飞秒激光制作体光栅及新型光纤传感器件的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞秒激光微加工由于加工精度高、质量好以及可实现三维加工等优点,被广泛应用于对各种材料的加工处理。由于脉冲时间极短(<1ps),在飞秒激光作用下,脉冲能量能够在极短的时间内注入焦点区域的材料内,有效抑制了加工过程中热效应的影响。利用飞秒激光微加工的这些独特优点,可以在多种材料表面或内部制作新颖的微型光器件。本论文开展了飞秒激光微加工硅晶片、石英玻璃及光纤材料的实验研究。结合理论分析与数值模拟,基于飞秒激光三维加工在石英玻璃内部制作了体光栅;利用飞秒激光烧蚀在光纤内部制作了几种新型光纤传感器件并实验研究了它们的传感特性。全文的主要研究内容如下:
     (1)以飞秒激光微加工硅晶片为例详细介绍了飞秒激光材料微加工的方法和过程,结合光学显微镜、扫描电子显微镜(SEM)及电子能谱仪(EDX)等技术与仪器,分析了飞秒激光对硅晶片进行钻孔与切割的形貌特征、烧蚀速率以及表面氧化特性,并采用优化的加工参数制备了应用于微机电系统(MEMS)的微型硅模具。
     (2)实验研究了飞秒激光对石英玻璃的烧蚀阈值及体内光学损伤阈值,以及飞秒激光在石英玻璃内部直写体光栅的加工工艺,并结合有限元方法(FEM)的模拟结果分析了体光栅的衍射特性。
     (3)开展了基于飞秒激光微细加工方法在单模光纤(SMF-28)上制备微孔折射率传感器件的实验研究,结合一个几何光学模型以及时域有限差分方法(FDTD)数值模拟,详细阐释了微孔折射率传感器的透射谱特性与工作原理。
     (4)基于飞秒激光钻孔方法,在单模光纤以及光子晶体光纤(LMA-10)上制备了微孔结构的长周期光纤光栅(LPFG),并结合有限元方法(FEM)模拟与局部耦合模理论计算分析了此类微孔结构长周期光纤光栅的透射谱特性;使用可调谐激光器及红外CCD观测了微孔结构长周期光纤光栅的模场形貌,并利用PDL测试仪分析了微孔结构长周期光纤光栅的偏振相关损耗(PDL);通过填充标准折射率匹配液(Cargille),研究了单模光纤上的微孔结构长周期光纤光栅对折射率的灵敏度。
     (5)基于飞秒激光烧蚀,在单根单模光纤上制备了微米尺度的Mach-Zehnder干涉仪,根据双光束干涉公式分析了此类干涉仪的透射谱特性及其对折射率与温度的灵敏度,并实验研究了此类干涉仪对折射率以及温度的响应,证明这是一种具有极高灵敏度的折射率传感器件以及较高灵敏度的高温传感器件。
Femtosecond laser micromachining has been widely used in materials processing for its high precision, good quality and capability of three-dimensional micromachining. The heat effect can be ignored during femtosecond laser micromachining since pulse energies can be deposited into materials in the vicinity of the focal volume in an ultrashort time scale due to the short pulse duration (<1 ps). Novel micro-optic devices and features can be fabricated at the surface or in the bulk of materials with the advantages aforementioned. In this dissertation, experimental study on the micromachining of silicon wafer, fused silica and fiber materials have been perfomed by use of the femtosecond laser micromachining methods. Combined with theoretical analysis and numerical simulation, volume gratings have been fabricated in the bulk of fused silica with femtosecond laser three-dimensional fabrication technique, and novel fiber sensors have been fabricated in fibers by direct femtosecond laser ablation and the corresponding sensitivities for sensing applications have been investigated experimentally. The main contents are listed as follows:
     (1) The materials micromachining methods and procedures with femtosecond laser micromachining have been investigated systematically, in the case of silicon wafer processing. The morphologies, surface oxidation in the vicinity of the ablated holes and cutting kerfs in silicon wafer have been studied with the help of optical microscopy, scanning electronic microscopy (SEM) and energy dispersive X-ray analysis (EDX), and a micro-mould has been fabricated with optimal processing parameters for applications in MEMS.
     (2) The ablation threshold and bulk damage threshold of fused silica have been investigated experimentally. The processing parameters on the fabrication of volume gratings have been studies and optimized, and the diffraction power spectra of the gratings have been conclusively characterized by experiments and numerical simulations.
     (3) Refractive index sensor based on a microhole in the conventional single mode fiber (SMF-28) has been fabricated by use of femtosecond laser micromachining. The transmission characteristics and working principal of the sensor are discussed with a simple geometrical optical model and numerical simulations.
     (4) Long-period fiber gratings (LPFG) have been fabricated by direct femtosecond laser drilling in single mode fiber (SMF-28, from Corning) and photonic crystal fibers (LMA-10, from NKT Photonics and all-solid photonic bandgap fiber, from YOFC). The resonance wavelength shift and transmission spectrum of the microhole-structured LPFG are analyzed with coupled-local mode theory and simulation results obtained by the finite element method (FEM). And the mode profiles in the near field of the microhole structured LPFG are measured with a tunable laser and an infrared CCD camera. Furthermore, the polarization denpendent loss (PDL) of the device has been tested with an all optical parameter analyzer, and the sensitivity to surrounding refractive index of the LPFG has also been investigated by use of standard RI liquids (from Cargille Laboratory).
     (5) Miniaturized fiber inline Mach-Zehnder interferometer has been fabricated in single mode fiber with femtosecond laser ablation, and its corresponding transmission characteristics and sensitivity to surrounding refractive index and temperature have been discussed with the well-known two-beam interference equation. Results show that the miniaturized fiber inline Mach-Zehnder interferometer is suitable for refractive index sensing and high-temperature sensing with high sensitivity.
引文
[1]X. Liu, D. Du, and G. Mourou. Laser ablation and micromachining with ultrashort laser pulses. IEEE J. Quantum Electron.,1997,33:1706-1716
    [2]刘大勇.石英玻璃中飞秒激光三维加工阈值的研究及其应用:[博士论文].北京:北京大学图书馆,2008
    [3]C. B. Schaffer, A. Brodeur, J. F. Garcia et al. Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy, Opt. Lett.,2001,26:93-95
    [4]C. B. Schaffer, J. F. Garcia, and E. Mazur. Bulk heating of transparent materials using a high-repetition-rate femtosecond laser, Applied Physics A-Materials Science& Processing. Appl. Phys. A,2003,351-354
    [5]R. Gattass, L. Cerami and E. Mazur. Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates. Opt. Express,2006, 5279-5284
    [6]K. Davis, K. Miura, N. Sugimoto. Writing waveguides in glasss with a femtosecond laser. Opt. Lett.,1996,21:1729-1731
    [7]E. Glezer, M. Milosavljecic, L. Huang et al. Three-dimensional optical storage inside transparent materials. Opt. Lett.,1996,21:2023-2025
    [8]E. Glezer and E. Mazur. Ultrafast-laser driven micro-explosions in transparent materials. Appl. Phys. Lett.1997,71:882
    [9]K. Miura, J. Qiu, H. Inouye et al. Photowritten optical waveguides in various glasses with ultrashort pulse laser. Appl. Phys. Lett.,1997,71:3329
    [10]D. Homoelle, S. Wielandy, A. Gaeta et al. Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses. Opt. Lett.,1999,24:1311
    [11]A. M. Streltsov, F. Borrelli. Study of femtosecond-laser-written waveguides in glasses. J. Opt. Soc. Am. B,2002,19:2496
    [12]G Cerullo, R. Osellame, S. Taccheo et al. Femtosecond micromachining of symmetric waveguides at 1.5 μm by astigmatic beam focusing. Opt. Lett.,2002,27: 1938
    [13]A. Szameit, Y. V. Kartashov, F. Dreisow et al. Observation of surface solitons in chirped waveguide arrays. Opt. Lett.,2008,33:1132-1134
    [14]J. W. Chan, T. R. Huser, S. H. Risbud et al. Waveguide fabrication in phosphate glasses using femtosecond laser pulses. Appl. Phys. Lett.,2003,82:2371-2373
    [15]H. Ebendorff-Heidepriem. Laser writing of waveguides in photosensitive glasses. Opt. Mater.,2004,25:109-115
    [16]Y. Nasu, M. Kohtoku, and Y. Hibino. Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit. Opt. Lett.,2005,30:723-725
    [17]Y. Tokuda, M. Saito, M. Takahashi et al. Waveguide formation in niobium tellurite glasses by pico-and femtosecond laser pulses. Non-crystalline Solids,2003, 472-475
    [18]J. Siegel, J. M. Fernandez-Navarro, Al Garcia-Navarro et al. Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold. App. Phys. Lett.,2005,86:121109
    [19]O. Efimov, L. Glebov, K. Richardson et al. Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses. Opt. Mater.,2001,17:379-386
    [20]T. Pertsch, U. Peschel, and F. Lederer. Discrete diffraction in two-dimensional arrays of coupled waveguides in silica. Opt. Lett.,2004,29:468-470.
    [21]A. Szameit, D. Blomer, J. Burghoff et al. Hexagonal waveguide arrays written with fs-laser pulses. Appl. Phys. B,2006,507-512
    [22]A. Szameit, J. Burghoff, T. Pertsch et al. Two-dimensional soliton in cubic fs laser written waveguide arrays in fused silica. Opt. Express,2006,14:6055-6062
    [23]A. Szameit, Y. Kartashov, F. Dreisow. Observation of two-dimensional surface solitons in asymmetric waveguide arrays. Phys. Rev. Lett.,2007,98:173903
    [24]A. Szameit, Y. Kartashov, F. Dreisow. Observation of surface solitons in chirped waveguide arrays. Opt. Lett.,2008,33:1132-1134
    [25]H. Chen, X. Chen, Y. Xia et al. Beam coupling in 2 × 2 waveguide arrays in fused silica fabricated by femtosecond laser pulses. Opt. Express,2007,15:5445-5450
    [26]S.-H. Cho, H. Kumagai, K. Midorikawa. Fabrication of single-mode waveguide structure in optical multimode fluoride fibers using self-channeled plasma filaments
    excited by a femtosecond laser. Appl. Phys. A,2003,77:359-362
    [27]A. M. Streltsov and N. F. Borrelli. Fabrication of a directional coupler written in glass by nano joule femtosecond laser pulses. Opt. Lett.,2001,26:42-44
    [28]W. Watanabe, T. Asano, K. Yamada et al. Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses. Opt. Lett.,2003,28:2491
    [29]W. Watanabe, Y. Note, and K. Itoh. Fabrication of multimode interference waveguides in glass by use of a femtosecond laser. Opt. Lett.,2005,30:2888-2890
    [30]Z. Wan, K. Sugioka, K. Midorikawa. Three-dimensional integration of microoptical components buried inside photosensitive glass by femtosecond laser direct writing. Appl. Phys. A,2007,89:951
    [31]D. Chambers, G. Nordin and S. Kim. Fabrication and analysis of a three-layer stratified volume diffractive optical element as high-efficiency grating. Opt. Express, 2003,11:27
    [32]C. Florea and K. Winick. Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses. J. Lightwave Technol., 2003,21:246-253
    [33]G. Qian, J. Guo, M. Wang et al. Holographic volume gratings in bulk perylene-orange-doped hybrid inorganic-organic materials by the coherent field of a femtosecond laser. Appl. Phys. Lett.,2003,83:2327
    [34]Y. Cheng, K. Sugioka, M. Masuda et al. Optical gratings embedded in photosensitive glass by photochemical reaction using a femtosecond laser. Opt. Express,2003,11:1809-
    [35]Q. Zhao, J. Qiu, X. Jiang et al. Fabrication of internal diffraction gratings in calcium fluoride crystals by a focused femtosecond laser. Opt. Express,2004,12:742
    [36]N. Takeshima, Y. Narita, S. Tanaka et al. Fabrication of high-efficiency diffraction gratings in glass. Opt. Lett.,2005,30:352-354
    [37]J. Liu, Z. Zhang, Z. Ju et al. Fabrication and stitching of embedded multi-layer micro-gratings in fused silica glass by fs laser pulses. Appl. Phys. B,2007,86:151
    [38]R. Martinez-Vazquez, R. Osellame, G. Cerullo et al. Fabrication of photonic devices in nanostructured glasses by femtosecond laser pulses. Opt. Express,2007,15: 12628
    [39]S. Lee and S. Nikumb. Characteristics of filament induced Dammann gratings fabricated using femtosecond laser. Opt.& Laser Technol.,2007,39:1328
    [40]Y. Kondo, K. Nouchi, T. Mitsuyu et al. Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses. Opt. Lett.,1999,24: 646-648
    [41]D. Grobnic, C. W. Smelser, S. J. Mihailov et al. Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask. IEEE Photon. Technol. Lett.,2004,16:1864
    [42]A. I. Kalachev, D. N. Nikogosyan, G. Brambilla. Long-period fiber grating fabrication by high-intensity femtosecond pulses at 211 nm. J. Lightwave Technol., 2005,23:2568
    [43]Y. Lai, A. Marinez, I. Khrushchev et al. Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription. Opt. Lett.,2006,31:1672-1674
    [44]Ying Wang, D. N. Wang, Minwei Yang, Wei Hong, and Peixing Lu. Refractive index sensor based on a microhole in single-mode fiber created by the use of femtosecond laser micromachining. Optics Letters,2009,34:3328-3330; Virtual Journal of Ultrafast Science,2009,8(12)
    [45]Ying Wang, Yuhua Li, Changrui Liao, D. N. Wang, Minwei Yang, and Peixiang Lu. High-temperature sensing using miniaturized fiber in-line Mach-Zehnder interferometer. IEEE Photonics Technology Letters,2010,22:39-41
    [46]Ying Wang, Minwei Yang, D. N. Wang, Shujing Liu, and Peixiang Lu. Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity. Journal of the Optical Society of America B,2010,27:370-374; Virtual Journal for Biomedical Optics,2010,9(4)
    [47]Changrui Liao, Ying Wang, D. N. Wang, and Long Jin. Femtosecond-laser inscribed long period gratings in all-solid photonic crystal fibers. IEEE Photonics Technology Letters,2010,22:425-427
    [48]Minwei Yang, D. N. Wang, and Ying Wang. Long period fiber grating formed by periodically structured microholes in all-solid photonic bandgap fiber. Optics Express,2010,18:2183-2189
    [49]Shujing Liu, Long Jin, Wei Jin, Dongning Wang, Changrui Liao, and Ying Wang. Structural long period gratings made by drilling micro-holes in photonic crystal fibers with a femtosecond infrared laser. Optics Express 2010,18:5496-5503
    [50]Xia Fang, X. Y. He, C. R. Liao, Minwei Yang, D. N. Wang, and Ying Wang. A new method for sampled fiber Bragg grating fabrication by use of both femtosecond laser and CO2 laser. Optics Express,2010,18:2646-2654
    [51]I. Bennion, J. A. R. Williams, L. Zhang et al. UV-written in-fiber Bragg gratings. Opt. and Quantum Electron.,1996,28:93-135
    [52]A. Othonos. Fiber Bragg gratings. Rev. Sci. Instrum.,1997,68:4309-4341
    [53]K. Feng, J. Cai, V. Grubsky et al. Dynamic dispersion compensation in a 10 Gbit/s optical system using a voltage controlled tuned nonlinearly chirped fiber Bragg grating. IEEE Photon. Technol. Lett.,1999,11:373-375
    [54]J. Lauzon, S. Thibault, J. Martin et al. Implementation and characterization of fiber Bragg gratings linearly chirped by temperature gradient. Opt. Lett.,1994,19: 2027-2029
    [55]K. O. Hill and G. Meltz. Fiber Bragg grating technology fundamentals and overview. J. Lightwave Technol.,1997,15:1263-1276
    [56]S. J. Mihailov, C. W. Smelser, P. Lu et al. Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation. Optics Letters,2003,28(12):995-997
    [57]A. Martinez, M. Dubov, I. Khrushchev et al. Direct writing of fibre Bragg gratings by femtosecond laser. Electron. Lett.,2004,40:1170-1171
    [58]Y. Lai, K. Zhou, K. Sugden et al. Point-by-point inscription of first-order fiber Bragg grating for C-band applications. Opt. Express,2007,15:18318-18325
    [59]Y. Lai, K. Zhou, and I. Bennion. Microchannels in conventional single-mode fibers. Opt. Lett.,2006,31:2559-2561
    [60]K. Zhou, Y. Lai, X. Chen, K. Sugden et al. A refractometer based on a micro-slot in a fiber Bragg grating formed by chemically assisted femtosecond laser processing. Opt. Express,2007,15:15848
    [61]Y. Rao, M. Deng, D. Duan et al. Micro Fabry-Perot interferometers in silica fibers machinded by femtosecond laser. Opt. Express,2007,15:14123-14128
    [62]Z. L. Ran, Y. J. Rao, W. J. Liu et al. Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index. Opt. Express,2008,16:2252
    [63]T. Wei, Y. Han, H. Tsai et al. Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser. Opt. Lett.,33:536-538
    [64]T. Wei, Y. Han, Y. Li et al. Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement. Opt. Express,2008,16:5764
    [65]A. A. Said, M. Dugan, S. de Man et al. Carving fiber-top cantilevers with femtosecond laser micromachining. J. Micromech.. Microeng.,2008,18:035005
    [66]A. Vengsarkar, P. Lemaire, J. Judkins et al. Long-period fiber gratings as band-rejection filters. J. Lightwave Technol.,1996,14:58-65
    [67]A. Vengsarkar, J. Pedrazzani, J. Judkins et al. Long-period fiber-grating-based gain equalizers. Opt. Lett.,1996,21:336-338
    [68]T. Erdogan. Cladding-mode resonances in short-and long-period fiber grating filters. J. Opt. Soc. Am. A,1997,14:1760-1773
    [69]S. Savin, M. Digonnet, G. Kino et al. Tunable mechanically induced long-period fiber gratings. Opt. Lett.,2000,25:710-712
    [70]X. J. Gu. Wavelength-division multiplexing isolation fiber filter and light source using cascaded long-period fiber gratings. Opt. Lett.,1998,23:509-511
    [71]B. H. Lee, Y. Liu, S. B. Lee et al. Displacements of the resonant peaks of a long-period fiber grating induced by a change of ambient refractive index. Opt. Lett.,1997,22:1769-1771
    [72]I. Hwang, S. Yun, and B. Kim. Long-period fiber gratings based on periodic microbends. Opt. Lett.,1999,24:1263-1265
    [73]B. H. Lee, J. Cheong, and U. Paek. Spectral polarization-dependent loss of cascaded long-period fiber gratings. Opt. Lett.,2002,27:1096-1098
    [74]Y. Zhu, P. Shum, J. Chong et al. Deep-notch, ultracompact long-period grating in a large-mode-area photonic crystal fiber. Opt. Lett.,2003,28:2467-2469
    [75]Y. Zhu, P. Shum, X. Chen et al. Resonance-temperature-insensitive phase-shifted long-period fiber gratings induced by surface deformation with anomalous strain characteristics. Opt. Lett.,2005,30:1788-1790
    [76]G. Rego, R. Falate, J. L. Santos et al. Arc-induced long-period gratings in aluminosilicate glass fibers. Opt. Lett.,2005,30:2065-2067
    [77]K. R. Sohn and K. T. Kim. Thermo-optically tunable band-rejection filters using mechanically formed long-period fiber gratings. Opt. Lett.,2005,30:2688-2690
    [78]N. Chen, D. Hsu, and S. Chi. Widely tunable asymmetric long-period fiber grating with high sensitivity using optical polymer on laser-ablated cladding. Opt. Lett., 2007,32:2082-2084
    [79]H. Xuan, W. Jin, and J. Ju. Long-period gratings in wavelength-scale microfibers. Opt. Lett.,2009,35:85-87
    [80]T. Allsop, K. Kalli, K. Zhou et al. Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors. Opt. Comm.,2008, 281:5092-5096
    [81]D. Day, M. Gu. Formation of voids in a doped polymethylmethacrylate polymer. Appl. Phys. Lett.,2002,80:2404
    [82]E. Toratani, M. Kamat, and M. Obara. Self-fabrication of void array in fused silica by femtosecond laser processing. Appl. Phys. Lett.,2005,87:171103
    [83]G. Cheng, Y. Wang, J. White et al. Demonstration of high-density three-dimensional storage in fused silica by femtosecond laser pulses. Appl. Phys. Lett.,2003,94: 1304-1307
    [84]M. Watanabe, S. Juodkazis, H. Sun et al. Transmission and photoluminescence images of three-dimensional memory in vitreous silica. Appl. Phys. Lett.,1999,74: 3957
    [85]Y. Li, Y. P. Dou, R. An et al. Permanent computer-generated holograms embedded in silica glass by femtosecond laser pulses. Opt. Express,2005, lOpt. Express,2005, 13:2433
    [86]H. Varel, D. Ashkenasi, A. Rosenfeld et al. Micromachining of quartz with ultrashort laser pulses. Appl. Phys. A,1997,65:367
    [87]L. Shah, J. Tawney, M. Richardson et al. Femtosecond laser deep hole drilling of silicate glasses in air. Appl. Surf. Sci.,2001,183:151
    [88]E. Bricchi, J. D. Mills, P. Kazansky et al. Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining. Opt. Lett.,2002,27:2200-2202
    [89]B.Tull, J. Carey, E. Mazur et al. Silicon surface morphologies after femtosecond laser irradiation. MRS Bulletin,2006,31:626-633
    [90]D. Von der Linde, K. Sokolowski-Tinten, J. Bialkowski. Laser-solid interaction in the femtosecond time regime. Appl. Surf. Sci.,1997,109/110:1-10
    [91]P. P. Pronko, S. K. Dutta, J. Squier et al. Machining of submicro holes using a femtosecond laser at 800-nm. Opt. Comm.,1995,114:106-110
    [92]B. N. Chichkov, C. Momma, S. Nolte et al. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A,1996,63:109-115
    [93]N. H. Rizvi. Femtosecond laser micromachining:Current status and applications. RIKEN Rev.,2003, No.50:107-112
    [94]G. Kamlage, T. Bauer, A. Ostendorf et al. Deep drilling of metals by femtosecond laser pulses. Appl. Phys. A,2003,77:307-310
    [95]W. Wang, X. Mei, G Jiang et al. Effect of two typical focus positions on microstructure shape and morphology in femtosecond laser multi-pulse ablation of metals. Appl. Surf. Sci.,2008,255:2303-2311
    [96]J. B. Ashcom, R. R. Gattass, C. B. Schaffer et al. Numerical aperture dependence of damage and supercontinuum generation from femtosecond laser pulses in bulk fused silica. J. Opt. Soc. Am. B,2006,23:2317
    [97]V. Mizeikis, S. Juodkazis, A. Marcinkevicius et al. Effect of refractive index-mismatch on laser microfabrication in silica glass. Appl. Phys. A, 2003,76: 257
    [98]Q. Sun, H. Jiang, Y. Liu et al. Effect of spherical aberration on the propagation of a tightly focused femtosecond lase pulse inside fused silica. J. Opt. A:Pure Appl. Opt., 2005,7:655
    [99]A. Borowiec, H. K. Haugen. Femtosecond laser micromachining of grooves in indium phosphide. Appl. Phys. A,2004,79:521-529
    [100]N. Baersch, K. Koerber, A. Ostendorf et al. Ablation and cutting of planar silicon devices using femtosecond laser pulses. Appl. Phys. A,2003,77:237-242
    [101]J. Kaspar, A. Luft, S. Nolte et al. Laser helical drilling of silicon wafers with ns to fs pulses:Scanning electron microscopy and transmission electron microscopy characterization of drilled through-holes. J. Laser Appl.,2006,18(2):85-92
    [102]B. K. A. Ngoi, K. Venkatakrishnan, E. N. L. Lim et al. Effect of energy above laser-induced damage thresholds in the micromachining of silicon by femtosecond pulse laser. Opt. Lasers. Eng.,2001,35:361-369
    [103]J. Bonse, S. Baudach, J. Krueger et al. Femtosecond laser ablation of silicon-modification thresholds and morphology. Appl. Phys. A,2002,74:19-25
    [104]T. H. R. Crawford, A. Borowiec, H. K. Haugen. Femtosecond laser micromachining of grooves in silicon with 800 nm pulses. Appl. Phys. A 2004,80:1717-1724
    [105]E. Coyne, J. P. Magee, P. Mannion et al. STEM (scanning transmission electron microscopy) analysis of femtosecond laser pulse induced damage to bulk silicon. Appl. Phys. A,2004,81:371-378
    [106]M. S. Amer, M. A. El-Ashry, L. R. Dosser et al. Femtosecond versus nanosecond laser machining:comparison of induced stresses and structural changes in silicon wafers. Appl. Surf. Sci,2005,242:162-167
    [107]J. Ren, M. Kelly, L. Hesselink. Laser ablation of silicon in water with nanosecond and femtosecond pulses. Opt. Lett.2005,30,1740-1742
    [108]D. V. Tran, H. Y. Zheng, Y. C. Lam et al. Femtosecnd laser-induced damage morphologies of crystalline silicon by sub-threshold pulses. Opt. Laser. Eng.,2005, 43:977-986
    [109]X. Zeng, X. L. Mao, R. Greif et al. Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon," Appl. Phys. A.2004,80:237-241
    [110]D. J. Hwang, C. P. Grigoropoulos. Efficiency of silicon micromachining by femtosecond laser pulses in ambient air. J. Appl. Phys.2006,99:083101
    [111]E. Coyne, J. P. Magee, P. Mannion et al. Characterisation of laser ablation of silicon using a Gaussian wavefront and computer generated wavefront reconstruction. Appl. Surf. Sci,2004,229:148-160
    [112]M. S. Giridhar, K. Seong, A. Schuelzgen et al. Femtosecond pulsed laser micromachining of glass substrates with application to microfluidic devices. Appl. Opt.,2004,4584-4589
    [113]K. Sugioka, Y. Hanada, K. Midorikawa.3D integration of microcomponents in a single glass chip by femtosecond laser direct writing for biochemical analysis. Appl. Surf. Sci.,2007,253:6595-6598
    [114]S. Kawata, H. Sun, T. Tanaka et al. Finer features for functional microdevices. Nature,2001,412:697-698
    [115]J. Serbin, A. Egbert, A. Ostendorf et al. Femtosecond laser-induced two-photon polymerization of inorgamic-organic hybrid materials for applications in photonics. Opt. Lett.,2003,28:301-303
    [116]D. J. De Bitetto. White-light viewing of surface holograms by simple dispersion compensation. Appl. Phys. Lett.,1966,9:417
    [117]D. J. De Bitetto. On the intensifying properties of a pile-of-gratings. Appl. Opt., 1970,9:59-61
    [118]R. V. Johnson, A. R. Tanguay Jr. Stratified volume holographic optical elements. Opt. Lett.,1988,13:189-191
    [119]G. P. Nordin, A. R. Tanguay Jr. Photopolymer-based stratified volume holographic optical elements. Opt. Lett.,1992,17:1709-1711
    [120]G. P. Nordin, R. V. Johnson, A. R. Tanguay Jr. Diffraction properties of stratified volume holographic optical elements. J. Opt. Soc. Am. A,1992,9:2206-2217
    [121]H. Ichikawa and K. Nagahama. Digital volume gratings. Opt. Comm.,2007,271: 9-15
    [122]G Qian, J. Guo, M. Wang et al. Holographic volume gratings in bulk perylene-orange-doped hybrid inorganic-organic materials by the coherent field of a femtosecond laser. Appl. Phys. Lett.,2003,83:2327-2329
    [123]C. Smelser, S. Mihailov and D. Grobnic. Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask. Opt. Express,2005,13:5377
    [124]A. Iadicicco, A. Cusano, A. Cutolo et al. Thinned fiber Bragg gratings as high sensitivity refractive index sensor. IEEE Photon. Technol. Lett.,2004,16: 1149-1151
    [125]J. F. Ding, A. P. Zhang, L. Y. Shao et al. Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor. IEEE Photon. Technol. Lett.,2005,17: 1247-1249
    [126]P. Polynkin, A. Polynkin, N. Peyghambarian et al. Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels. Opt. Lett.,2005,30:1273-1275
    [127]Z. Tian, S. S. H. Yam, and H. P. Loock. Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber. Opt. Lett.,2008,33: 1105-1107
    [128]D. K. C. Wu, B. T. Kuhlmey and B. J. Eggleton. Ultrasensitive photonic crystal fiber refractive index sensor. Opt. Lett.,2009,34,:322-324
    [129]R. Jha, J. Villatoro, G. Badenes. Refractometry based on a photonic crystal fiber interferometer. Opt. Lett.,2009,34:617-619
    [130]R. Osellame, V. Maselli, R. Martinez Vazquez et al. Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation. Appl. Phys. Lett.,2007,90:231118
    [131]P. Shiebener, J. Straub, J. M. H. Levelt Sengers et al. Refractive index of water and steam as function of wavelength, temperature and density. J. Phys. Chem. Ref. Data, 1990,19:677-717

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700