飞蝗漆酶基因mRNA表达及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
漆酶(Laccase)属于酚氧化酶,是一种结合多个铜离子的蛋白质,可将酚类物质(如多巴胺)氧化成相应的醌,在昆虫的生长发育和变态过程中发挥着重要作用。漆酶主要参与昆虫表皮鞣化,促进表皮的硬化和暗化,这个过程对于昆虫的生长发育至关重要。直翅目昆虫飞蝗是重要的农业害虫,常暴发成灾,对农业生产构成严重威胁。目前,漆酶在分子水平上的研究主要集中在完全变态昆虫,而在不完全变态昆虫中尚未见报道。本文以飞蝗Locusta migratoria为研究对象,对漆酶基因(Laccase)进行了分子特性及功能研究,这对深入了解漆酶在飞蝗表皮形成过程中的作用提供了基础资料,丰富了目前昆虫漆酶的研究内容,同时为研发以该酶为靶标的新型飞蝗绿色防控新技术提供科学依据。本文主要研究内容有如下三个方面:
     一、飞蝗漆酶基因的克隆及序列分析
     基于飞蝗表达序列标签(Expressing sequence tag, ESTs)数据库,采用生物信息学方法获得2条漆酶ESTs,经比对确定其分别为Laccasel和Laccase2cDNA序列片段,分别将其命名为LmLacl和LmLac2。其中LmLacl的部分核苷酸序列长为757bp,编码252个氨基酸;LmLac2的部分核苷酸序列长为509bp,采用RACE技术克隆获得2026bp LmLac2cDNA序列,其中开放式阅读框(ORF)为1866bp,编码621个氨基酸,3’非编码区(3’-UTR)的长度为160bp。
     二、飞蝗漆酶基因在不同发育阶段及不同组织部位的mRNA表达分析
     采用qPCR技术对漆酶基因在不同龄期和不同组织部位的mRNA表达水平进行了分析。结果显示:LmLacl主要在中肠表达,而LmLac2在体表特异性表达;LmLacl在各个龄期都有表达,其中在卵期表达量最低,成虫期第5天表达量达到最高;LmLac2在5龄第一天不同时间段的表皮中(0h,2h,4h,8h,24h)都有表达,且随着体表暗化程度的加深,表达量呈上升趋势,之后,LmLac2在5龄每一天均有表达,虽然表达量最高的第1天是表达量最低的第5天的3.9倍,但统计学分析无显著性差异。
     三、飞蝗漆酶基因的功能研究
     采用RNAi技术研究飞蝗漆酶基因在生长发育过程中的功能。飞蝗4龄若虫注射dsRNA(dsLmLacl/dsLmLac2)后,检测到目标基因的表达均被有效沉默。dsLmLacl注射组与dsGFP注射组相比,体壁鞣化程度相同,且无致死现象;dsLmLac2注射组中,若虫蜕至下一龄期均出现体色变淡,虫体变软,活动能力下降等现象。为了进一步研究LmLac2基因沉默后是否对之后各发育龄期若虫的表皮鞣化都有影响,选取2龄第1天若虫注射dsRNA,之后取每一龄期的表皮做石蜡切片观察分析,发现dsLmLac2注射组的若虫在蜕至3龄和4龄后与对照组相比,其表皮明显变薄,但蜕至5龄的若虫表皮厚度与对照组无差异。这些结果表明,漆酶LmLacl不是表皮鞣化所必需的,而LmLac2对飞蝗表皮的硬化和暗化起着重要的作用。
     四、中华稻蝗几丁质合成酶1基因的mRNA表达及功能
     根据已知中华稻蝗几丁质合成酶1基因(OcCHSl)保守区域部分cDNA序列(GenBank登录号:HM214491),运用RT-PCR和qPCR技术分析mRNA表达特性,采用RNA干扰技术研究其生物学功能。结果表明,OcCHSl在中华稻蝗各龄期都有表达,其体表为高表达,其次是气管,其它组织部位表达量低。RNA干扰实验发现,4龄第4天若虫注射OcCHSl的双链RNA(dsRNA)后,与对照组相比, OcCHSl mRNA表达量被沉默了70.8%,稻蝗出现蜕皮延迟、不能完成蜕皮或腹部皱缩死亡等现象,注射dsOcCHSl组死亡率为85.2%,与对照组(7.4%)相比差异显著。这些结果表明:几丁质合成酶1主要参与体表和气管几丁质的合成,对中华稻蝗的生长发育具有重要作用,RNA干扰使该基因沉默后可导致虫体死亡。
Laccases, a member of phenoloxidase, are copper-containing oxidase enzymes. Laccases oxidize catechols (eg.dopamine) to corresponding quinines, which plays an important role in insect growing development and metamorphosis. In insects, most researches on laccases have focused on the main role in cuticle tanning (sclerotization and pigmentation). Locusta migratoria, a member of orthopterans, is the important agriculture pest, the outbreak of locusts has made a serious effect on agricultural production. So far, the research concerning insect laccase genes mainly focuses on the holometabolous insects, while there is no information of laccase genes from hemimetabolous insects. In this thesis, we focused on molecular characterization and functions of laccase genes from L. migratoria, a typical hemimetabolous insects. The results will provide the theoretical basis for gaining further insight into the biological function of LmLacs. These findings supported our notion that LmLac could potentially serve as an excellent target for developing novel strategies for controlling this important pest. The contents are as follows:
     1. cDNA cloning and sequences analysis of LmLacs
     Two expressing sequence tags (ESTs) of Laccase were obtained by bioinformatics methods from the database of ESTs in L. migratoria (LocustDB). Blast analysis showed that they were the partial cDNA sequences of Laccase1and Laccase2. The length of cDNA fragment of LmLacl is757bp, encoding252amino acid residues; the length of cDNA fragment of LmLac2is507bp. The full length cDNA of LmLac2was amplified by RACE-PCR, obtained cDNA consists of2026nucleotides that include a1866-bp open reading frame (ORF) encoding621amino acid residues and a160-bp non-coding region at the3'-end of the cDNA.
     2. Tissue distribution and developmental expression patterns of LmLacs
     The5th-instar nymphs of L. migratoria were dissected for tissue distribution analysis, qPCR revealed that LmLacl was highly expressed in the midgut, while LmLac2was mainly expressed in the integument. Developmental expression patterns by qPCR analyses showed LmLacl was expressed at all life stages of the locusts. The expression of LmLac2was detected during tanning time (from0h to24h after newly molt to5th-instar nymphs), the results indicated mRNA expression of LmLac2was gradually increased when nymphs body colour became dark brown, the expression reached highest level at24h. After that, LmLac2was expressed in all5th-instar developmental stages, and there was no significant difference.
     3. Functional analysis of two Laccases of L. migratoria
     We performed RNA interference experiments to investigate biological function of LmLacl and LmLac2in insect development. dsRNA was synthesized and injected into the newly molt4th-instar nymphs, the expression level of both genes were significantly decreased after dsRNA injection. The dsLm/ac2-injected locusts failed to tan, and showed soft-body, while no observable phynotypes were found in dsLmLacl injection locusts; Paraffin section was performed to study the histological structures of integuments, dsLmLac2was injected into the2nd-instar (day1) nymphs and the dsLm/ac2-injected locusts appeared thinner procuticle compared to dsGFP-injected locusts when dsRNA-injected nymphs molted to3rd-,4th-instar nymphs, however, the thickness of cuticle in5th-instar nymphs is similar to the control locusts. The results presented here indicated laccase2could be involved in cuticle tanning, laccase1appeared no contribution for cuticle tanning.
     4. mRNA expression and function of chitin synthasel from Oxya chiensis (Thunberg)
     Based on the known partial conservative cDNA fragment of OcCHSl (GenBank accession number:HM214491), primers were designed for mRNA expression analysis. The developmental and tissue-specific expression patterns of OcCHS1were determined by RT-PCR and qPCR. RNAi experiment was performed to explore the biological function. OcCHSl was expressed at all the developmental stages. Tissue-specific analysis showed that OcCHSl was highly expressed in the integument, followed in the trachea, and lowest in other tissues. RNAi-based gene silencing experiment showed that the fourth day of the4th instar nymphs injected by dsOcCHSJ could repress the transcript levels of OcCHSl by70.8%compared to those in the control nymphs. Moreover, dsRNA injections significantly increased abnormalities, such as stunted development, uncompleted molting, crimpy abdomen and eventually died. Consequentially,85.2%of mortalities were observed, while the mortality in the control nymphs was only7.4%. OcCHSl is essential for development and mainly responsible for chitin synthesis in cuticle and trachea of O. chinensis. Moreover, silencing of chitin synthase1gene by RNAi is lethal to O. chinensis.
引文
[1]朱恩林.中国东亚飞蝗发生与治理[M].北京,中国农业出版社,1999,3-558.
    [2]陈永林.中国的飞蝗研究及其治理的主要成就[J].昆虫知识,2000,37,50-58.
    [3]陈永林.中国的蝗害[M].北京,中国林业出版社,1999.
    [4]马世骏.东亚飞蝗在中国的发生动态[J].昆虫学报,1958,8,1-40.
    [5]徐卫林.东亚飞蝗的几种生活习性[J].农林科学苑,2008,3,306-309.
    [6]尤其做,郭郛,陈永林等.东亚飞蝗的生活习性[J].昆虫学报,1958,8,119-135.
    [7]王正军,陈永林,李典谟等.我国蝗虫暴发成灾的现状及其持续控制对策[J].昆虫知识,2002,39,172-175.
    [8]王荫长.昆虫生理学[M].北京,中国农业出版社,2005,7-37.
    [9]Kramer KJ, Kanost MR, Hopkins TL, et al. Oxidative conjugation of catechols with proteins in insect skeletal systems [J].Tetrahedron,2001,57,385-392.
    [10]Arakane Y, Lomakin J, Beeman RW, Muthukrishnan S, Gehrke SH, Kanost MR and Kramer KJ. Molecular and functional analyses of amino acid decarboxylases involved in cuticle tanning in Tribolium castaneu[J]. The Journal of Biological Chemistry, 2009,284,16584-16594.
    [11]Asano T, Ashida M. Cuticular pro-phenoloxidase off the silkworm, Bombyx mori[J]. The Journal of Biological Chemistry,2001,276,11100-11112.
    [12]Hall M, Scott T, Sugumaran M, et al. Proenzyme of Manduca sexta phenoloxidase: purification, activation, substrate specificity of the active enzyme and molecular cloning[J]. Proceedings of the National Academy of Sciences,1995,92,7764-7768.
    [13]Yamazaki HI. Cuticular phenoloxidase from the silkworm, Bombyx mori:Properties, solubilization and purification[J]. Insect Biochemistry,1972,2,431-444.
    [14]Yatsu J, Asano T. Cuticle laccase of the silkworm, Bombyx mori:Purification, gene identification and presence of its inactive precursor in the cuticle[J]. Insect Biochemistry and Molecular Biology,2009,39,254-262.
    [15]Thomas BR, Yonekura M, Morgan TD.A trypsin-solubilized laccase from pharate pupal integument of the tobacco horn worm, Manduca sexta[J]. Insect Biochemistry, 1989,19,611-622.
    [16]Dittmer NT, Kanost MR. Insect multicopper oxidases:Diversity, properties, and physiological roles[J]. Insect Biochemistry and Molecular Biology,2010,40, 179-188.
    [17]Parkinson NM, Conyers CM, Keen J N, MacNicoll AD, Weaver RJ. cDNAs encoding large venom proteins from the parasitoid wasp Pimpla hypochondriaca identified by random sequence analysis[J]. Comparative Biochemistry and Physiology,2003,134, 513-520.
    [18]Makoto H, Hirosato K, Yasumori T, Kotaro K. Laccase-type phenoloxidase in salivary glands and watery saliva of the green rice leafhopper, Nephotettix cincticeps[J]. Journal of Insect Physiology,2005,51,1359-1365.
    [19]Dittmer NT, Suderman RJ, Jiang HB, Zhu YC, Gorman MJ, Kramer KJ, Kanost MR. Characterization of cDNAs encoding putative laccase-like multicopper oxidases and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria mosquito, Anopheles gambiae[J].Insect Biochemistry and Molecular Biology,2004, 34,29-41.
    [20]Gorman MJ, Dittmer NT, Marshall JL, Kanost MR. Characterization of the multicopper oxidase gene family in Anopheles gambiae[J].Insect Biochemistry and Molecular Biology,2008,38,817-824.
    [21]Pan CY, Zhou Y, Mo JC. The clone of laccase gene and its potential function in cuticular penetration resistance of Culex pipiens pallens to fenvalerate[J]. Pesticide Biochemistry and Physiology,2009,93,105-111.
    [22]Arakane Y, Muthukrishnan S, Beeman RW, Kanost MR, and Kramer KJ. Laccase 2 is the phenoloxidase gene required for beetle cuticle tanning[J]. Proceedings of the National Academy of Sciences,2005,102,11337-11342.
    [23]Niu BL, Shen WF, Liu Y, Weng HB. He LH. Mu JJ, Wu ZL, Jiang P, Tao YZ and Meng ZQ. Cloning and RNAi-mediated functional characterization of MaLac2 of the pine sawyer, Monochamus alternatus[J]. Insect Molecular Biology,200%,11,303-312.
    [24]Elias-Neto M, Soares MPM, Simoes ZLP, Hartfelder K, Bitondi MMG. Developmental characterization, function and regulation of a Laccase2 encoding gene in the honey bee, Apis mellifera (Hymenoptera, Apinae)[J]. Insect Biochemistry and Molecular Biology,2010,40,241-251.
    [25]Hattori M, Tsuchihara K, Noda H, Konishi H, Tamura Y, Shinoda T, Nakamura M, Hasegawa T. Molecular characterization and expression of laccase genes in the salivary glands of the green rice leafhopper, Nephotettix cincticeps (Hemiptera: Cicadellidae) [J]. Insect Biochemistry and Molecular Biology,2010,40,331-338.
    [26]Hughes L, Price GM. Haemolymphal activation of protyrosinase and the site of synthesis of haemolymph protyrosinase in larvae of the fleshfly, Sarcophaga barbata[J].Journal of Insect Physiology.1976,22,1005-1011.
    [27]Ashida M, Ishizaki Y, Iwahana H. Activation of pro-phenoloxidase by bacterial cell walls or β-1,3-glucans in plasma of the silkworm, Bombyx mori[J]. Biochemical and Biophysical Research Communications,1983,113,37-47.
    [28]Aso Y, Kramer KJ, Hopkins TL, Lookhart GL. Characterization of haemolymph protyrosinase and a cuticular activator from Manduca sexta (L.)[J]. Insect Biochemistry,1985,15,9-17.
    [29]Asano T, Ashida M. Transepithelially Transported Pro-phenoloxidase in the Cuticle of the Silkworm, Bombyx mori[J]. The Journal of Biological Chemistry,2001,276, 11113-11125.
    [30]张小玉,汪贞,黄泽夫,王国秀,刘绪生.棉铃虫不同虫态及虫龄血淋巴中酚氧化酶活力的比较[J].昆虫知识,2006,43,330-332.
    [31]Brey PT, Ahmed A, Lee WJ, et al. Tyrosinase-type prophenoloxidase distribution in the alimentary cannal of strains of Anopheles gambiae reftactory and susceptible to plasmodium infection[J]. Experimental parasitology,1995,80,654-664.
    [32]Kopacek P, Weisa C, Gotz P. The prophenoloxidase from the wax moth Galleria mellonella:Purification and characterization of proenzyme[J]. Insect Biochemistry and Molecular Bioligy,1995,25,1081-1091.
    [33]Hiruma K, Riddiford LM. Granular phenoloxidase involved in cuticular melanization in the tobacco hornworm:regulation of its synthesis in the epidermis by juvenile hormone[J]. Developmental Biology,1988,130,87-97.
    [34]Claus H. Laccases:structure, reactions, distribution[J]. Micron,2004,35,93-96.
    [35]刘守柱.昆虫酚氧化酶免疫学功能及其对杀虫剂等外来干扰因子的相应[D].山东农业大学,2008.
    [36]Mello CC, Jr DC. Revealing the world of RNA interference [J]. Nature,2004,431, 338-342.
    [37]杨中侠,文礼章,吴青君,王少丽,徐宝云,张友军RNAi技术在昆虫功能基因研究中的应用进展[J].昆虫学报,2008,51,1077-1082.
    [38]De Gregorio E, Spellman PT, Rubin GM, Lemaitre B. Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays[J]. Proceedings of the National Academy of Sciences, 2001, 98, 12590-12595.
    [39]Locke M. The Wigglesworth lecture: insects for studying fundamental problems in biology[J]. Journal of Insect Physiology, 2001, 47, 495-507.
    [40]Elias-Neto M, Soares MPM, Bitondi MMG. Changes in integument structure during the imaginal molt of the honey bee[J]. Apidologie, 2009, 40, 29-39.
    [41]郑哲民.蝗虫分类学[M].西安,陕西师范大学出版社,1993,76-80.
    [42]Cohen E. Chitin synthesis and inhibition, a revisit[J]. Pest Management Science, 2001,57,946-950.
    [43]Wilson TG, Cryan JR. Lufenuron, a chitin-synthesis inhibitor, interrupts development of Drosophila melanogaster[J]. Journal of Experimental Zoology, 1997, 278, 37-44.
    [44]Candy DJ, Kilby BA. Studies on chitin synthesis in the desert locust[J]. The Journal of Experimental Biology. 1962,39, 129-140.
    [45]Tellam RL, Vuocolo T, Johnson SE, Jarmey J, Pearson RD. Insect chitin synthase cDNA sequence, gene organization and expression[J]. European Journal of Biochemistry, 2000, 267, 6025-6043.
    [46]Ibrahim GH, Smartt CT, Kiley LM, Christensen BM. Cloning and characterization of a chitin synthase cDNA from the mosquito Aedes aegypti[J]. Insect Biochemistry and Molecular Biology, 2000, 30, 1213-1222.
    [47]Gagou ME, Kapsetaki M, Turberg A, Kafetzopoulos D. Stage-specific expression of the chitin synthase DmeChSA and DmeChSB genes during the onset of Drosophila metamorphosis[J]. Insect Biochemistry and Molecular Biology, 2002, 32, 141-146.
    [48]Zhang JZ, Zhu KY. Characterization of a chitin synthase cDNA and its increased mRNA level associated with decreased chitin synthesis in Anopheles quadrimaculatus exposed to diflubenzuron[J]. Insect Biochemistry and Molecular Biology, 2006, 36, 712-725.
    [49]Zhu YC, Specht CA, Dittmer NT, Muthukrishnan S, Kanost MR, Kramer KJ. Sequence of a cDNA and expression of the gene encoding a putative epidermal chitin synthase of Manduca sexta[J]. Insect Biochemistry and Molecular Biology,2002,32, 1497-1506.
    [50]Hogenkamp DG, Arakane Y, Zimoch L, Merzendorfer H, Kramer KJ, Beeman RW, Kanost MR, Specht CA, Muthukrishnan S. Chitin synthase genes in Manduca sexta: characterization of a gut-specific transcript and differential tissue expression of alternately spliced mRNAs during development[J]. Insect Biochemistry and Molecular Biology,2005,35,529-540.
    [51]Bolognesi R, Arakane Y, Muthukrishnan S, Kramer KJ, Terra WR, Ferreira C. Sequences of cDNAs and expression of genes encoding chitin synthase and chitinase in the midgut of Spodoptera frugiperda[J]. Insect Biochemistry and Molecular Biology,2005,35,1249-1259.
    [52]Ashfaq M, Sonoda S, Tsumuki H. Developmental and tissue-specific expression of CHS I from Plutella xylostella and its response to chlorfluazuron[J]. Pesticide Biochemistry and Physiology,2007,89,20-30.
    [53]Chen X, Yang X, Kumar NS, Tang B, Sun XJ, Qiu XM, Hu J, Zhang WQ. The class A chitin synthase gene of Spodoptera exigua:molecular cloning and expression patterns[J]. Insect Biochemistry and Molecular Biology,2007,37,409-417.
    [54]Kumar NS, Tang B, Chen XF, Tian HG, Zhang WQ. Molecular cloning, expression pattern and comparative analysis of chitin synthase gene B in Spodoptera exigua[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2008,149,447-453.
    [55]Qu MB, Liu T, Yang J, Yang Q. The gene, expression pattern and subcellular localization of chitin synthase B from the insect Ostrinia furnacalis[J]. Biochemical and Biophysical Research Communications,2011,404,302-307.
    [56]Qu MB, Yang Q. A novel alternative splicing site of class A chitin synthase from the insect Ostrinia furnacalis-Gene organization, expression pattern and physiological significance[J]. Insect Biochemistry and Molecular Biology,2011,41,923-931.
    [57]Arakane Y, Hogenkamp DG, Zhu YC, Kramer KJ, Specht CA, Beeman RW, Kanost MR, Muthukrishnan S. Characterization of two chitin synthase genes of the red flour beetle, Tribolium castaneum, and alternate exon usage in one of the genes during development[J]. Insect Biochemistry and Molecular Biology,2004,34,291-304.
    [58]Zhang JZ, Liu XJ, Zhang JQ, Li DQ, Sun Y, Guo YP, Ma EB, Zhu KY. Silencing of two alternative splicing-derived mRNA variants of chitin synthase 1 gene by RNAi is lethal to the oriental migratory locust, Locusta migratoria manilensis (Meyen) [J]. Insect Biochemistry and Molecular Biology,2010,40,824-833.
    [59]Merzendorfer H, Zimoch L. Chitin metabolism in insects:structure, function and regulation of chitin synthases and chitinases[J]. The Journal of Experimental Biology, 2003,206,4393-4412.
    [60]Ampasala DR, Zheng SC, Zhang DY, Ladd T, Doucet D, Krell PJ, Retnakaran A, Feng QL. An epidermis-specific chitin synthase cDNA in Choristoneura fumiferana: cloning, characterization, developmental and hormonal-regulated expression[J]. Archives of Insect Biochemistry and Physiology,2011,76,83-96.
    [61]Arakane Y, Muthukrishnan S, Kramer KJ, Specht CA, Tomoyasu Y, Lorenzen MD, Kanost M, Beeman RW. The Tribolium chitin synthase genes TcCHSl and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix [J]. Insect Molecular Biology,2005,14,453-463.
    [62]Chen X, Tian H, Zou L, Tang B, Hu J, Zhang W. Disruption of Spodoptera exigua larval development by silencing chitin synthase gene A with RNA interference[J]. Bulletin of Entomological Research,2008,98,613-619.
    [63]Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S. Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J. Control of coleopteran insect pests through RNA interference [J]. Nature Biotechnology,2007,25, 1322-1326.
    [64]Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol[J]. Nature Biotechnology,2007,25,1307-1313.
    [65]Tian HG, Peng H, Yao Q, Chen HX, Xie Q, Bin T, Zhang WQ. Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene[J]. PLoS ONE,2009,4, e6225.
    [66]李大琪,杜建中,张建琴,郝耀山,刘晓健,马恩波,张建珍,孙 毅.东亚飞蝗几丁质酶家族基因的表达特性与功能研究[J].中国农业科学,2011,44,485-492.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700