev ,E. W. Kaler. In situ assembly of colloidal particles into miniaturized biosensors [J]. Langmuir, 1999,15:3693-3698.
    [238] H. K. Jeong, H. C. Joung, S. C. Geun, L. W. Chi. Conductimetric membrane strip immunosensor with polyanline-bound gold colloids as signal generator [J]. Science,2002,295(22):1503-1506.
    [239] T. A. Taton, C. A. Mirkin, R. L. Letsinger. Scanometic DNA array detection with Nanoparticle probes [J]. Science, 2000, 289(8): 1757-1760.
    [240] 逄键涛,文思远,王升启. 金纳米颗粒聚集以及金纳米探针-微阵列技术研究进展 [J]. 分析化学, 2006, 34(6):884-888.
    [241] Y. Wei, Y. Cao,R. Jin,C. A. Mirkin. Nanopartieles with Raman Spectroscopic Fingerprints for DNA and RNA Detection [J].Science, 200, 297:1536-1540
    [242] I. lexandre, S. Hamels, S. Dufour, J. Collet, et al Colorimetric silver detection of DNA microarrays [J]. Anal. Biochem., 2001, 295: 1-8.
    [243] R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin. Selective colorimetric detection of polvnucleotides based on the distance-dependent optical properties of gold nanoparticles. Science [J]. 1997, 277: 1078-1081.
    [244] M. Beggs, M. Novotny, S. Sampedro, et al. A self-performing chromatog-raphy immunoassay for the quanlitative determination of HCG in urine and serum [J]. Clin. Chem., 1990, 36(6): 1084-1085.
    [245] 李旭晨,刘洪阳,孙长杰,刘成. 免疫层析法用于表面抗原的检测 [J]. 白求恩医科大学学报, 1998,24(4):430-431.
    [246] 陈英剑,李芳秋,虞伟,武建国. 检测 CyPA 自身抗体滴金免疫测定法的建立 [J]. 南京大学学报(自然科学版), 1999,35(2):200-203.
    [247] 陈琼,孔繁德,张长弓,彭海滨. 徐淑菲沙门氏菌快速检测试纸条的研制与应用 [J]. 福建畜牧兽医, 2006, 28(5): 6-8.
    [248] 蔡家利,吴胜昔,胡仁建,姜和,王健. 胶体金免疫层析法快速诊断禽流感 [J]. 重庆工学院学报, 2006, 20(11): 4-7.
    [249] M. Muler-Barderff, H. Fretag, T. Scheffold, et al. Development and characterization of a rapid assay for bedside determination of cardiac troponin T [J]. Circulation, 1995, 92(10): 2869-2875.
    [250] T. Takeda, K. Yamagata, Y. Youhida, et al. Evaluation of immunochromatography-based rapid detection kit for fecal Escherichia coli O157 [J]. Kansenshogau-Zasshi, 1998, 72 (8): 834-839.
    [251] J. Hedstrom, A. Korvuo, P. Kenkimaki, et al. Urinary trypsinogen22 test strip for acute pancreatitis [J ]. The Lancet, 1996, 347: 729-731.
    [252] 余新沛,陈政良. C3 研究进展 [J]. 免疫学杂志,2004,20(6):483-486.
    [253] 甘慧,杨军,孙萍. 人类补体 C3 研究进展 [J]. 国外医学临床生物化学与检验学分册, 2004, 25(6): 519-521.
    [254] 沈霞, 李稻. 临床免疫学与免疫学新技术 [M]. 北京: 人民军医出版社, 2002: 113-114.
    [255] 吴建民. 实用医学检验参考值和异常结果分析 [M]. 北京: 人民卫生出版社, 1998: 167.
    [256] S. Spaska, S. S. Emil. Comparative study of circulating immune complexes quantity detection by three assays-CIF-ELISA, C1q-ELISA and anti-C3 ELISA [J]. J. Immunol. Methods, 2001, 253: 13-21.
    [257] 郑武飞. 医学免疫学 [M]. 第一版, 北京: 人民卫生出版社, 1991: 72-73.
    [258] 沈关心,周汝麟.现代免疫学实验技术 [M]. 湖北科学技术出版社, 1998: 236.
    [259] 武建国. 实用临床免疫学检验 [M]. 南京: 江苏科学技术出版社, 1989: 190.
    [260] 武建国. 实用临床免疫学检验 [M]. 南京: 江苏科学技术出版社, 1989: 66-67.
    [261] B. C. G. Dujardin, P. C. Driejijk, A. F. M. Roijers, T. A. Out. The determination of the complement components C1q, C4 and C3 in serum and cerebral fluid by radioimmunoassay [J]. J. Immunol. Methods, 1985, 80(2): 227-237.
    [262] O. Gaillard, D. Meillet, M. C. Diemert, L. Musset, J. Delattre, E. Schuller, J. Galli. Time-resolved immunofluorometricassay of complement C3: application to cerebrospinal fluid [J]. Clin. Chem., 1993, 39: 309-318.
    [263] S. A. Stanilova, E. S. Slavov. Comparative study of circulating immune complexes quantity detection by three assays-CIF-ELISA, C1q-ELISA and anti-C3 ELISA [J]. J. Immunol. Methods, 2001, 253: 13-21.
    [264] 吴再生, 李继山, 罗明辉, 沈国励, 俞汝勤. 一种基于静电吸附作用的直接检测补体 C3 新型可再生电容型免疫传感器 [J]. 高等学校化学学报, 2005, 26: 441-445.
    [265] 刘德生. 火箭免疫电泳法测定免疫球蛋白及补体 C3 方法改进 [J]. 武汉医学院学报, 1985,3:206-209.
    [266] 沈关心, 周汝麟. 现代免疫学实验技术 [M]. 湖北科学技术出版社, 1998:236.
    [267] 周谷珍,李继山,蒋健晖,沈国励,俞汝勤.纳米金聚集复合物放大的计时电位法测定补体 C3 [J]. 化学学报, 2005, 63: 2093-2097.
    [268] Y. L.Wu,L.D. Li, J. M. Liu, G. H. Zhu. The enhancement effect of CaCl2 on solid substrate room temperature phosphorescence of polyhalogenated derivatives of fluorescein and application in immunoassay [J]. Anal. Chim. Acta, 2005, 539: 271-275.
    [269] M. Rajanikanth, R.C. Gupta. LC fluorescence method for multiple synthetic compounds to rapidly create in vivo pharmacokenetic database utilizing ‘N-in -One’ dosing [J]. Journal of Pharmaceutical and Biomedical Analysis, 2001, 26: 519-530.
    [1] 甘慧,杨军,孙萍. 人类补体 C3 研究进展 [J]. 国外医学临床生物化学与检验学分册,2004, 25(6): 519-521.
    [2] 沈霞,李稻. 临床免疫学与免疫学新技术 [M]. 北京: 人民军医出版社, 2002: 113-114.
    [3] 吴建民. 实用医学检验参考值和异常结果分析 [M]. 北京: 人民卫生出版, 1998: 167.
    [4] S. A. Stanilova, E. S. Slavov. Comparative study of circulating immune complexes quantity detection by three assays-CIF-ELISA, C1q-ELISA and anti-C3 ELISA [J]. J. Immunol. Methods, 2001, 253: 13-21.
    [5] F. Sassi, M. Bejaoui, K. Ayed. A congenital deficiency of the C3 fraction of complement [J]. A familial study Tunis Med., 2003, 8 (5): 354-358.
    [6] 郑武飞. 医学免疫学 [M]. 第一版, 北京: 人民卫生出版社, 1991: 72-73.
    [7] S. R. Barnum, J. E. Uolanakis. Structure and function of C3.In: Cruse, J.M., Lewis Jr., R.E. (Eds.). Molecules and Cells of Immunology [M]. Karger, Basel, 1990: 208.
    [8] R.Vlaicu, H. G. Rus, F. Niculescu, Cristea, Anca, Rev.Roum.Med. Quantitative determination of Immunoglobulins and complement components in human aortic atherosclerotic wall [J]. Med Interne, 1985, 23(1): 29-35.
    [9] A. Fryden, P. Forsberg, H. Link. Synthesis of the complementfactors C3 and C4 within the central nervous system overthe course of aseptic meningitis [J]. Acta Neurol Scand, 1983, 68: 157-164.
    [10] 吴再生, 李继山, 罗明辉, 沈国励, 俞汝勤.一种基于静电吸附作用的直接检测补体 C3 新型可再生电容型免疫传感器 [J]. 高等学校化学学报, 2005, 26: 441-445.
    [11] B. C. G. Dujardin, P. C. Driejijk, A. F. M. Roijers, T. A. Out. The determination of the complement components C1q, C4 and C3 inserum and cerebral fluid by radioimmunoassay [J]. Immunol. Methods, 1985, 80(2): 227-237.
    [12] J. Zwirner, G. Dobos, O. Gotze. A novel ELISA for the assessment of classical pathway of complement activation in vivo by measurement of C4-C3 complexes [J]. J. Immunolo. Methods, 1995, 186: 55-66.
    [13] 刘德生. 火箭免疫电泳法测定免疫球蛋白及补体 C3 方法改进 [J]. 武汉医学院学报, 1985,3:206-209.
    [14] P. Richard, B. Poutrel. Deposition of complement compound on streptococcus agalactiae in bovine milk in the absence of inflammation [J]. Infect Immun, 1995, 63(9): 3422-3427.
    [15] 沈关心, 周汝麟. 现代免疫学实验技术 [M]. 湖北科学技术出版社, 1998: 236.
    [16] 武建国. 实用临床免疫学检验 [M]. 南京: 江苏科学技术出版社, 1989: 66-67.
    [17] P. Richard, B. Poutrel. Deposition of complement compound on streptococcus agalactiae in bovine milk in the absence of inflammation [J]. Infect Immun, 1995, 63(9): 3422-3427.
    [18] C. Q. Ma, K. A. Li, S. Y. Tong. Resonance light scattering spectroscopy application to the determination of protein using bromophrogallol red [J]. Bull Soc Jpn, 1997, 70: 129-133.
    [19] C. X. Guo, H. X. Shen. Sensitive and simple determination of protein by resonance Rayleigh scattering with 4-azochromotropic acid phenylfluorene [J]. Anal Chim. Acta, 2000, 408: 177-182.
    [20] 杨睿, 刘绍璞. 某些分子光谱分析法测定蛋白质的进展 [J]. 分析化学, 2001, 292: 232-241.
    [21] 马春琪, 刘瑛, 李克安, 童沈阳. 瑞利光散射及其在生物化学分析中的应用研究 [J]. 科学通报, 1999, 7: 682-690.
    [22] 李原芳, 黄承志, 胡小莉. 共振光散射原理及其在生化分析中的应用 [J]. 分析化学, 1998, 26: 1508-1515.
    [23] 蒋治良, 邹节明, 王力生. 蛋白质与三氯乙酸相互作用的共振散射光谱研究及分析应用 [J]. 分析化学, 2003, 31: 70-73.
    [24] 武建国. 实用临床免疫学检验[M]. 南京: 江苏科学技术出版社, 1989: 218-219.
    [25] 邓俊耀,孙双娇,蒋治良,梁爱惠.免疫球蛋白 G 的免疫共振散射光谱分析 [J].光谱学与光谱分析,2006, 26: 1487-1489.
    [26] A. H. Liang, Z. L. Jiang, B. M. Zhang, Q. Y. Liu, et al. A new resonance scattering spectral method for the determination of trace amounts of iodate with rhodamine 6G [J]. Anal. Chim. Acta, 2005, 530(1): 131-134.
    [27] 武汉大学编. 仪器分析 [M]. 北京:高等教育出版社,2001: 6.
    [1] 甘慧,杨军,孙萍. 人类补体C3研究进展 [J]. 国外医学临床生物化学与检验学分册,2004, 25(6): 519-521.
    [2] 沈霞,李稻. 临床免疫学与免疫学新技术 [M]. 北京: 人民军医出版社, 2002: 113-114.
    [3] 吴建民. 实用医学检验参考值和异常结果分析 [M]. 北京: 人民卫生出版, 1998: 167.
    [4] S. A. Stanilova, E. S. Slavov. Comparative study of circulating immune complexes quantity detection by three assays-CIF-ELISA, C1q-ELISA and anti-C3 ELISA [J]. J. Immunol. Methods, 2001, 253: 13-21.
    [5] F. Sassi, M. Bejaoui, K. Ayed. A congenital deficiency of the C3 fraction of complement [J]. A familial study Tunis Med., 2003, 8 (5): 354-358.
    [6] Y. Mizuno, T. Hara. C3 deficiency [J]. Ryoikibetsu Shokogun Shirizu, 2000, 32: 196-198.
    [7] 郑武飞. 医学免疫学 [M]. 第一版, 北京: 人民卫生出版社, 1991: 72-73.
    [8] 武建国. 实用临床免疫学检验 [M]. 南京: 江苏科学技术出版社, 1989: 190.
    [9] S. R. Barnum, J. E. Uolanakis. Structure and function of C3. In: Cruse, J.M., Lewis Jr., R.E. (Eds.). Molecules and Cells of Immunology [M]. Karger, Basel, 1990: 208.
    [10] R. Vlaicu, H. G. Rus, F. Niculescu, Cristea Anca, Rev Roum Med. Quantitative determination of Immunoglobulins and complement components in human aortic atherosclerotic wall [J]. Med Interne, 1985, 23(1): 29-35.
    [11] A. Fryden, P. Forsberg, H. Link. Synthesis of the complementfactors C3 and C4 within the central nervous system overthe course of aseptic meningitis [J]. Acta Neurol Scand, 1983, 68: 157-164.
    [12] O. Gaillard, D. Meillet, M. C. Diemert, L. Musset, J. Delattre, E. Schuller, J. Galli. Time-resolved immunofluorometricassay of complement C3: application to cerebrospinal fluid [J]. Clin. Chem., 1993, 39: 309-318.
    [13] B. C. G. Dujardin, P. C. Driejijk, A. F. M Roijers, T. A. Out. The determination of the complement components C1q, C4 and C3 in serum and cerebral fluid by radioimmunoassay [J]. J. Immunol. Methods, 1985, 80(2): 227-237.
    [14] J. Zwirner, G. Dobos, O. Gotze. A novel ELISA for the assessment of classical pathway of complement activation in vivo by measurement of C4-C3 complexes [J]. J. Immunol. Methods, 1995, 186: 55-66.
    [15] 刘德生. 火箭免疫电泳法测定免疫球蛋白及补体C3方法改进 [J]. 武汉医学院学报. 1985,3:206-209.
    [16] 楚 霞, 傅 昕, 沈国励, 俞汝勤. 基于银增强金标记物的阳极溶出伏安免疫分析用于补体第三成分的测定 [J]. 高等学校化学学报, 2005, 20: 1637-1639.
    [17] 周谷珍, 李继山, 蒋健晖, 沈国励, 俞汝勤.纳米金聚集复合物放大的计时电位法测定补体C3 [J].化学学报, 2005, 63: 2093-2097.
    [18] 吴再生, 李继山, 罗明辉, 沈国励, 俞汝勤. 一种基于静电吸附作用的直接检测补体C3新型可再生电容型免疫传感器 [J]. 高等学校化学学报, 2005, 26: 441-445.
    [19] 龙 姝, 李继山, 王 桦, 沈国励, 俞汝勤. 基于邻苯二胺电聚合膜和PSS自组装的补体C压电免疫传感器 [J]. 湖南大学学报(自然科学版), 2003, 30: 26-30.
    [20] Y. L.Wu, L. D. Li, J. M. Liu, G. H. Zhu. The enhancement effect of CaCl2 on solid substrate room temperature phosphorescence of polyhalogenated derivatives of fluorescein and application in immunoassay [J]. Anal. Chim. Acta, 2005, 539: 271-275.
    [21] Y. Fu, L. D. Li, J. M. Liu, G. H. Zhu. Determination of human complement3 by solid substrate room temperature phosphorescence immunoassay with a labelled avidin-biotin bridge [J]. J. Immunol.Methods, 2004, 289: 57-64.
    [22] M. Rajanikanth, R. C. Gupta. LC fluorescence method for multiple synthetic compounds to rapidly create in vivo pharmacokenetic database utilizing ‘N-in -One’ dosing [J]. J. Pharmaceutical and Biomedical Analysis, 2001, 26: 519-530.
    [23] 沈关心, 周汝麟. 现代免疫学实验技术 [M]. 湖北科学技术出版社, 1998: 236.
    [24] 武建国. 实用临床免疫学检验 [M]. 南京: 江苏科学技术出版社, 1989:66-67.
    [25] J. Yguerabide, E. Yguerabide. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications-I. Theory [J]. Anal. Biochem, 1998, 262: 137-156.
    [26] J. Yguerabide, E. Yguerabide. Light-scattering submicroscopic particles as highly fluorescentanalogs and their use as tracer labels in clinical and biological applications-II. Experimental characterization [J]. Anal. Biochem, 1998, 262: 157-176.
    [27] K. L. Kelly, E. Coronado, L. L Zhao, G. C. Schatz. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment [J]. J. Phys. Chem. B, 2003, 107: 668-677.
    [28] A. Henglein. Phsicochemical properties of small metal particles in solution:"microelectrode"reactions, chemisorption, composite metal particles and atom-to-metal transition [J]. J. Phys. Chem. B, 1993, 97: 5457-5471.
    [29] A. A. Lazarides, G. C. Schatz. DNA-linked metal nanosphere materials: structural basis for the optical properties [J]. J. Phys. Chem. B, 2000, 104: 460-467.
    [30] G. L. Hornysk, C. J. Patdssi, C. R. Martin. Fabrication, characterization and optical properties of gold nanoparticles/porous alumina composite: the nonscattering Maxwell-garnett limit [J]. J. Phys. Chem. B, 1997, 101: 1548-1555.
    [31] W. M. Mullett, E. P. C. Lai, J. M. Yeung. Surface plasmon resonace based immunoassays [J]. Methods, 2000, 22: 77-91.
    [32] A. Kadir, R. L. Joseph, D. G. Chris. Nanogold plasmon resonace-based glucose sensing. 2. Wavelength-ratiometric resonance light scattering [J]. Anal. Chem, 2005, 77: 2007-2014.
    [33] R. A. Reynolds, C. A. Mirkin, R. L. Letsinger. Homogeneous nanoparticle-based quantitative colorimetric detection of oligonucleotides [J]. J. Am. Chem. Soc, 2000, 122: 3795-3798.
    [34] A. Labande, D. Astrue. Colloids as redox sensors: recognition of H2PO4-1 and HSO4-1 by amidoferrocenylackylthiol-gold nanoparticles [J]. Chem. Commun., 2000, 12: 1007-10008.
    [35] C. A. Mirkin, R. L. Letsinger, R. C. Mucic, J. J. Storhoff. A DNA-based method for rationally assembling nanoparticles into macroscopic materials [J]. Nature, 1996, 382: 607-609.
    [36] V. A. Bogatyrev, L. A. Dykman, Y. M. Krasnov, V. K. Plotnikov, N. G. Khlebtsov. Differential light scattering spectroscopy for studying biospecific assembling of gold nanoparticles with protein or oligonucleotide probes [J]. Colloid Journal, 2002, 64: 745-755.
    [37] 蒋治良, 冯忠伟, 李廷盛, 李芳. 金纳米粒子的共振散射技术 [J]. 中国科学(B辑), 2001, 31: 183-188.
    [38] 蒋治良, 李芳, 梁宏. 金纳米粒子的粒径与共振散射光强度的关系 [J]. 高等学校化学学报, 2002, 21: 1488-1491.
    [39] Z. L. Jiang, S. J. Sun, A. H. Liang, et al. Gold-labeled nanoparticle-based immunoresonance scattering spectral assay for trace apolipoprotein AI and apolipoprotein B [J].Clin. Chem., 2006, 52: 1389-1394.
    [40] Z. L. Jiang, S. J. Sun, A. H. Liang, et al. A new immune resonance scattering spectral assay for trace fibrinogen with gold nanoparticle label [J]. Anal. Chimi. Acta, 2006, 571(2): 200-205.
    [41] 王秀奇, 秦淑媛, 高天慧, 颜卉君. 基础生物化学实验 [M]. 北京:高等教育出版社(第二版)p.276.
    [42] 朱立平, 陈学清, 免疫学常用实验方法 [M]. 北京: 人民军医出版社, 1999: 426-430.
    [43] 沈霞, 李稻. 临床免疫学与免疫学新技术 [M]. 北京:人民军医出版社, 2002: 44-45.
    [44] 孔繁德, 黄印尧, 赖清金. 免疫胶体金技术及其发展前景[J]. 福建畜牧兽医, 2002, 24(7): 42-45.
    [45] M. E. Grevink, G. Horst, P. C. Limburg, C. G. M. Kallenberg, M Bijl. Levels of complement in sera from inactive SLE patients, although decreased, do not influence in vitro uptake of poptotic cells [J]. J. Autoimmunity, 2005, 24: 329-336.
    [46] 武建国. 实用临床免疫学检验 [M]. 南京: 江苏科学技术出版社, 1989: 379.
    [47] V. Tregoat, P. Montagne, M. L. Cuilliere, M. C. Bene, G. Faure. C3/C4 Concentration ratio reverses between colostrum and mature milk in human lactation [J]. J. Clin. Immunol., 1999, 19: 300.
    [48] D. D. Carl, W. M. Kameron, S. S. Richard, L .C. Robert. Use of laser nephelometry in the measurement of serum proteins [J]. Clin. Chem., 1976, 22: 1465-1471.
    [1] F. Fredslund, L. Jenner, L. B. Husted, J. Nyborg, G. R. Andersen, L. J. Sottrup. The structure of bovine complement component 3 reveals the basis for thioester function [J]. J. Mol. Biol, 2006, 361: 115-127.
    [2] 余新沛, 陈政良. C3 研究进展 [J]. 免疫学杂志, 2004, 20: 483-486.
    [3] 吴建民. 实用医学检验参考值和异常结果分析 [M]. 北京: 人民卫生出版社, 1998 : 167.
    [4] A. S. Spaska, S. S. Emil. Comparative study of circulating immune complexes quantity detection by three assays-CIF-ELISA, C1q-ELISA andanti-C3 ELISA [J]. J. Immunol. Methods, 2001, 253: 13-21.
    [5] A. R. Kerr, G. K. Paterson, A. T. Riboldi, T. J. Mitchell. Innate immune defense against pneumococcal pneumonia requires pulmonary complement component C3 [J]. Infection and Immunity, 2005, 73: 4245-4252.
    [6] S. R. Barnum, J. E. Uolanakis. Structure and function of C3. In: Cruse, J. M., Lewis Jr., R. E. (Eds.). Molecules and Cells of Immunology [M]. Karger, Basel, 1990: 208.
    [7] R. Vlaicu, H. G. Rus, F. Niculescu, A. Cristea, R. M. Rev. Quantitative determination of Immunoglobulins and complement components in human aortic atherosclerotic wall [J]. Med Interne,1985, 23: 29-35.
    [8] A. Fryden, P. Forsberg, H. Link. Synthesis of the complement factors C3 and C4 within the central nervous system overthe course of aseptic meningitis [J]. Acta Neurol Scand, 1983, 68: 157-164.
    [9] J. Zwirner, G. Dobos, O. Gotze. A novel ELISA for the assessment of classical pathway of complement activation in vivo by measurement of C4-C3 complexes [J]. J. Immunol. Methods, 1995, 186: 55-66.
    [10] Y. Fu, L. D. Li, J. M. Liu, G. H. Zhu. Determination of human complement3 by solid substrate room temperature phosphorescence immunoassay with a labelled avidin-biotin bridge [J]. J. Immunol. Methods, 2004, 289: 57-64.
    [11] 沈关心, 周汝麟. 现代免疫学实验技术 [M]. 湖北科学技术出版社, 1998: 236.
    [12] B. C. G. Dujardin, P. C. Driejijk, A. F. M. Roijers, T. A. Out. The determination of the complement components C1q, C4 and C3 in serum and cerebral fluid by radioimmunoassay [J]. J. Immunol. Methods, 1985, 80: 227-237.
    [13] L. A. Lyon, M. D. Musick, P. C. Smith, B. D. Reiss, D. J. Pe?a, M. J. Natan. Surface plasmon resonance of colloidal Au-modified gold films [J]. Sens Acutators B, 1999, 54: 118-124.
    [14] W. M. Mullett, E. P. C. Lai, J. M. Yeung. Surface plasmon resonace based immunoassays [J]. Methods, 2000, 22: 77-91.
    [15] A. Kadir, R. L. Joseph, D. G. Chris. Nanogold plasmon resonace-based glucose sensing. 2.Wavelength-ratiometric resonance light scattering [J]. Anal. Chem., 2005, 77: 2007-2014.
    [16] R. A. Reynolds, C. A. Mirkin, R. L. Letsinger. Homogeneous nanoparticle-based quantitative colorimetric detection of oligonucleotides [J]. J. Am. Chem. Soc, 2000, 122: 3795-3798.
    [17] N. T. K. Thanh, Z. Rosenzweig. Development of an aggregation-based immunoassay for anti-protein a using gold nanoparticles [J]. Anal. Chem., 2002, 74: 1624-1626.
    [18] J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin, R. L. Letsinger. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes [J]. J. Am. Chem. Soc, 1998, 120: 1959-1964.
    [19] T. A. Taton, C. A. Mirkin, R. L. Letsinger. Scanometric DNA array detection with nanoparticle probes [J]. Science, 2000, 289: 1757-1760.
    [20] S. J. Park, A. A. Lazarides, C. A. Mirkin, P. W. Brazis, C. R. Kannewurf, R. L. Letsinger. The electrical properties of gold nanoparticle assembli linked by DNA [J]. Angew. Chem. Int. Ed, 2000, 39: 3845-3848.
    [21] K. C. Grabar, P. C. Smith, M. D. Musick, J. A. Davis, D. G. Walter, M. A. Jackson, A. P. Guthrie, M. J. Natan. Kinetic control of interparticle spacing in Au colloid-based surfaces: rational nanometer-scale architecture [J]. J. Am. Chem. Soc, 1996, 118: 1148-1153.
    [22] L. A. Lyon, M. D. Musick, M. J. Natan. Colloidal Au-enhanced surface plasmon resonance immunosensing [J]. Anal. Chem, 1998, 70: 5177-5183.
    [23] G. Dansher, J. O. R. Norgaard. Light microscopic visualization of colloidal gold on resin embedded tissue [J]. J. Histochem Cytomchem, 1983, 31: 1394-1398.
    [24] S. J. Park, T. A. Taton, C. A. Mirkin. Arry-based electrical detection of DNA with nanoparticle [J]. Science, 2002, 295: 1503-1506.
    [25] Z. Maya, B. Ronan, P. Inna, W. Itamar. Biocatalytic growth of Au nanoparticles: from mechanistic aspects to biosensors design [J]. Nano letters, 2005, 5: 21-25.
    [26] C. S. Holgate, P. Jackson, P. N. Cowen, C. C. Bird. Immunogold-silver staining: new method of immunostaining with enhanced sensitivity [J]. J. Histochem Cytomchem, 1983, 31: 938-944.
    [27] P. M. Lackie. Immunogold-silver staining for light microscopy [J]. Histochem Cell Biol, 1996, 106: 9-17.
    [28] W. Klara, C. S. M. Christian, W. Franz. Signal enhancement at the electron microscopic level using nanogold and gold-based autometallography [J]. Histochem Cell Biol, 2000, 114: 489-495.
    [29] J. H. Muller. S. Schafer, A. Sendelhofer, S. Weis. The application of a biotin-and-biotin gold technique proving a significant signal intensification in electron microscopic immunocytochemistry: a comparison with the ultrasmall immunogold silver staining procedure [J]. Histochem Cell Biol, 1998, 109: 119-125.
    [30] Z. P. Li, C. H. Liu, Y. S. Fan, Y. C. Wang, X. R. Duan. A chemiluminescent metalloimmunoassay based on silver deposition on colloidal gold labels [J]. Anal. Biochem., 2006, 359(2): 247-252.
    [31] X. Chu, X. Fu, K. Chen, G. L. Shen, R. Q. Yu. An electrochemical stripping metalloimmunoassay based on silver-enhanced gold nanoparticle label [J]. Biosens. Bioelectron., 2005, 20: 1805-1812.
    [32] B. Foultier, L. H. Moreno, D. Flandre, J. Remacle. Comparison of DNA detection methods using nanoparticles and silver enhancement [J]. Naobiontechnol, 2005, 152: 3-12.
    [33] P. Eliades, E. Karagouni, I. Stergiatou, K. Miras. A simple method for the serodiagnosis of human hydatid disease based on a protein A/colloidal dye conjugate [J]. J. Immunol. Methods, 1998, 218: 123-132.
    [34] M. G. Sumi, A. Mathai, C. Sarada, V. V. Radhakrishnan. Rapid diagnosis of tuberculous meningitis by a dot immunobinding assay to detect mycobacterial antigen in cerebrospinal fluid specimens [J]. J. Clin. Microbiol, 1999, 37: 3925-3927.
    [35] P. V. Coyle, A. Desai, D. Wyatt, C. McCaughey, H. J. O’Neill. A comparison of virus isolation, indirect immunofluorescence and nested multiplex polymerase chain reaction for the diagnosis of primary and recurrent herpes simplex type 1 and type 2 infections [J]. J. Virol. Methods, 1999, 83: 75-82.
    [36] G. R. H. Owen, D. O. Meredith, I. A. P Gwynn, R. G. Richards. Enhancement of immunogold-labelled focal adhesion sites in fibroblasts cultured on metal substrate: problems and solutions [J]. Cell Biology International, 2001, 25: 1251-1259.
    [37] M. Bruno, O. Humbel, C. M. Sibon. Ultra-small gold particles and silver enhancement as a detection system in immunolabeling and in situ hybridization experiments [J]. J. Histochem Cytomchem, 1995, 43: 735-737.
    [38] J. F. Hainfeld, R. D. Powell, J. K. Stein, G. W. Hacker, C. K. Hauser, A. Cheung, C. Schofer. Gold-based autometallograpy, In: Bailey GW, Jerome WG, Mckernan S, Mansfield JF, Price RL, eds. Proc.57th Ann. Mtg., Micros. Soc. Amer. New York, NY, Springer-Verlag.1999, 486-487.
    [39] K. R. Brown, M. J. Natan. Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces [J]. Langmiur, 1998, 14: 726-728.
    [40] Z. F. Ma, S. F. Sui. Naked-eye sensitive detection of immunoglubin G by enlargement of Aunanoparticles in vitro [J]. Angew. Chem. Int. Ed., 2002, 41: 2176-2179.
    [41] Y. L. Su. A strategy for immunoassay signal amplification using clusters of immunogold nanoparticles [J]. Applied Surface Science, 2006, 253(3): 1101-1106.
    [42] Z. L. Jiang, S. J. Sun, A. H. Liang, W. X. Huang, A. M. Qin. Gold-labeled nanoparticle-based immunoresonance scattering spectral assay for trace apolipoprotein AI and apolipoprotein B [J]. Clin Chem., 2006, 52: 1389-94.
    [43] Z. L. Jiang, S. J. Sun, A. H. Liang, C. J. Liu. A new immune resonance scattering spectral assay for trace fibrinogen with gold nanoparticle label [J]. Anal. Chim. Acta, 2006, 571: 200-205.
    [44] M. Moeremans, G. Daneels, A. Van Dijck, G. Langanger, J. DeMey. Sensitive visualization of antigen-antibody reactions in dot and blot immune overlay assays with immunogold and immunogold/silver staining [J]. J. Immunol. Methods, 1984, 74: 353-360.
    [45] G. Frens. Controlled nucleation for the regulation of particle size monodispersed gold suspension [J]. Nature Phys.Sci. 1973, 241: 20-22.
    [46] 蒋治良, 李芳, 李廷盛, 梁宏. 共振散射光强度与 Au 粒子粒径的关系 [J]. 高等化学学报, 2000, 21: 1488-1490.
    [47] N. R. Jana, L. Gearheart, C. J. Murphy. Evidence for Seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles [J]. Chem. Mater, 2001, 13: 2313-2322.
    [48] G. Sremsdoerfer, H. Perrot, J. R. Martin, P. Cleechet. Atuocatalytic deposition of gold and palladium onto n-GaAs in acidic media [J]. J. Electrochem. Soc, 1988, 135: 2881-2885.
    [49] G. M. Schmid, M. E. Curley-Fiorino, in: Bard AJ (Ed.). E=1v versus NHE(Au) and E1/2= -0.4v versus NHE(NH2OH);NHE=normal hydrogen electrode. Encyclopedia of Electrochemistry of the Elements [M]. Marcel Dekker, Inc.: New York. 1975, vol.4 and 8.
    [50] M. A. Hayat, Ed.: Colloidal gold principles, methods, and applications [M]. Academic Press: San Diego, CA. 1991: 413.
    [51] P. Mulvaney. Surface Plasmon spectroscopy of nanosized metal particles [J]. Langmuir. 1996, 12: 788-800.
    [52] H. C. van de Hulst. Light scattering by small particles [M]. John Wiley&Sons, Inc.:New York.1957: 397.
    [53] O. Gaillard, D. Meillet, M. C. Diemert, L. Musset, et al. Time-resolved immunofluorometric assay of complement C3: application to cerebrospinal fluid [j]. Clin. Chem., 1993, 39: 309-312.
    [54] 周谷珍, 李继山, 蒋健晖, 沈国励, 俞汝勤. 纳米金聚集复合物放大的计时电位法测定补体 C3 [J].化学学报, 2005, 63: 2093-2097.
    [55] 吴再生, 李继山, 罗明辉, 沈国励, 俞汝勤. 一种基于静电吸附作用的直接检测补体 C3 新型可再生电容型免疫传感器 [J]. 高等学校化学学报, 2005, 26: 441-445.
    [56] 龙 姝, 李继山, 王 桦, 沈国励, 俞汝勤. 基于邻苯二胺电聚合膜和 PSS 自组装的补体 C 压电免疫传感器 [J]. 湖南大学学报(自然科学版), 2003, 30: 26-30.
    [57] Y. L.Wu, L. D. Li, J. M. Liu, G. H. Zhu. The enhancement effect of CaCl2 on solid substrate room temperature phosphorescence of polyhalogenated derivatives of fluorescein and application in immunoassay [J]. Anal. Chim. Acta, 2005, 539:271-75.
    [58] M. Rajanikanth, R. C. Gupta. LC fluorescence method for multiple synthetic compounds to rapidly create in vivo pharmacokenetic database utilizing ‘N-in -One’ dosing [J]. J. Pharm. Biomed. Anal. 2001, 26: 519-30.
    [59] V. Tregoat, P. Montagne, M. L. Cuilliere, M. C. Bene, G. Faure. C3/C4 concentration ratio reverses between colostrum and mature milk in human loctation [J]. J. Clin. Immunol., 1999, 19: 300-04.
    [60] D. D. Carl, W. M. Kameron, S. S. Richard, L. C.Robert. Use of laser nephelometry in the measurement of serum proteins [J]. Clin. Chem., 1976, 22: 1465-1471.
    [61] C. Z. Huang, W. Lu, Y. F. Li, Y. M. Huang. On the factors affecting the enhanced resonance light scattering signals of the interactions between proteins and multiply charged chromophores using water blue as an example [J]. Anal. Chim. Acta, 2006, 556: 469-475.
    [62] Y. Liu, J. H. Yang, S. F. Liu, X. Wu, B. Y. Su, T. Wu. Resonance light scattering technique for the determination of protein with rutin and cetylpyridine bromide system [J]. Spectrochim. Acta A, 2005, 61: 64-646.
    [63] 蒋治良, 邹节明, 王力生, 覃爱苗. 蛋白质与三氯乙酸相互作用的共振散射光谱研究及分析应用 [J]. 分析化学, 2003, 31: 70-73.
    [64] L. Y. Wang, L. Wang, L. Dong, Y. L. Hu, T. T. Xia, C. Q. Zhu. Determination ofγ-globulin at nanogram levels by its enhancement effect on the resonance light scattering of functionalized HgS nanoparticles [J]. Talanta, 2004, 62: 237-240.
    [65] C. Z. Huang, Y. F. Li, S. Y. Deng, S. R. Liu. Assembly of Methylene Blue on nucleic acid template as studied by resonance light-scattering technique and determination of nucleic acids of nanograms [J]. Bull. Chem. Soc. Jpn, 1999, 72: 1501-1508.
    [66] Z. G. Chen, J. B. Liu, Y. L. Han. Rapid and sensitive determination of proteins by enhanced resonance light scattering spectroscopy of sodium lauroyl glutamate [J]. Talanta, 2007, 71(3): 1246-1251.
    [67] S. L. Feng, Z. H. Pan, J. Fan. Determination of proteins at nanogram levels with Bordeaux red baded on the enhancement of resonance light scattering [J]. Spectrochim. Acta A, 2006, 64: 574-579.
    [68] Y. Q. Cheng, Z. P. Li, Y. Q. Su, Y. S. Fan. Ferric nanoparticle-based resonance light scattering determination of DNA at nanogram levels [J]. Talanta, 2007, 71(4): 1757-1761.
    [69] X. Chu, X. Fu, K. Chen, G. L. Shen, R. Q. Yu. An electrochemical stripping metalloimmunoassay based on silver-enhanced gold nanoparticle label [J]. Biosens. Bioelectron., 2005, 20: 1805-1812.
    [70] 楚 霞, 傅 昕, 沈国励, 俞汝勤. 基于银增强金标记物的阳极溶出伏安免疫分析用于补体第三成分的测定 [J]. 高等化学学报, 2005, 26: 1637-1639.
    [71] J. M. Nam, S. J. Park, C. A. Mirkin. Bio-Barcode based on Oligonucleotide-modified nanoparticles [J]. J. Am. Chem. Soc., 2002, 124: 3820-3821.
    [72] Y. C. Cao, R. C. Jin, J. M. Nam, C. S. Thaxton, C. A. Mirkin. Raman Dye-labeled nanoparticle probes for proteins [J]. J. Am. Chem. Soc, 2003, 125: 14676-14677.
    [73] I. Willner, F. Patolsky, Y. Weizmann, B. Willner. Amplified detection of single-base mismatches in DNA using microgravimetric quartz-crystal-microbalance transduction [J]. Talanta, 2002, 56: 847-856.
    [74] M. Su, S. U. Li, V. P. Dravid. Microcantilever resonance-based DNA detection with nanoparticle probes [J]. Appl. Phys. Lett, 2003, 82: 3562-3564.
    [75] X. H. Yang, Q. Wang, K. M. Wang, W. H. Tan, H. M. Li. Enhanced surface plasmon resonance with the modified catalytic growth of Au nanoparticles [J]. Biosens. Bioelectron., 2007, 22(6): 1106-1110.
    [76] L. T. Kuo, H. J. Huang. Femtomolar immunoassay based on coupling gold nanoparticle enlargement with square wave stripping voltammetry [J]. Anal. Chim. Acta, 2005, 538: 159-164.
    [77] M. E. Grevink, G. Horst, P. C. Limburg, C. G. M. Kallenberg, M. Bijl. Levels of complement in sera from inactive SLE patients, although decreased, do not influence in vitro uptake of poptotic cells [J]. Journal Autoimmun, 2005, 24: 329-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700