双孢蘑菇基质降解能力退化分子机理的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双孢蘑菇[Agaricus bisporus (J.E.Lange) Imbach]是世界性栽培与消费的食用菌,具有重要的经济价值和生态意义。As2796是我国多年来唯一的双孢蘑菇主栽品种,对其退化现象的分子机理研究具有重要的理论和实践意义。在本课题中,我们应用As2796正常菌株及其两个基质降解能力退化突变体菌株2796-3、2796-5作为比较研究的对象。主要研究内容和结果如下:
     (1)对双孢蘑菇2个基质降解能力退化菌株进行多代的无性繁殖(转管)试验及退化性状检测,确定了该退化现象可以稳定存在。对正常与退化菌株进行了混合接种试验,排除了病毒等微生物感染的因素,证明了该退化性状应是基因变异所引起的。进行了不同液体培养基的设计与培养,获得3个菌株在4种培养基中的12个菌丝体样品进行后续的研究。
     (2)对双孢蘑菇As2796及其分解基质能力退化菌株2796-3、2796-5的总DNA进行了153对引物组合的SRAP分析,结果未能发现两类菌株DNA水平的差异。根据试验结果推测,该退化变异的范围较窄,有可能是个别基因的突变,因而在DNA水平上难以发现。
     (3)应用同工酶聚丙烯酰胺凝胶电泳(PAGE)技术对4种不同液体培养基培养的双孢蘑菇As2796及其基质降解能力退化菌株2796-3、2796-5的菌丝体进行了分析,结果发现在部分培养基中正常与退化菌株的酯酶(EST)和多酚氧化酶(PPO)同工酶表型有明显差异,且2个退化菌株的同工酶表型变异一致,说明双孢蘑菇基质降解能力的退化与同工酶活性存在相关性。
     (4)对4种不同液体培养基培养的双孢蘑菇As2796及其基质降解能力退化菌株2796-3、2796-5进行了24对引物组合的mRNA差异显示(DDRT-PCR)分析,结果发现8对引物组合扩增出可重复的差异,并克隆了9条差异片段。序列分析结果显示9条差异片段代表了5个基因的差异,部分与不同生物的ATP结合盒式运输亚家族A某蛋白、碳水化合物酯酶家族4蛋白、几丁质脱乙酰基酶、乙酰木聚糖酯酶II及其它一些未知蛋白具有较高的同源性。
     (5)构建了双孢蘑菇As2796菌株的全长cDNA文库,文库初始库容达3.3x106 cfu/mL,插入片段长度范围约0.7-4.0Kb,平均长度约1.5Kb,重组率约82%,全长率约35%。文库扩增出了DDRT-PCR的5个差异基因全长编码序列(CDS),表明了该文库的有效性,今后可用于扩增所需的双孢蘑菇正常基因的全长cDNA或CDS。
     (6)以双孢蘑菇As2796及其2个退化菌株的总DNA为模板,扩增出了DDRT-PCR中5个差异片段所在基因带内含子的编码序列及其上游约1200bp调控序列并进行克隆与测序比较,结果表明这些基因与上游序列在三个菌株中并无实质性差异,据此推测退化性状更可能是调控蛋白基因变异所引起的。
     (7)对双孢蘑菇总蛋白质的双向电泳(2-DE或2D-PAGE)条件进行了摸索与优化,建立了双孢蘑菇蛋白质的2D-PAGE技术,获得了清晰的2D-PAGE图谱。结果表明双孢蘑菇的蛋白质大部分集中在分子量20-120KDa、等电点pI5.2-7.8的范围内。
     (8)对双孢蘑菇As2796及其基质降解能力退化菌株2796-3、2796-5进行了2D-PAGE分析,发现了2个明显的、可重复的差异蛋白质,在退化菌株中分别为上调和下调表达,且2个退化菌株表现一致。根据质谱(MALDI-TOF-MS)分析和数据库检索结果,2个差异蛋白质初步鉴定为肌动蛋白和NADH脱氢酶铁硫蛋白3,它们与细胞内信号传导或转录调控等过程关系密切。
     本研究首次发现了一些与双孢蘑菇基质降解能力退化相关的基因片段与蛋白质(酶),基于本研究结果提出双孢蘑菇基质降解能力退化分子机理是一个多级链式应答(逐级调控)过程的初步设想。即基质降解能力上的退化现象不是单一结构蛋白基因的变异,而可能是调控基因的变异,导致基因表达网络的改变,最终在转录水平、蛋白质水平、细胞水平及生物体上表现出系列差异,造成菌株在基质降解能力上的退化现象。该设想为进一步深入研究双孢蘑菇分解基质能力退化的分子机理奠定了良好的基础。
Agaricus bisporus (J.E.Lange) Imbach is a kind of edible mushroom cultivated and consumed worldwide, and has high economic value and important ecological significance. As2796 is the only main variety of A.bisporus used in China during more than 10 years, so the study on the molecular mechanism of the degeneration characteristics of this variety has important theoretical and practical significance. In this subject, the normal strain As2796, as well as two substrate-decomposing ability degeneration mutants derived from which, 2796-3 and 2796-5, were used as two comparison groups. The main research contents and results are showed as below.
     (1) The 2 degeneration strains were transferred on PDA medium for dozens of generations, and their degeneration characters were comfirmed to be stable. The normal and abnormal strains were mixed and cultured togather, and the results exclued the factor of microorganisms infection, suggesting the degeneration to be caused by gene variation. Different liquid media were designed for strains culturing, and 12 mycelia samples of 3 strains in 4 kinds of liquid media were harvested for further study.
     (2) The technique of SRAP with 153 pairs of primers was used for the analysis of DNA differences between Agaricus bisporus As2796 and its mutants, 2796-3 and 2796-5. As a result, no difference was found between two kinds of strains. Based on the result, it was guessed that the variation might occur in few genes and was difficult to be found at DNA level.
     (3) The technique of isozyme PAGE was used for the analysis of the 3 strains cultured in 4 kinds of liquid media. The results showed that the esterase (EST) and polyphenol oxidase (PPO) isozyme phenotypes made obvious differences between the normal and degeneration strains in some kinds of media, and the differences occurred in both of the two degeneration strains, suggesting there to be relationship between the isozyme activity and the substrate-decomposing ability degeneration of A.bisporus.
     (4) The technique of mRNA differential display reverse transcription-PCR (DDRT-PCR) with 24 pairs of primers was used to analyze mRNA differences between the wild type of A. bisporus strain As2796 and its substrate-decomposing ability degeneration strains 2796-3 and 2796-5 cultured in 4 kinds of different liquid media. As a result, 8 pairs of primers showed repeatable differences, and 9 special fragments were cloned. Sequencing analysis showed that 9 special fragments represented 5 different genes. Some of them have high homologies with an ATP-binding cassette transporter subfamily A protein, carbohydrate esterase family 4 protein, chitin deacetylase, acetyl xylan esterase II and some other hypothetical proteins of several kinds of organisms.
     (5) The full-length cDNA library of A.bisporus As2796 was constructed. The library had a content of 3.3×106 cfu/mL, an insertion range of about 0.7-4.0Kb, an average cDNA length of 1.5Kb, a recombination efficience of about 82%, and full-length ratio of about 35%. The coding sequences (CDS) of 5 different genes found in DDRT-PCR were got from the library by PCR amplification, which proved the validity of the library for amplifying full-length cDNA or CDS of A.bisporus genes in need.
     (6) Using the total DNAs of A.bisporus As2796 and 2 degeneration strains as templates, the CDS with introns and about 1200bp upstream regulative sequences of 5 different genes found in DDRT-PCR were amplified, cloned and sequenced. The comparison of the sequences among 3 strains showed that the genes and upstream sequences have no repeatable difference, so the degeneration might be caused by the mutation of regulative protein genes.
     (7) The conditions for A.bisporus proteome two-dimensional electrophoresis (2-DE or 2D-PAGE) were studied and optimized, and the proteome 2D-PAGE technique of A.bisporus was built up, resulting in clear 2D-PAGE patterns. It was showed that most of the proteins of A.bisporus focus in the range of molecular weight (MW) 20-120KDa and isoelectric point (pI) 5.2-7.8.
     (8) The technique of 2D-PAGE was used to analyze the protein expression differences between the wild type Agaricus bisporus As2796 and its substrate-decomposing ability degenerated strains 2796-3, 2796-5. As a result, two proteins were found to be up- and down-expressed, respectively, with obvious and repeatable profiles in both degenerated strains when grown in a liquid culture. Based on the results of MALDI-TOF-MS analysis and database searching, these two proteins were identified as an actin and a putative NADH dehydrogenase iron-sulfur protein 3, respectively, and both of which had close relationship with intracellular signal conduction or transcription regulation.
     In this work we found some gene fragments and proteins (enzymes) related to the substrate- decomposing ability degeneration of A.bisporus for the first time. Based on our study, the molecular mechanism of substrate-decomposing ability degeneration in A.bisporus was preliminarily supposed to be a course of gradual chain regulation, i.e. the degeneration phenotype was not caused by the variation of some certain structural protein genes, but the mutation of regulative protein genes, which changed the gene expression network, resulting the series of differences at mRNA, protein, cell and organism level, and finally brought the degeneration of substrate-decomposing ability. This supposition supported a good basic for the further research on the molecular mechanism of substrate-decomposing ability degeneration of A.bisporus.
引文
[1]孔祥君,王泽生,2000.中国蘑菇生产.北京:中国农业出版社.
    [2]戴玉成,周丽伟,杨祝良等,2010.中国食用菌名录.菌物学报, 29(1):1-21.
    [3]王泽生,1998.双孢蘑菇规范化集约化栽培技术.福建省科协.闽新出(97)内书(刊)第45号.
    [4] Chang ST, 2005. Witnessing the development of the mushroom industry in China. Proceedings of the Fifth International Conference on Mushroom Biology and Mushroom Products, Acta Edulis Fungi,12(Suppl.):1-19.
    [5] Wang ZS, 2005. Progress on the breeding, spawn-making and year-round cultivation of Agaricus bisporus in Fujian, China. Proceedings of the Fifth International Conference on Mushroom Biology and Mushroom Products, Acta Edulis Fungi,12(Suppl.):236-242.
    [6]王泽生,廖剑华,陈美元,2010.我国双孢蘑菇育种研究与产业发展.食用菌学报,增刊:19-20.
    [7] Raper CA, Raper JR, Miller RE,1972. Genetic analysis of the life cycle of Agaricus bisporus. Myclolgia, 64:1088~1117.
    [8]黄年来,1987.自修食用菌.南京:南京大学出版社.
    [9] Callac P,1993. Morphological, genetic, and interfertility analyses reveal an novel, tetrasporic variety of Agaricus bisporus from the Sonoran Desert of Clifornia. Mycologia, 85:835-851.
    [10] San Antonio JP,1984. Origin and improvement of spawn of the cultivated mushroom Agaricus brunnescens Peck. Horticult. Rev., 6:85-118.
    [11] Royse DJ and May B, 1982a. Use of isozyme variation to identify genotypeic classes of Agaricus brunnescens. Mycologia, 74(1):93-103.
    [12]王泽生,1991.应用同工酶电泳法分析双孢蘑菇白色菌株间的种内亲缘关系.福建食用菌,1(2):20-25.
    [13] Summerbell RC,1989. Inheritance of restriction fragment length polymorphisms in Agaricus brunnescens. Genetics, 123:293-300.
    [14]曾伟,宋思扬,王泽生等,1999.双孢蘑菇及大肥菇的种内及种间多态性RAPD分析.菌物系统, 18(1): 55-60.
    [15]陈美元,廖剑华,李洪荣等,2009a.双孢蘑菇栽培菌株遗传多样性的DNA指纹分析,中国农学通报,25(04):149-156.
    [16]陈美元,廖剑华,王波等,2009b.中国野生蘑菇属90个菌株遗传多样性的DNA指纹分析.食用菌学报, 16(1):11-16.
    [17] Wang ZS and Wang HC,1989. Study on the genetic variation of Agaricus bisporus, Mushroom Biotechnology, 329-338.
    [18] Challen MP,Rao BG,Elliiot TJ,1991. Transformation strategies for Agaricus bisporus.In:Van Griensven LJLD (ed), Genetics and Breeding of Agaricus.Wageningen:Pudoc,129-134.
    [19] Loftus MG,1995. Molecular mushroom breeding. Science and cultivation of edible fungi, 3-9.
    [20]谢宝贵,刘维侠,王秀全等,2004.金针菇子实体颜色基因的分子标记.福建农林大学学报(自然科学版),33(3):363-368.
    [21]陈美元,廖剑华,王泽生,1998.双孢蘑菇三种类型菌株的RAPD扩增研究.食用菌学报, 5(4):6-10.
    [22]陈美元、廖剑华、王泽生等,2003.双孢蘑菇丛生变异的RAPD分析及差异片段的克隆.厦门大学学报(自然科学版),42(5):657-660.
    [23]阎培生,蒋家慧,罗信昌等,2001.黑木耳菌株的分子鉴定与遗传多样性.莱阳农学院学报,18(4):297-301.
    [24]陈强,廖德聪,张小平等,2003.用AFLP分析珍稀食用菌—松茸遗传特性的初步研究.中国农业科学,36(12):1588-1594.
    [25] Lian CI, Hogetsu T, Matsushita N et al,2003. Development of microsatellite markers from an ectomycorrhizal fungus, Tricholoma M atsutake,by an ISSR-suppression-PCR method. Mycorrhiza, 2003,13(1):27-31.
    [26]吴学谦,李海波,魏海龙等,2005.SCAR分子标记技术在香菇菌株鉴定上的应用研究.菌物学报,24(2):259-266.
    [27]宋春艳,谭琦,陈明杰,2006.香菇135菌株SCAR标记的验证.食用菌学报,13(3):1-11.
    [28] Castle AJ, Horgen PA, Anderson JB,1987. Restriction fragment length polymorphisms in the mushrooms Agaricus brunnescens and Agaricus Bitorquis.Appl Environ Microbiol,53(4): 8162-8221.
    [29]马富英,罗信昌,2002. 28S rDNA PCR-RFLP分析在侧耳属系统发育研究中的应用.华中农业大学学报,21(3):201-205.
    [30]李荣春,2001.双孢蘑菇遗传多样性分析.云南植物研究,23(4):444-450.
    [31]辜运富,张小平,张强等,2003.双孢蘑菇种内多态性的AFLP分析.西南农业学报,16(4):39-43.
    [32]李辉平,黄晨阳,陈强等,2007.黑木耳栽培菌株的ISSR分析.园艺学报, 34(4):935-940.
    [33]张金霞,黄晨阳,管桂平等,2007.白黄侧耳Pleurotus cornucopiae微卫星间区(ISSR)分析.菌物学报,26(1):115-121.
    [34]杨成香,张瑞颖,左雪梅等,2007.金针菇遗传多样性初步分析.中国食用菌,26(4):37-39.
    [35] Khush RS, Becker E, Wach M,1992. DNA Amplification polymorphisms of the cultivated mushroom Agaricus bisporus. Appl. Environ. Microbial., 58:2971- 2977.
    [36]曾伟,宋思扬,陈融等,2000.应用RAPD技术分析两个双孢蘑菇遗传家系.微生物学通报, 27(2):132-134.
    [37] Xu J,Kerrigan RW, Horgen PA et al.,1993. Localization of the mating type gene in Agaricus bisporus. Appl.Environ.Microbiol., (59):3044-3049.
    [38]宋思扬,曾伟,陈融等,2000.一个与双孢蘑菇子实体品质相关DNA片段的克隆.食用菌学报, 7(3):11-15.
    [39]郭丽琼,林俊芳,杨丽卿等,2004.单酶切cDNA-AFLP改良法分离草菇冷诱导基因.菌物学报,23(2):241-247.
    [40] Peng M, Singh NK, Lemke PA,1992. Recovery of recombinant plasmids from Pleurotus ostreatus transformants. Curr Genet, 22(1):53-59.
    [41] Sato T, Yaegashi K, Ishii S et al.,1998. Transformation of the edible basidiomycete Lentinus edodes by restriction enzyme-m ediated integration of plasmid DNA.Biosci Biotechnol Biochem. 62(12):2346-2350.
    [42] Chen X, Stone M, Schi Agnhaufer C et al.,2000. A fruiting body tissue method for efficient Agrobacterium- mediated transformation of Agaricus bisporus.Appl Environ Microbiol, 66(10):4510-4513.
    [43] Noel T and Labarere J,1994. Homologous transformation of the edible basidiomycete Agrocybe aegerita with URA1 gene:characterization of integrative events and of rearranged free plasmids in transformants. Curr Genet,25:432-37.
    [44] Granado JD, Kertesz-ChaloupkováK, Aebi M et a1.,1997. Restriction enzyme-mediated DNA integration in Coprinus cinereus. Mol Gen Genet,256(1):28-36.
    [45] Van De Rhee MD, Graca PMA, Huizing HJ et al.,1996. Transformation of the cultivated mushroom, Agaricus bisporus, to hygromycin B resistance. Mol Gen Genet,250 (3):252-258.
    [46] Van de Rhee MD, Mendes O, Werten MW et a1.,1996. Highly efficient homologous integration via tandem exo-beta-l,3-glucanase genes in the common mushroom, Agaricus bisporus. Curr Genet, 30(2):166-173.
    [47]谢宝贵,朱虎,江玉姬等,2004.银耳的诱变与营养缺陷型菌株的筛选.江西农业大学学报,26(2):246-249.
    [48]朱虎,2004.高赖氨酸蛋白基因转化银耳研究.福建农林大学硕士学位论文.
    [49] Jia JH, Buswell JA, Peberdy JF,1998. Transformation of the edible fungi, Pleurotus ostreatus and Volvariella volvacea. Mycol Res,102(7): 876-880.
    [50] Honda Y, Matsuyama T, Irie T et al.,2000. Carboxin resistance transformation of the homobasidiomycete fungus Pleurotus ostreatus. Curr Genet, 37:209-212.
    [51]郭丽琼,林俊芳,熊盛等,2005.抗冷冻蛋白基因遗传转化草菇的研究.微生物学报,45(1):39-43.
    [52]赵姝娴,林俊芳,王杰等,2007.安全选择标记的转基因食用菌研究进展,食用菌学报,14(1):55-61.
    [53]陈美元,廖剑华,郭仲杰等,2009c.双孢蘑菇耐热相关基因的表达载体构建及转化研究.菌物学报,28(6):797-801.
    [54]廖剑华,陈美元,李洪荣等,2005.双孢蘑菇电击转化育种技术研究.菌物学报,24(增刊):121-124.
    [55] Thomas SPM and Lavrijssen B,2001. Transformation of the cultivated mushroom Agaricus bisporus using T-DNA from Agrobacterium tumefaciens. Curt Genet, 39:35-39.
    [56]陈美元,王泽生,廖剑华等,2005.农杆菌介导转化双孢蘑菇耐热相关基因片段.菌物学报,24(增刊):117-121.
    [57]阎培生,边银丙,罗信昌, 1997.高等真菌基因工程研究进展.食用菌学报,4(2):47-53.
    [58]谢宝贵,卢启泉,饶永斌等,2007.人胰岛素基因的人工合成及转化银耳的研究.食用菌学报,14(2) :1-8.
    [59] Zhang J, Nie SW, Shan L et al.,2002. Transformation of Metallothionein Gene into Mushroom Protoplasts by Application of Electroporation. Journal of Integrative Plant Biology, 44(12):145-149.
    [60]谢宝贵,罗联忠,2005.草菇开伞相关基因反义表达载体构建.食用菌学报,12 (2) :9-13.
    [61]蔡志欣,2009.反义酪氨酸酶基因抑制双孢蘑菇褐变的研究,福建农林大学硕士论文.
    [62] Fritsche G, 1991. Maintenance Rejuvenation and Improvement of HORST-U1, Genetic and Breeding of Agaricus, P145-152.
    [63] Magae Y, Hayashi N,1999. Double-stranded RNA and virus-like particles in the edible basidiomycete Flammulina velutipes (Enokitake). FEMS Microbiol Lett., 180(2):331-5.
    [64] Qiu L, Li Y, Liu Y et al., 2010. Particle and naked RNA mycoviruses in industrially cultivated mushroom Pleurotus ostreatus in China. Fungal Biol.,114(5-6):507-13.
    [65]丁湖广,2006.菌种退化与老化原因及防止措施.特种经济动植物,1:39-40.
    [66]刘海英,董月香,周廷斌等,2003.食用菌菌种的退化及复壮.食用菌,(25)6:16-17.
    [67]刘新宇,熊在东,2001.食用菌菌种退化的遗传学分析.信阳农业高等专科学校学报,11(2):16-18.
    [68]李宜平,2005.双孢蘑菇菌种防衰老退化技术.农村经济与科技,4:32.
    [69]刘莉颖, 1998.防止菌种退化的新途径.阜阳师范学院学报(自然科学版),4:44-45.
    [70]陈志松, 1998.工厂化栽培金针菇菌种退化与复壮的研究.中国食用菌,17(5):10.
    [71]朱宏发,吴京燕,何强泰,2006.原生质体复壮平菇菌种初探.食用菌, 28(3):20.
    [72] Leatham GF,1985. Extracellular Enzymes Produced by the Cultivated Mushroom Lentinus edodes during Degradation of a Lignocellulosic Medium. Appl Environ Microbiol. 50(4):859-67.
    [73] Willick GE, Seligy VL,1985. Multiplicity in cellulases of Schizophyllum commune. Derivation partly from heterogeneity in transcription and glycosylation. Eur J Biochem,151(1):89-96.
    [74] Perry CR, Smith M, Britnell CH, et al.,1993. Identification of two laccase genes in the cultivated mushroom Agaricus bisporus. J Gen Microbiol. 139(6):1209-18.
    [75] Smith M, Shnyreva A, Wood DA, et al.,1998. Tandem organization and highly disparate expression of the two laccase genes lcc1 and lcc2 in the cultivated mushroom Agaricus bisporus. Microbiology,144 (4):1063-9.
    [76] Zhao J, Kwan HS,1999. Characterization, molecular cloning, and differential expression analysis of laccase genes from the edible mushroom Lentinula edodes. Appl Environ Microbiol. 65(11):4908-13.
    [77] Lee CC, Wong DW, Robertson GH,2001. Cloning and characterization of two cellulase genes from Lentinula edodes. FEMS Microbiol Lett. 205(2):355-60.
    [78] Jia J, Dyer PS, Buswell JA, et al.,1999. Cloning of the cbhI and cbhII genes involved in cellulose utilisation by the straw mushroom Volvariella volvacea. Mol Gen Genet. 261(6):985-93.
    [79] Wichers HJ, Recourt K, Hendriks M, et al.,2003. Cloning, expression and characterisation of two tyrosinase cDNAs from Agaricus bisporus. Appl Microbiol Biotechnol. 61(4):336-41.
    [80] Sato T, Kanda K, Okawa K, et al.,2009. The tyrosinase-encoding gene of Lentinula edodes, Letyr, is abundantly expressed in the gills of the fruit-body during post-harvest preservation. Biosci Biotechnol Biochem. 73(5):1042-7.
    [81] Chow CM, Yagüe E, Raguz S, et al.,1994. The cel3 gene of Agaricus bisporus codes for a modular cellulase and is transcriptionally regulated by the carbon source. Appl Environ Microbiol. 1994, 60(8):2779-85.
    [82] Ohga S, Royse DJ.,2001. Transcriptional regulation of laccase and cellulase genes during growth and fruiting of Lentinula edodes on supplemented sawdust. FEMS Microbiol Lett. 201(1):111-5.
    [83]陈明杰,陈恩,王南等,1999.草菇蛋白酶的分离与纯化.食用菌学报, 6(4):46-48.
    [84]宋爱荣,刘作亭,1999.七个白色金针菇菌株发酵液中四种胞外酶活性的测定与分析.中国食用菌, 18(4):31-33.
    [85]高金权,刘朝贵,李成琼,2005.稻草秸秆栽培金针菇基质降解特性研究.园艺园林科学,21(12):260-264.
    [86]朱坚,高巍,林伯德等,2007.金针菇种质资源的SRAP分析.福建农林大学学报(自然科学版),36(2):154-158.
    [87]王守现,刘宇,耿小丽等,2006.应用SRAP标记对六个鸡腿菇菌株的多态性分析.江西农业大学学报,28(5):753-757.
    [88]陈美元,廖剑华,卢政辉等,2007.双孢蘑菇栽培菌株遗传多样性的DNA指纹分析.菌物学报,26(增刊):128-137.
    [89] Royse DJ and May B, 1982b. Genetic relatedness and its application in selective breeding of Agaricus brunnescens. Mycologia, 74(4):569-575.
    [90] Wang HC and Wang ZS, 1989. The prediction of strain characteristics of Agaricus bisporus by the application of isozyme electrophoresis. Mushroom science, 12(1):87-100.
    [91] Wang ZS and Wang HC,1990a. Isozyme patterns and characteristics of hybrid strains of Agaricus bisporus. Micologia Neotropical Aplicada, (3): 19-29.
    [92] Wang ZS, Liao JH, Li FG et al., 1991. Studies on the genetic basis of esterase isozyme loci Est A,B and C in Agaricus bisporus. Mushroom science, 13(1):3-10.
    [93] Wang ZS and Liao JH, 1990b. Study on the crossbreeding techniques of Agaricus bisporus.Micologia Neotropical Aplicada, (3):1-12.
    [94] Wang ZS, Liao JH, Li FG et al., 1995. Studies on breeding hybrid strain As2796 of Agaricus bisporus for canning in China. Mushroom Science, 14 (1): 71-72.
    [95]毛慧玲,李思光,1997.平菇菌株的酯酶同工酶研究.南昌大学学报(理科版),21(1):82-84.
    [96]贾建航,刘国振,李莉云,1997.酯酶同工酶IEF电泳及香菇品种鉴别.河北农业大学学报,20(1):1-5.
    [97]边银丙,罗信昌,周启,2000.木耳栽培菌株酯酶同工酶的酶谱多样性研究.菌物系统,19(1):87-90.
    [98]郑素月,张金霞,黄晨阳, 2003.中国栽培平菇的酯酶同工酶分析.食用菌学报,10(4):1-6.
    [99]郭倩,潘迎捷,周昌艳等,2004.姬松茸菌株种质资源多样性的初步研究.食用菌学报,11(1):12-16.
    [100]孔小卫,于敏,查向东,2004.安徽蜜环菌酯酶同工酶的研究.安徽大学学报, 28(2):66-70.
    [101] Liang P, Pardee AB,1992. Diferential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, 257:967-971.
    [102]刘凯,曾继吾,夏瑞等,2009. mRNA差异显示技术及其在园艺植物上的应用.亚热带植物科学,38(1):78-84.
    [103]罗志姣,蔡为明,李南羿等,2009.香菇银染mRNA差异显示体系的建立及条件优化.食用菌学报,16(1):26-30.
    [104]蔡为明,李南羿,谢鸣等,2009.利用mRNA差异显示技术研究香菇发育相关基因.菌物学报,28(2):289-294.
    [105]米朔甫,冯志勇,陈明杰等,2003. mRNA差异显示法分析冷刺激对香菇菌丝的影响.中国食用菌,22(2):13-15.
    [106] Wang ZS, Chen LF, Chen MY et al.,2004. Thermotolerance-related Genes in Agaricus bisporus. Mushroom Science, 16(1):133-137.
    [107] Chen MY, Wang ZS, Liao JH et al.,2008. Cloning and Sequencing of Gene 028-1 Related to the Thermotolerance of Agaricus bisporus. Mushroom Science, XVII: 159-165.
    [108]陈美元,2006.双孢蘑菇耐热相关基因028-1的克隆与序列分析.福建轻纺,9:1-5.
    [109]冯志勇,米朔甫,陈明杰等,2006.低温胁迫下香菇基因表达差异研究.应用与环境生物学报,12(5):614-617.
    [110] O'Farrell PH,1975. High resolution two-dimensional electrophoresis of proteins. Journal ofBiological Chemistry, 250(10): 4007-21.
    [111] Horie K, Rakwal R, Hirano M et al.,2008. Proteomics of two cultivated mushrooms Sparassis crispa and Hericium erinaceum provides insight into their numerous functional protein components and diversity. J Proteome Res.,7(5):1819-1835.
    [112]胡开辉,黄桂英,颜松等, 2009.斑玉蕈低温胁迫下菌丝体酶活变化及差异蛋白质组学研究.菌物学报,28(4): 584-590.
    [113]陆兆明,徐祯,王珂等,2010.双孢蘑菇耐温差异蛋白质组学研究.厦门大学学报(自然科学版),48(4):590-593.
    [114] Li G and Quiros CF, 2001. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica, Theor Appl Genet, 103: 455-461.
    [115]任羽,王得元,张银东等,2004.辣椒SRAP-PCR反应体系的建立与优化.分子植物育种,2(5):689-693.
    [116]顾雅君,王瑛,刘建荣等,2006.与食用菌相关主要酶的研究和应用.中国食用菌,25(1):40-42.
    [117]吴瑜凡,卢亚萍,汪瑾,2008.植物和真菌多酚氧化酶的分子生物学研究进展.现代农业科技,18:14-17.
    [118]王吉村,药立波,吕厚山等,2001.用差示PCR法筛选类风湿性关节炎滑膜细胞中的高表达基因.第四军医大学学报, 22(4):289-292.
    [119]路建平,1996.非放射性杂交技术.海口:南海出版公司.
    [120]刘晓云,苏明声,杨俊璋等, 2009.灵芝子实体原基双向电泳和总蛋白质提取方法的建立.菌物学报, 28(6):802-805.
    [121]王卓,张少斌,马镝等,2007.植物肌动蛋白研究进展.安徽农业科学, 35(10): 2860,2863.
    [122]王洪振,程焉平,2005.细胞核内肌动蛋白参与基因转录的研究进展.吉林师范大学学报(自然科学版),2:34-36
    [123]孙海平,汪晓峰, 2009.植物线粒体中活性氧的产生与抗氧化系统.现代农业科技, 8: 239-242

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700