光镊研究分散体系中微粒的运动
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分散体系是自然界中广泛存在的一种物质体系,对分散体系性质的研究一直具有重要的科学意义和应用价值。分散体系的宏观性质归根结底是由体系中的微粒的性质特别是微粒的动力学行为所决定,所以涉及特征尺度为微米量级的微粒、液滴或者气泡的运动的问题,是流体力学在分散体系应用研究的一个主要领域。然而长期以来,因为缺乏有效的实验手段,对单个微粒动力学行为的实验研究非常困难。
     光与物质相互作用的过程中传递动量,也能够传递角动量,基于此原理的光镊技术可以非机械接触的方式三维操控水溶液中的O.1μm-10μm的微粒。另外,光镊可以精确测量光阱对微粒施加的光阱力,使得在光镊出现之后,很快就被成功地应用于对分散体系中微粒的动力学行为进行研究。
     本文的工作主要是利用光镊研究分散体系中微粒的运动。对分散体系中微粒的扩散运动、旋转运动以及光镊操控界面中的微粒等进行了深入的研究和详细的讨论。对这些研究过程中所需要的实验设备、实验方法和涉及的相关问题也进行了实验研究和模拟计算。
     分散体系中微粒运动的一个主要特征是布朗运动,可以使用微粒的扩散系数参数描述其运动。利用光镊操控微粒的特点,非常适合于测量微粒的扩散系数。根据不同的研究对象,人们已经发展了多种利用光镊测量扩散系数的方法。论文根据纳米光镊系统,研究了溶液中微粒扩散系数的测量方法,测量不同浓度的溶液中微粒的扩散系数,并发展了结合高低频功率谱测量扩散系数的方法。
     微粒在光阱中不仅会平面运动,而且会做旋转运动。论文研究了双折射小球旋转速度随光阱的各种条件的变化。发现随着捕获高度的增加,微粒的旋转速度逐渐下降,并指出该下降是由于折射率不匹配引起的球差导致的。在无穷远显微系统上使用有限远物镜对球差进行补偿,将小球最大的旋转速度的位置平移至捕获高度约等于50μm的位置。
     光镊可以测量微区和界面中微粒的力学行为是其他研究手段无法比拟的。将光镊应用于界面体系研究的基础是光镊能够操控界面上的微粒。操控界面微粒与液体中操控微粒不一样,当微粒处于界面时,纵向方向主要受表面张力影响,而激光的辐射压力是次要的,所以光镊只能够二维操控界面上的微粒。论文使用几何光学模型,计算微粒处于界面时的光阱捕获力,指出如何才能最大限度的增加光阱力,以更好的操控界面微粒。计算结果指出低数值孔径的物镜更适合于操控界面微粒,在实验中使用了数值孔径为0.75的物镜对空气-水界面上的微粒进行了操控和移动,为光镊研究空气-水界面的性质做了初步的实验基础。
     论文利用光镊捕获粘附于Hela细胞的小球,测量小球与Hela细胞的非特异性结合力,研究了该结合力的强度和断裂过程,并分析该结合力的来源,认为该结合力是空间相互作用和静电力共同作用的结果。
     实验设备是实验研究工作的基础。论文前期还对光镊系统的参数进行了研究,测量了系统的光阱刚度包括横向刚度和纵向刚度,纵向刚度测量中小球的纵向位移采用信息熵进行标定。明确光阱中的微粒个数,是光镊在微观层次开展实验研究的前提。论文根据光散射原理,提出通过测量光阱内微粒的背散光强度来区分光阱中的微粒个数的方法,实验中成功地分辨了光阱中直径分别为1μm、0.5μm、0.2μm、100nm和73 nm的微粒个数。论文还对光阱中微粒布朗运动引起的背散光光强度变化进行分析,研究光阱中存在两个微粒时微粒的排列状态和光阱的物理参数。
Since the dispersion system widely exists in nature, it is important to do research in this field. The properties of dispersion rely on the properties of small particles especially their dynamics behaviors, so the research on the motion behavior of micro-sized particles is a large application field of hydrodynamics in the research of dispersion system. However, it is difficult to investigate the dynamics of single particle experimentally for a long time due to the lack of appropriate instruments.
     Light carries both linear and angular momentum and can thus exert force and torques on matter. Optical tweezers exploit this fundamental property to trap objects in a potential well formed by tightly focused light. This technique allows the manipulation of microscopic objects without mechanical contact. Moreover, the optical forces on a micro-particle trapped in an optical trap can be accurately measured. Such optical tweezers have been used in the study of dynamics behaviors of colloidal particles.
     In this thesis, we use optical tweezers to study the motion of the particles in the dispersion system. The main subjects of this thesis are the diffusion and rotation of particles in the trap, manipulation of particles at the interfaces. The contents are also investigated related to the main subjects such as experimental setup and methods by experiment or simulation.
     One of the main features of particles in the dispersion system is Brownian motion which can be described by the diffusion coefficient. Optical tweezers is suitable for measuring the diffusion coefficient of particles due to its manipulation contactless. The researchers have developed several measurement methods for different research objects. In this thesis, the diffusion coefficients of micro-sized particles were investigated with several methods based on the nanometer optical tweezers system, and a new method with combination of high-low frequency power spectrum has been developed to measure the diffusion coefficient.
     Birefringent particles rotate when trapped in elliptically polarized light. The rotation rates of the particles have been investigated with the condition of the optical trap. When an infinity corrected oil-immersion objective is used for trapping, the maximum rotation rate of birefringent particles occurs close to the coverslip, and the rotation rate decreases dramatically as the trapped depth increases. The descease is due to the spherical aberration at the glass-water interface. In the thesis the spherical aberration is compensated by using a finite-distance-corrected objective to trap and rotate the birefringent particles, and the result shows that the trapped depth corresponding to the maximum rotation rate is moved to 50μm.
     One of the characteristic of optical tweezers is applicable to non-conventional geometries:thin films, interior of biological cell, membranes etc. Manipulation of the particles at the interfaces is the basis of optical tweezers applied to the interface system. However, it's different to manipulate the particles at the interfaces from manipulation of the particles in the solutions. We numerically investigated the transverse trapping forces on a dielectric sphere located at an oil/air-water interfaces with ray-optics model, and manipulated the micron-sized particles at an air-water interface. The results establish the base for the applications of optical tweezers to measure the interaction of colloidal particles at the interfaces.
     The polystyrene particle adhered to Hela cell was trapped by the optical tweezers to measure the rupture force between the particle and the cell. The process of bond rupture was observed with the help of detection photodiode. The result showed that the adhesion is a nonspecific adhesion due to a combination of electrostatic and steric effects.
     Experimental equipment is the basis for experimental research. This thesis is based on optical tweezers technology, so the optical stiffness the nanometer optical tweezers system is studied in the second chapter first. We measured the optical stiffness including the lateral stiffness and axial stiffness, and the axial displacement of the particles calibration with information entropy during the measurement process.
     Optical tweezers can trap multiple particles in single trap, and how to distinguish the number of particles in single optical trap was the key work in the experiment. A novel method based on laser scattering method to distinguish the numbers of nanometer-particles in single trap was presented in Chapter Seven. The number of particles in single trap was distinguished by measure the intensity of backscattering light with corresponding situation. In the thesis, the number of particles with diameters of 1μm,0.5μm,0.2μm,100 nm,73 nm was distinguished successfully. The method presented may find applications of optical tweezers in the nanometer dimension.
引文
1. A. Ashkin, and J. M. Dziedzic, "Optical Levitation by Radiation Pressure," Appl. Phys. Lett.19, 283-285 (1971).
    2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt Lett 11,288-290 (1986).
    3. K. C. Neuman, and S. M. Block, "Optical trapping," Rev. Sci. Instrum.75,2787-2809 (2004).
    4. K. C. Neuman, and A. Nagy, "Single-molecule force spectroscopy:optical tweezers; magnetic tweezers and atomic force microscopy," Nature Methods 5,491-505 (2008).
    5. H. W. Wang, X. H. Liu, Y. M. Li, B. Han, L. R. Lou, and K. J. Wang, "Isolation of a single rice chromosome by optical micromanipulation," J. Opt. A:Pure Appl. Opt.6,89-93 (2004).
    6. Z. W. Li, B. Anvari, M. Takashima, P. Brecht,J. H. Torres, and W. E. Brownell, "Membrane tether formation from outer hair cells with optical tweezers," Biophys. J.82,1386-1395 (2002).
    7. Y. M. Li, L. J. Guan, L. R. Lou, G. Q. Cui, Y. Yao, H. W. Wang, C. S. Cao, R. L. Lu, and X. Chen, "Laser-induced tobacco protoplast fusion," Science in China Series C-Life Sciences 42,122-127 (1999).
    8. S. Kulin, R. Kishore, K. Helmerson, and L. Locascio, "Optical manipulation and fusion of liposomes as microreactors," Langmuir 19,8206-8210 (2003).
    9. Z. Sun, S. Xu, G. Dai, Y. Li, L. Lou, Q. Liu, and R. Zhu, "A microscopic approach to studying colloidal stability," Journal of Chemical Physics 119,2399-2405 (2003).
    10. F. Gittes, B. Schnurr, P. D. Olmsted, F. C. MacKintosh, and C. F. Schmidt, "Microscopic viscoelasticity:Shear moduli of soft materials determined from thermal fluctuations," Phys. Rev. Lett. 79,3286-3289 (1997).
    11. J. C. Crocker, "Measurement of the hydrodynamic corrections to the Brownian motion of two colloidal spheres," J. Chem. Phys.106,2837-2840 (1997).
    12. J. C. Crocker, and D. G, Grier, "Microscopic Measurement of the Pair interaction Potential of Charge-Stabilized Colloid," Physical Review Letters 73,352-355 (1994).
    13. J. C. Crocker, and D. G. Grier, "When like charges attract:The effects of geometrical confinement on long-range colloidal interactions," Physical Review Letters 77,1897-1900 (1996).
    14. X. W. Zhuang, "Unraveling DNA condensation with optical tweezers," Science 305,188-190 (2004).
    15. X. H. Zhang, K. Halvorsen, C. Z. Zhang, W. P. Wong, and T. A. Springer, "Mechanoenzymatic Cleavage of the Ultralarge Vascular Protein von Willebrand Factor," Science 324,1330-1334 (2009).
    16. N. R. Guydosh, and S. M. Block, "Direct observation of the binding state of the kinesin head to the microtubule," Nature 461,125-128 (2009).
    17. C. G. Xie, M. A. Dinno, and Y. Q. Li, "Near-infrared Raman spectroscopy of single optically trapped biological cells," Optics Letters 27,249-251 (2002).
    18. D. V. Petrov, "Raman spectroscopy of optically trapped particles," J. Opt. A-Pure Appl. Opt.9, S139-S156 (2007).
    19. S. Rao, S. Balint, B. Cossins, V. Guallar, and D. Petrov, "Raman Study of Mechanically Induced Oxygenation State Transition of Red Blood Cells Using Optical Tweezers," Biophys J 96,209-216 (2009).
    20. S. Sato, M. Ishigure, and H. Inaba, "Optical Trapping and Rotational Manipulation of Microscopic Particles and Biological Cells Using Higher-Order Mode Nd:YAG Laser Beams," Electron. Lett.27,1831-1832 (1991).
    21. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394,348-350 (1998).
    22. A. T. O'Neil, and M. J. Padgett, "Rotational control within optical tweezers by use of a rotating aperture," Opt. Lett.27,743-745 (2002).
    23. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled rotation of optically trapped microscopic particles," Science 292,912-914 (2001).
    24. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical torque controlled by elliptical polarization," Opt. Lett.23,1-3 (1998).
    25. J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. M. Cooper, and M. J. Padgett, "Comparison of Faxen's correction for a microsphere translating or rotating near a surface," Phys. Rev. E 79,026301 (2009).
    26. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical microrheology using rotating laser-trapped particles," Phys. Rev. Lett.92,198104 (2004).
    27. S. Henon, G. Lenormand, A. Richert, and F. Gallet, "A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers," Biophys J 76,1145-1151 (1999).
    28. C. T. Lim, M. Dao, S. Suresh, C. H. Sow, and K, T. Chew, "Large deformation of living cells using laser traps," Acta Materialia 52,1837-1845 (2004).
    29. C. T. Lim, M. Dao, S. Suresh, C. H. Sow, and K. T. Chew, "Corrigendum to "Large deformation of living cells using laser traps" [Acta Materialia 52 (2004) 1837-1845]," Acta Materialia 52, 4065-4066 (2004).
    30. J. G. Wu, Y. M. Li, D. Lu, Z. Liu, Z. D. Cheng, and L. Q. He, "Measurement of the Membrane Elasticity of Red Blood Cell with Osmotic Pressure by Optical Tweezers," Cryoletters 30,89-95 (2009).
    31. P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, E. J. Nijhof, J. J. Sixma, and G. J. Brakenhoff, "A new method to study shape recovery of red blood cells using multiple optical trapping," Biophys J 69,1666-1673(1995).
    32. Z. W. Sun, S. H. Xu, J. Liu, Y. M. Li, L. R. Lou, and J. C. Xie, "Improved procedure on the microscopic approach to determine colloidal stability," Journal of Chemical Physics 122,184904 (2005).
    33. J. P. Pantina, and E. M. Furst, "Directed assembly and rupture mechanics of colloidal aggregates," Langmuir 20,3940-3946 (2004).
    34. J. P. Pantina, and E. M. Furst, "Elasticity and critical bending moment of model colloidal aggregates," Physical Review Letters 94,138301 (2005).
    35. J. P. Pantina, and E. M. Furst, "Colloidal aggregate micromechanics in the presence of divalent ions," Langmuir 22,5282-5288 (2006).
    36. B. H. Meng, J. G. Wu, Y. M. Li, and L. R. Lou, "Aging process of bond between colloidal particles using laser tweezers," Colloids and Surfaces A 322,253-255 (2008).
    37. E. M. Furst, and A. P. Gast, "Micromechanics of magnetorheological suspensions," Physical Review E 61,6732-6739 (2000).
    38. M. Michihata, T. Hayashi, and Y. Takaya, "Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam," Appl. Opt.48,6143-6151(2009).
    39. S. Groblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, "Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity," Nat Phys 5,485-488 (2009).
    40. T. J. Kippenberg, and K. J. Vahala, "Cavity optomechanics:Back-action at the mesoscale," Science 321,1172-1176(2008).
    41. A. E. Wallin, H. Ojala, E. H(?)ggstrom, and R. Tuma, "Stiffer optical tweezers through real-time feedback control," Appl. Phys. Lett.92,224104 (2008).
    42. I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, "Theory of ground state cooling of a mechanical oscillator using dynamical backaction," Physical Review Letters 99,093901 (2007).
    43. F. Marquardt, A. A. Clerk, and S. M. Girvin, "Quantum theory of optomechanical cooling," Journal of Modern Optics 55,3329-3338 (2008).
    44. T. Corbitt, Y. Chen, E. Innerhofer, H. Muller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, "An All-Optical Trap for a Gram-Scale Mirror," Physical Review Letters 98,150802 (2007).
    45. H. J. H. Clercx, and P. P. J. M. Schram, "Brownian particles in shear flow and harmonic potentials: A study of long-time tails," Physical Review A 46,1942 (1992).
    46. B. Lukic, S. Jeney, Z. Sviben, A. J. Kulik, E. L. Florin, and L. Forro, "Motion of a colloidal particle in an optical trap," Phys. Rev. E 76,011112 (2007).
    47. T. J. Davis, "Brownian diffusion of nano-particles in optical traps," Optics Express 15,2702-2712 (2007).
    48. T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical measurement of microscopic torques," J. Mod. Opt.48,405-413 (2001).
    49. M. K. Liu, N. Ji, Z. F. Lin,and S. T. Chui, "Radiation torque on a birefringent sphere caused by an electromagnetic wave," Phys. Rev. E 72,056610 (2005).
    50. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical application and measurement of torque on microparticles of isotropic nonabsorbing material," Phys. Rev. A 68, 033802 (2003).
    51. A. La Porta, and M. D. Wang, "Optical torque wrench:Angular trapping, rotation, and torque detection of quartz microparticles," Phys. Rev. Lett.92,190801 (2004).
    52. S. Parkin, G. Knoner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Measurement of the total optical angular momentum transfer in optical tweezers," Opt. Express 14, 6963-6970 (2006).
    53. B. H. Lin, J. Yu, and S. A. Rice, "Direct measurements of constrained Brownian motion of an isolated sphere between two walls," Phys. Rev. E 62,3909-3919 (2000).
    54. B. H. Lin. J Yu, and S. A. Rice, "Diffusion of an isolated colloidal sphere confined between flat plates," Colloids and Surfaces a-Physicochemical and Engineering Aspects 174,121-131 (2000).
    55. E. R. Dufresne, D. Altman, and D. G. Grier, "Brownian dynamics of a sphere between parallel walls," Europhysics Letters 53,264-270 (2001).
    56. E. R. Dufresne, T. M. Squires, M. P. Brenner, and D. G. Grier, "Hydrodynamic coupling of two Brownian spheres to a planar surface," Phys. Rev. Lett.85,3317-3320 (2000).
    57. G. M. Wang, R. Prabhakar, and E. M. Sevick, "Hydrodynamic Mobility of an Optically Trapped Colloidal Particle near Fluid-Fluid Interfaces," Phys. Rev. Lett.103,248303 (2009).
    58. H. Brenner, "Slow viscous rotation of an axisymmetric body within a circular cylinder of finite length," Applied Science Research A 13,81-120 (1964).
    59. J. C. Crocker, and D. G. Grier, "Methods of digital video microscopy for colloidal studies," Journal of Colloid and Interface Science 179,298-310 (1996).
    60. J. Dobnikar, M. Brunner, H. H. von Grunberg, and C. Bechinger, "Three-body interactions in colloidal systems," Physical Review E 69,031402 (2004).
    61. C. Gutsche, U. F. Keyser, K. Kegler, and F. Kremer, "Forces between single pairs of charged colloids in aqueous salt solutions," Physical Review E 76,031403 (2007).
    62. A. D. Dinsmore, A. G. Yodh, and D. J. Pine, "Entropic control of particle motion using passive surface microstructures," Nature 383,239-242 (1996).
    63. R. Verma, J. C. Crocker, T. C. Lubensky, and A. G. Yodh, "Entropic colloidal interactions in concentrated DNA solutions," Physical Review Letters 81,4004-4007 (1998).
    64. J. C. Crocker, J. A. Matteo, A. D. Dinsmore, and A. G. Yodh, "Entropic attraction and repulsion in binary colloids probed with a line optical tweezer," Physical Review Letters 82,4352-4355 (1999).
    65. R. J. Owen, J. C. Crocker, R. Verma, and A. G. Yodh, "Measurement of long-range steric repulsions between microspheres due to an adsorbed polymer," Physical Review E 6401,011401 (2001).
    66. M. T. Valentine, L. E. Dewalt, and H. D. OuYang, "Forces on a collcidal particle in a polymer solution:A study using optical tweezers," J. Phys.-Condes. Matter 8,9477-9482 (1996).
    67. M. T. Wei, A. Zaorski, H. C. Yalcin, J. Wang, M. Hallow, S. N. Ghadiali, A. Chiou, and H. D. Ou-Yang, "A comparative study of living cell micromechanical properties by oscillatory optical tweezers," Optics Express 16,8594-8603 (2008).
    68. L. A. Hough, and H. D. Ou-Yang, "Viscoelasticity of aqueous telechelic poly(ethylene oxide) solutions:Relaxation and structure," Phys. Rev. E 73,031802 (2006).
    69. C. J. Rueb, and C. F. Zukoski, "Viscoelastic properties of colloidal gels," J Rheol 41,197-218 (1997).
    70. K. M. Addas, C. F. Schmidt, and J. X. Tang, "Microrheology of solutions of semiflexible biopolymer filaments using laser tweezers interferometry," Phys. Rev. E 70,021503 (2004).
    71. G. Pesce, A. C. De Luca, G. Rusciano, P. A. Netti, S. Fusco, and A. Sasso, "Microrheology of complex fluids using optical tweezers:a comparison with macrorheological measurements," J. Opt. A-Pure Appl. Opt.11,034016 (2009).
    1. K. C. Neuman, and S. M. Block, "Optical trapping," Rev. Sci. Instrum.75,2787-2809 (2004).
    2. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, "Recent advances in optical tweezers," Annual Review of Biochemistry 77,205-228 (2008).
    3. D. McGloin, "Optical tweezers:20 years on," Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences 364,3521-3537 (2006).
    4. M. Capitanio, G. Romano, R. Ballerini, M. Giuntini, F. S. Pavone, D. Dunlap, and L. Finzi, "Calibration of optical tweezers with differential interference contrast signals," Rev. Sci. Instrum.73, 1687-1696(2002).
    5. K. Berg-Sorensen, and H. Flyvbjerg, "Power spectrum analysis for optical tweezers," Rev. Sci. Instrum.75,594-612 (2004).
    6. R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, "Quantitative measurements of force and displacement using an optical trap," Biophys J 70,1813-1822 (1996).
    7. A. Rohrbach, and E. H. K. Stelzer, "Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations," Appl. Optics 41,2494-2507 (2002).
    8. A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Horber, "Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light," Microsc. Res. Tech. 44,378-386(1999).
    9. A. Rohrbach, C. Tischer, D. Neumayer, E. L. Florin, and E. H. K. Stelzer, "Trapping and tracking a local probe with a photonic force microscope," Rev. Sci. Instrum.75,2197-2210 (2004).
    10. A. Rohrbach, and E. H. K. Stelzer, "Three-dimensional position detection of optically trapped dielectric particles," J. Appl. Phys.91,5474-5488 (2002).
    11. G. Volpe, G. Kozyreff, and D. Petrov, "Backscattering position detection for photonic force microscopy," J. Appl. Phys.102,084701 (2007).
    12. J. H. Bao, Y. M. Li, L. R. Lou, and Z. Wang, "Measurement of the axial displacement with information entropy," Journal of Optics A 7,76-81 (2005).
    13. J. H. Bao, Y. M. Li, L. R. Lou, Z. Gong, Z. Wang, and H. W. Wang, "Information entropy method for measuring the axial displacement of a bead and its application to analyzing the trapping force of optical trap," Proc. of SPIE 5637,305-312 (2005).
    14. E. Fallman, and O. Axner, "Influence of a glass-water interface on the on-axis trapping of micrometer-sized spherical objects by optical tweezers," Appl. Optics 42,3915-3926 (2003).
    1. B. Lukic, S. Jeney, Z. Sviben, A. J. Kulik, E. L. Florin, and L. Forro, "Motion of a colloidal particle in an optical trap," Phys. Rev. E 76,011112 (2007).
    2. H. J. H. Clercx, and P. P. J. M. Schram, "Brownian particles in shear flow and harmonic potentials: A study of long-time tails," Physical Review A 46,1942 (1992).
    3. B. H. Lin, J. Yu, and S. A. Rice, "Direct measurements of constrained Brownian motion of an isolated sphere between two walls," Phys. Rev. E 62,3909-3919 (2000).
    4. B. H. Lin, J. Yu, and S. A. Rice, "Diffusion of an isolated colloidal sphere confined between flat plates," Colloids and Surfaces a-Physicochemical and Engineering Aspects 174,121-131 (2000).
    5. 任洪亮,庄礼辉,李银妹,”双光镊测量胶体微粒间相互作用势”,中国激光35,151-155(2008).
    6. L. I. McCann, M. Dykman, and B. Golding, "Thermally activated transitions in a bistable three-dimensional optical trap," Nature 402,785-787 (1999).
    7. 孙玉芬,徐升华,李银妹,楼立人,”受限分散体系中粒子扩散特性的研究,”力学学报36,739-743(2004).
    8. S. Keen, J. Leach, G. Gibson, and M J. Padgett, "Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers," Journal of Optics A 9, S264-S266 (2007).
    9. K. Berg-Sorensen, and H. Flyvbjerg, "Power spectrum analysis for optical tweezers," Rev. Sci. Instrum.75,594-612 (2004).
    10. P. Cicuta, and A. M. Donald, "Microrheology:a review of the method and applications," Soft Matter 3,1449-1455 (2007).
    1. R. Yasuda, H. Noji, M. Yoshida, K. Kinosita, and H. Itoh, "Resolution of distinct rotational substeps by submillisecond kinetic analysis of F-1-ATPase," Nature 410,898-904 (2001).
    2. M. G. Duser, N. Zarrabi, D. J. Cipriano, S. Ernst, G. D. Glick, S. D. Dunn, and M. Borsch, "36 degrees step size of proton-driven c-ring rotation in FoFl-ATP synthase," Embo J.28,2689-2696 (2009).
    3. R. A. Beth, "Mechanical detection and measurement of the angular momentum of light," Physical Review 50,115-125(1936).
    4. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394,348-350 (1998).
    5. S. Sato, M. Ishigure, and H. Inaba, "Optical Trapping and Rotational Manipulation of Microscopic Particles and Biological Cells Using Higher-Order Mode Nd:YAG Laser Beams," Electron. Lett.27,1831-1832 (1991).
    6. A. T. O'Neil, and M. J. Padgett, "Rotational control within optical tweezers by use of a rotating aperture," Opt. Lett.27,743-745 (2002).
    7. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled rotation of optically trapped microscopic particles," Science 292,912-914 (2001).
    8. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical torque controlled by elliptical polarization," Opt. Lett.23,1-3 (1998).
    9. T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical measurement of microscopic torques," J. Mod. Opt.48,405-413 (2001).
    10. A. La Porta, and M. D. Wang, "Optical torque wrench:Angular trapping, rotation, and torque detection of quartz microparticles," Phys. Rev. Lett.92,190801 (2004).
    11. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical microrheology using rotating laser-trapped particles," Phys. Rev. Lett.92,198104 (2004).
    12. A. Rohrbach, and E. H. K. Stelzer, "Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations," Appl. Optics 41,2494-2507 (2002).
    13. P. C. Ke, and M. Gu, "Characterization of trapping force in the presence of spherical aberration," J. Mod. Opt.45,2159-2168 (1998).
    14. C. J. R. Sheppard, and M. Gu, "Aberration Compensation in Confocal Microscopy," Appl. Optics 30,3563-3568(1991).
    15. S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, "Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index," Journal of Microscopy 169,391-405 (1993).
    16. P. Torok, P. Varga, Z. Laczik, and G. R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices:an integral representation," J. Opt. Soc. Am. A 12,325-332 (1995).
    17. X. C. Yao, Z. L. Li, H. L. Guo, B. Y. Cheng, X. H. Han, and D. Z. Zhang, "Effect of spherical aberration introduced by water solution on trapping force," Chin. Phys.9,824-826 (2000).
    18. X. C. Yao, Z. L. Li, H. L. Guo, B. Y. Cheng, and D. Z. Zhang, "Effects of spherical aberration on optical trapping forces for Rayleigh particles," Chin. Phys. Lett.18,432-434 (2001).
    19. K. C. Vermeulen, G. J. L. Wuite, G. J. M. Stienen, and C. F. Schmidt, "Optical trap stiffness in the presence and absence of spherical aberrations," Appl. Optics 45,1812-1819 (2006).
    20. B. H. Lin, J. Yu, and S. A. Rice, "Direct measurements of constrained Brownian motion of an isolated sphere between two walls," Physical Review E 62,3909-3919 (2000).
    21. S. N. S. Reihani, M. A. Charsooghi, H. R. Khalesifard, and R. Golestanian, "Efficient in-depth trapping with an oil-immersion objective lens," Opt. Lett.31,766-768 (2006).
    22. T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, "Enhancement of laser trapping force by spherical aberration. correction using a defomiable mirror," Jpn. J. Appl. Phys. Part 2-Lett.42, L701-L703 (2003).
    23. E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, "Spherical aberration correction for optical tweezers," Opt. Commun.236,145-150 (2004).
    24. G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, "Defining the trapping limits of holographical optical tweezers," J. Mod. Opt.51,409-414 (2004).
    25. Y. Roichman, A. Waldron, E. Gardel, and D. G. Grier, "Optical traps with geometric aberrations," Appl. Optics 45,3425-3429 (2006).
    26. M. C. Williams, J. R. Wenner, I. Rouzina, and V. A. Bloomfield, "Entropy and heat capacity of DNA melting from temperature dependence of single molecule stretching," Biophys. J.80,1932-1939 (2001).
    27. P. Cicuta, S. L. Keller, and S. L. Veatch, "Diffusion of liquid domains in lipid bilayer membranes," Journal of Physical Chemistry B 111,3328-3331 (2007).
    28. E. J. G. Peterman, F. Gittes, and C. F. Schmidt, "Laser-induced heating in optical traps," Biophys J 84,1308-1316(2003).
    29. S. N. S. Reihani, and L. B. Oddershede, "Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations," Opt. Lett.32,1998-2000 (2007).
    30. J. Happel, and H. Brenner, Low Reynolds number hydrodynamics (Martinus Nijhoff, Hague, 1983).
    1. R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. N. Burgess, "Measurement of long-range repulsive forces between charged particles at an oil-water interface," Phys Rev Lett 88, 246102(2002).
    2. P. T. Korda, G. C. Spalding, and D. G. Grier, "Evolution of a colloidal critical state in an optical pinning potential landscape," Phys. Rev. B 66,024504 (2002).
    3. W. Jian, and L. L. Dai, "One-particle microrheology at liquid-liquid interfaces," Appl. Phys. Lett. 89,094107 (2006).
    4. C. Y. Wu, Y. M. Song, and L. L. Dai, "Two-particle microrheology at oil-water interfaces," Appl. Phys. Lett.95,3 (2009).
    5. M. G. Nikolaides, A. R. Bausch, M. F. Hsu, A. D. Dinsmore, M. P. Brenner, D. A. Weitz, and C. Gay, "Electric-field-induced capillary attraction between like-charged particles at liquid interfaces," Nature 420,299-301 (2002).
    6. E. J. Stancik, M. J. O. Widenbrant, A. T. Laschitsch, J. Vermant, and G G. Fuller, "Structure and dynamics of particle monolayers at a liquid-liquid interface subjected to extensional flow," Langmuir 18,4372-4375(2002).
    7. R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, B. Neumann, and V. N. Paunov, "Drag forces on a stationary partirle in flowing two-dimensional ordered particle monolayers:Simulation and measurement using optical tweezers," Langmuir 18,9587-9593 (2002).
    8. T. S. Horozov, R. Aveyard, B. P. Binks, and J. H. Clint, "Structure and stability of silica particle monolayers at horizontal and vertical octane-water interfaces," Langmuir 21,7405-7412 (2005).
    9. B. J. Park, J. P. Pantina, E. M. Furst, M. Oettel, S. Reynaert, and J. Vermant, "Direct measurements of the effects of salt and surfactant on interaction forces between colloidal particles at water-oil interfaces," Langmuir 24,1686-1694 (2008).
    30. Y. Han, and D. G. Grier, "Confinement-Induced Colloidal Attractions in Equilibrium," Phys Rev Lett 91,038302 (2003).
    11. T. E. Angelini, H. Liang, W. Wriggers, and G. C. L. Wong, "Like-charge attraction between polyelectrolytes induced by counterion charge density waves," P Natl Acad Sci USA 100,8634-8637 (2003).
    12. W. M. Gelbart, R. F. Bruinsma, P. A. Pincus, and V. A. Parsegian, "DNA-inspired electrostatics," Phys Today 53,38-44 (2000).
    13. A. Ashkin, "Forces of a Single-Beam Gradient Laser Trap on a Dielectric Sphere in the Ray Optics Regime," Biophys J 61,569-582 (1992).
    14. B. P. Binks, "Particles as surfactants-similarities and differences," Current Opinion in Colloid & Interface Science 7,21-41 (2002).
    15.颜肖慈,and罗明道,界面化学(化学工业出版社北京,2005).
    16. J. H. Zhou, H. L. Ren, J. Cai, and Y. M. Li, "Ray-tracing methodology:application of spatial analytic geometry in the ray-optic model of optical tweezers," Appl. Opt.47,6307-6314 (2008).
    17. N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, "Measurements of trapping efficiency and stiffness in optical tweezers," Opt. Commun.214,15-24 (2002).
    18. B. H. Meng, J. H. Zhou, M. C. Zhong, Y. M. Li, J. G. Wu, and H. L. Ren, "Improvement of transverse trapping efficiency of optical tweezers," Chinese Physics Letters 25,2300-2302 (2008).
    19. A. Samadi, and S. N. S.Reihani, "Optimal beam diameter for optical tweezers," optics Letters, to be published (2010).
    20. W. Chen, S. S. Tan, Z. S. Huang, T. K. Ng, W. T. Ford, and P. Tong, "Measured long-ranged attractive interaction between charged polystyrene latex spheres at a water-air interface," Phys Rev E 74,021406(2006).
    1. J. W. Weisel, H. Shuman, and R. I. Litvinov, "Protein-protein unbinding induced by force: single-molecule studies," Curr Opin Struc Biol 13,227-235 (2003).
    2. D. E. Leckband, F. J. Schmitt, J. N. Israelachvili, and W. Knoll, "Direct Force Measurements of Specific and Nonspecific Protein Interactions," Biochemistry-Us 33,4611-4624 (1994).
    3. M. Long, H. Zhao, K. S. Huang, and C. Zhu, "Kinetic measurements of cell surface E-selectin/carbohydrate ligand interactions," Ann Biomed Eng 29,935-946 (2001).
    4. K. K. Sarangapani, T. Yago, A. G. Klopocki, M. B. Lawrence, C. B. Fieger, S. D. Rosen, R. P. McEver, and C. Zhu, "Low force decelerates L-selectin dissociation from P-selectin glycoprotein ligand-1 and endoglycan," J Biol Chem 279,2291-2298 (2004).
    5. E. Evans, A. Leung, D. Hammer,and S. Simon, "Chemically distinct transition states govern rapid dissociation of single L-selectin bonds under force," Proceedings of the National Academy of Sciences of the United States of America 98,3784-3789 (2001).
    6. N. Ribeck, and O. A. Saleh, "Multiplexed single-molecule measurements with magnetic tweezers," Rev. Sci. Instrum.79,094301 (2008).
    7. G Knoner, B. E. Rolfe, J. H. Campbell, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Mechanics of cellular adhesion to artificial artery templates," Biophys. J.91, 3085-3096 (2006).
    8. A. L. Stout, "Detection and characterization of individual intermolecular bonds using optical tweezers," Biophys. J.80,2976-2986 (2001).
    9. K. C. Neuman, and A. Nagy, "Single-molecule force spectroscopy:optical tweezers, magnetic tweezers and atomic force microscopy," Nature Methods 5,491-505 (2008).
    10. M. Capitanio, G. Romano, R. Ballerini, M. Giuntini, F. S. Pavone, D. Dunlap, and L. Finzi, "Calibration of optical tweezers with differential interference contrast signals," Rev. Sci. Instrum.73, 1687-1696 (2002).
    11.龚錾,陈洪涛,李银妹,楼立人,and邱俊,”四种光阱刚度测量法的实验研究与比较,”中国科学技术大学学报35,601-607(2005).
    12. M. Grandbois, M. Beyer, M. Rief, H. Clausen-Schaumann, and H. E. Gaub, "How strong is a covalent bond?"Science 283,1727-1730 (1999).
    1. J. H. van Zanten, S. Amin, and A. A. Abdala, "Brownian motion of colloidal spheres in aqueous PEO solutions," Macromolecules 37,3874-3880 (2004).
    2. J. T. Lee, C. Y. Chou, G Chao, D. R. Pilaski, and M. Robert, "Two-dimensional diffusion of colloids in polymer solutions," Molecular Physics 103,2897-2902 (2005).
    3. A. J. Levine, and T. C. Lubensky, "One-and two-particle microrheology," Phys. Rev. Lett.85, 1774-1777(2000).
    4. L. Starrs, and P. Bartlett, "One-and two-point micro-rheology of viscoelastic media," J. Phys.-Condes. Matter 15, S251-S256 (2003).
    5. K. Berg-Sorensen, and H. Flyvbjerg, "Power spectrum analysis for optical tweezers," Rev. Sci. Instrum.75,594-612 (2004).
    6. K. Berg-Sorensen, E. J. G. Peterman, T. Weber, C. F. Schmidt, and H. Flyvbjerg, "Power spectrum analysis for optical tweezers. Ⅱ:Laser wavelength dependence of parasitic filtering, and how to achieve high bandwidth," Rev. Sci. Instrum.77,063106 (2006).
    7. E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, "Microrheology of biopolymer-membrane complexes," Phys. Rev. Lett.85,457-460 (2000).
    8. P. Cicuta, S. L. Keller, and S. L. Veatch, "Diffusion of liquid domains in lipid bilayer membranes," Journal of Physical Chemistry B 111,3328-3331 (2007).
    9. K. M. Addas, C. F. Schmidt, and J. X. Tang, "Microrheology of solutions of semiflexible biopolymer filaments using laser tweezers interferometry," Phys. Rev. E 70,021503 (2004).
    10. B. Schnurr, F. Gittes, F. C. MacKintosh, and C. F. Schmidt, "Determining microscopic viscoelasticity in flexible and semiflexible polymer networks from thermal fluctuations," Macromolecules 30,7781-7792 (1997).
    11. N. B. Viana, R. T. S. Freire, and O. N. Mesquita, "Dynamic light scattering from an optically trapped microsphere," Phys. Rev. E 65,041921 (2002).
    12. B. R. Dasgupta, S. Y. Tee, J. C. Crocker, B. J. Frisken, and D. A. Weitz, "Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering," Phys. Rev. E 65,051505 (2002).
    13. K. Berg-Sorensen, and H. Flyvbjerg, "Power spectrum analysis for optical tweezers," Review of Scientific Instruments 75,594-612 (2004).
    14. Z. W. Sun, S. H. Xu, G. L. Dai, Y. M. Li, L. R. Lou, Q. S. Liu, and R. Z. Zhu, "A microscopic approach to studying colloidal stability," Journal of Chemical Physics 119,2399-2405 (2003).
    15.钟敏成,张文静,周金华,李银妹,田来科,and白晋涛,”背散光实时分辨光阱中的纳米粒子个数,”中国激光37,398-403(2010).
    16. M. Dienerowitz, M. Mazilu, and K. Dholakia, "Optical manipulation of nanoparticles:a review," J. Nanophoton.2,021875 (2008).
    17. C. Hosokawa, H. Yoshikawa, and H. Masuhara, "Cluster formation of nanoparticles in an optical trap studied by fluorescence correlation spectroscopy," Phys Rev E 72,7 (2005).
    18. P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. D. Yang, and J. Liphardt, "Optical trapping and integration of semiconductor nanowire assemblies in water," Nature Materials 5,97-101 (2006).
    19. H. Yoshikawa, T. Matsui, and H. Masuhara, "Reversible assembly of gold nanoparticles confined in an optical microcage," Phys Rev E 70,061406 (2004).
    20. K. Ajito, and K. Torimitsu, "Single nanoparticle trapping using a Raman tweezers microscope," Applied Spectroscopy 56,541-544 (2002).
    21. C. Hosokawa, H. Yoshikawa, and H. Masuhara, "Optical assembling dynamics of individual polymer nanospheres investigated by single-particle fluorescence detection," Physical Review E 70, O51410(2004).
    22. L. Jauffred, A. C. Richardson, and L. B. Oddershede, "Three-Dimensional Optical Control of Individual Quantum Dots," Nano Letters 8,3376-3380 (2008).
    23. (美)R.S.斯坦(R.S.Stein)讲授;徐懋等译, Application of Scattering and Birefraction on theStudy ofPolymer Morphalogy(散射和双拆射方法在高聚物织构研究中的应用)(Beijing,1983).
    24. A. Rohrbach, and E. H. K. Stelzer, "Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations," Appl. Optics 41,2494-2507 (2002).
    25. S. H. Xu, Y. M. Li, and L. R. Lou, "Axial optical trapping forces on two particles trapped simultaneously by optical tweezers," Appl. Optics 44,2667-2672 (2005).
    26.江龙,胶体化学概论(科学出版社,北京,2002).
    27. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett.11,288-290 (1986).
    28. Y. Harada, and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Optics Communications 124,529-541 (1996).
    29. R. BarZiv, A. Meller, T. Tlusty, E. Moses, J. Stavans, and S. A. Safran, "Localized dynamic light scattering:Probing single particle dynamics at the nanoscale," Physical Review Letters 78,154-157 (1997).
    30. J. H. Zhou, L. J. Qu, K. Yao, M. C. Zhong, and Y. M. Li, "Observing nanometre scale particles with light scattering for manipulation using optical tweezers," Chinese Physics Letters 25,329-331 (2008).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700