WD095微型燃机离心压气机通流结构性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微型燃气轮机作为广泛用于小型分布式发电的动力装置,具有较为灵活、安全、洁净的优点,是一种廉价的发电和热电联供方式,符合国家对能源供给多样化的发展要求;而且微型燃气轮机可以用于我国缺水地区,这符合我国21世纪可持续发展的战略思想。但是由于微型燃机体积小、通流结构尺寸相对窄小,造成燃机元件的效率不高。针对这一现象,本文对某公司WD095型微型燃机的主要组成元件——离心压气机的通流结构和设计工况下的性能进行研究,以减少损失、进一步提高其效率。
     本文围绕离心压气机两大核心部件叶轮和扩压器开展了一系列研究。叶轮方面,主要完成了“半开式离心叶轮的叶顶间隙研究”和“离心叶轮分流叶片的偏置设计研究”。利用流场模拟计算软件NUMECA和有限元分析软件ANSYS,结合气动理论和结构分析理论,对离心叶轮通流结构展开详细研究。针对本文所研究的半开式离心叶轮,推荐了较为合适的叶顶间隙值为0.2mm。研究发现:合理地周向偏置分流叶片可以有效抑制流道横截面内的二次流动,明显改善叶轮流道内的流动状况;当分流叶片进口居中,而其出口与长叶片压力面之间的周向距离是两相邻长叶片之间的周向距离的44.4%时,叶轮性能最好。扩压器方面,从附面层控制技术出发,完成了两种叶型的错排叶栅扩压器的设计及性能初探。在一维热力设计的基础上,利用NUMECA分别计算分析了原设计叶型相似缩小和NACA-65叶型两种错排设计扩压器内的流动情况,得出:错排叶栅扩压器可以有效抑制扩压器内气流分离,减少损失,提高效率。目前,本文所研究的压气机叶轮和扩压器连算结构的效率较原设计结构可以提高2个多百分点,这说明错排叶栅扩压器具有较大的研究价值,有必要进行更为深入的研究。
The micro gas turbine(MGT) is a type of low-cost and combined heat and power generation,widely used in minitype distributed power generation,for its advantages of more agility,safety and low emission.It meets the great diversified demand of the development of our country's energy supply.Moreover,the MGT can be used in the water-scarce area,which accords with the strategy of 21~(st) sustainable development.But owing to its compactness and relatively small size of the through-flow structure,the efficiency of the components of MGT is relatively low.Thus,this paper is mainly focused on the research and the performance under designed conditions of a centrifugal compressor of high pressure ratio and high rotating speed,a pivotal component of WD095 micro gas turbine,with the purpose of reducing flow loss and further advancing efficiency.
     In this paper,a series of investigations were carried out with regard to the impeller and the diffuser,two core parts of the centrifugal compressor.For the unshrouded impeller,the size of blade tip clearance and the circumferential position of splitter blades were studied and analyzed.Based on the aerodynamics and the structure analysis theory,the through-flow structure was investigated numerically in detail,by using the CFD software-NUMECA and the finite-element analysis software-ANSYS.According to the numerical results,0.2mm tip clearance was recommended for this impeller.The investigation also shows that:reasonable circumferential position of splitter blades can availably restrain the secondary flow in the through flow cross section,and apparently improve the internal flow condition in the impeller. The performance of the impeller is the best in all design projects,while the circumferential distance of the splitter blade trailing edge between splitter blade and the pressure side of main blade is 44.4%of the distance between two main blades,and its leading edge is located in the middle of two main blades.Then two types of staggered arrangement cascade diffusers were designed respectively with the similarly reduced blade profile of the initial design and NACA-65.The internal flow condition was numerically simulated and analyzed for the two types of diffusers respectively with the similarly reduced blade profile of the initial design and NACA-65.The simulation results indicate that the staggered arrangement cascade diffusers can restrain the flow separation effectively,decrease flow loss and increase efficiency.And the efficiency of the combining structure of the impeller and the staggered arrangement cascade diffuser is increased by more than 2 percentage points compared with the initial design.It is shown the staggered arrangement cascade diffuser is worth to further study.
引文
[1]Lee S.Langston,Gas Turbine Industry Overview[J].ASME International Gas Institute,Global Gas Turbine News,1999,(2)
    [2]杨策,刘宏伟,李晓等.微型燃气轮机技术.热能动力工程,2003,vol.18:1-4
    [3]Burriss W L,Hamilton M L.Preliminary Design of an Auxiliary Power Unit for the Space Shuttle.Volume Ⅱ Component and System Configuration Screening Analysis.NASA CR-1997,N72-26032,1997
    [4]丰镇平.微型燃气轮机技术进展及应用展望[J].燃气轮机发电技术,2001,2(1).
    [5]杜建一,王云,徐建中.分布式能源系统与微型燃气轮机的发展与应用.工程热物理学报,2004,vol.25,No.5:786-788
    [6]BROWN RA.SOFC combined cycle system for distributed generation.DOE/MC/28055-97,1997
    [7]张文普,丰镇平.燃气轮机技术的发展与应用.《燃气轮机技术》,2002,vol.15,No.3:17-22
    [8]杨策,马朝臣,沈宏继等.一种微型燃气轮机核心机工程设计及分析.工程热物理学报,2004,1(25):53-55
    [9]Proceedings of the ASME TURBO EXPO 2003,Atlanta,Georgia,2003
    [10]朱大鑫.涡轮增压与涡轮增压器[D].兵器工业第七零研究所,1997
    [11]Eckardt D.Flow Field Analysis of Radial and Backswept Centrifugal Compressor Impellers.Part 1:Flow Measurements Using a Laser Velocimeter[C].ASME Conference Publication:Performance Prediction of Centrifugal Pumps and Compressors.1980,New Orleans.77-80
    [12]Whitfield A,Atkey R C,Wallace F J.Computer Aided Design and Mixed Flow Centrifugal Impellers With Straight and Backward-swept Blades[C].L Mech.E 1978:21-78
    [13]Krain H.A CAD Method for Centrifugal Compressor Impellers[J].Transaction of ASME,Journal of Engineering for Gas Turbines and Power.1984,106(2):150-157
    [14]Bruce G J.Masme M.Computer-aided Turbo-machinery Design System[C].I,Mech.E,1998,554/026/98
    [15]Nojima.Development of Aerodynamic Design System for Centrifugal Compressors[D].Mitsubishi Heveay Industries,Tech.Review,1998,25(1)
    [16]杨策,马朝臣,王航等.离心压气机叶轮设计方法研究进展.内燃机工程,2002,2(23):54-58
    [17]黄钟岳,王晓放,透平压缩机原理,化学工业出版社,2004年8月
    [18]Fischer K,Thoma D.Investigation of the flow condition in a centrifugal pump.Trans ASME,1932,54:141-153
    [19]Hamrick J T.Some aerodynamic investigation in centrifugal impellers.Trans ASME,1956,78:591-602
    [20]Acosta A,Bowerman R.An experimental study of centrifugal-pump impellers.Trans ASME,1957,?9:1821-1839
    [21]Dean R,Senoo Y.Rotating wakes in vaneless diffusers.ASME Journal of Basic Engineering,1960,82:563-574
    [22]Eckardt D.Instantaneous measurements in the jet-wake discharge flow of a centrifugal Compressor impeller.ASME Journal of Engineering for Power,1975,97(3):337-345
    [23]Johnson M W,Moore J.The development of wake flow in a centrifugal impeller.ASME Journal of Engineering for Power,1980,102:382-389
    [24]Johnson M W,Moore J.The influence of flow rate on the wake flow in a centrifugal impeller.ASME Journal of Engineering for Power,1983,105:33-39
    [25]汤华.离心压气机流场分析与扩压器设计,硕士学位论文.中国科学院研究生院(工程热物理研究所),2005年
    [26]忻寿康,朱士灿,蒋锦良.叶轮机械三元流动与准正交面发.复旦大学出版社,1988年6月
    [27]何有世,袁寿其,陈池.CFD进展及其在离心泵叶轮内流计算中的应用.水泵技术,2002.3:23-26
    [28]姚征,陈康民.CFD通用软件综述.上海理工大学学报,2002,vol.24,No.2:137-143
    [29]User Manual FINE~(TM)/Turbo v7,2006.1
    [30]User Manual IGG~(TM)v5,2006.1
    [31]User Manual AutoGrid~(TM) v5 and Automated Grid Generator for Turbomachinery,2006.1]
    [32].姜绪强,谢蓉,黄钟岳等。子午流线转弯半径对半开式离心压缩机叶轮气动性能的影响.振动工程学报,2004(增刊)17:197-199
    [33]彭森,杨策,马朝臣等.前倾角对离心压气机叶轮性能的影响.清华大学学报(自然科学版),2005,Vol.45,No.2:250-253
    [34]J.S.Mounts,D.J.Dorney.Flowfield Analysis of a Backswept Centrifugal Impeller.AIAA Paper,91-2470
    [35]宁方飞,徐力平.Spalart-Allmaras湍流模型在内流流场数值模拟中的应用.工程热物理学报,Vol.22,No.3:304-306
    [36]刘超群.多重网格法及其在计算流体力学中的应用.清华大学出版社,1995
    [37]P R Spalart,SR Almaras,A One-Equation Turbulence Model for Aerodynamic Flows.AIAA Paper,92-0439
    [38]朱自强,李津,计算流体力学中的网格生成方法及其应用,航空学报,1998年,第2期:152-158
    [39]Fuel Cell and Gas Turbine,A Marriage of Efficiency,Siemens Research and Innovation,No.1,2000
    [40]Chen G T,Greitzer E M,Tan C S,Marble F E.Similarity analysis of compressor tip Clearance flow structure.ASME Journal of Turbomachinery,1991,113(2):260-271
    [41]Nikolos I K,Douvikas D I,Papaolliou K D.Theoretical modeling of relative wall motion effects in tip leakage flows.ASME Paper 95-GT-88,1995
    [42]Pampreen R C.Small turbomachinery compressor and fan aerodynamic.ASME Journal of Engineering for Power,1979,101(7):1017-1039
    [43]Harada H.Performance characteristics of shrouded and unshrouded impeller of a centrifugal compressor.ASME Journal of Engineering for Gas Turbines and Power,1985,107:528-533
    [44]Farge T Z,Johnson M W,Maksoud T M.Tip leakage in a centrifugal impeller.ASME Journal of Turbomachinery,1989,111:244-249
    [45]黄建德.离心泵叶轮参数对进口回流的影响.工程热物理学报,1998,19(4):449-453
    [46]楚武利,刘志伟.间隙对半开式离心叶轮性能影响的理论预测.推进技术,1999,20(1):46-49
    [47]楚武利,刘志伟.间隙泄露对半开式离心叶轮性能影响的实验研究与分析.推进技术,1999,20(3):69-72
    [48]刘瑞韬,徐忠.离心叶轮机械内部流动的研究进展.力学进展,2003,33(4):518-532
    [49]王仲奇,秦仁.透平机械原理.机械工业出版社,1987年7月
    [50]GAO Li-min,XI Guang,WANG Shang-jin.Influence of Tip Clearance on the Flow Field and Aerodynamic performance of the Centrifugal Impeller[j].Chinese Journal Of Aeronautics.2002,15(3):139-144
    [51]萨阿拉斯(美),船用汽轮机与燃气轮机.国防工业出版社,1985年.
    [52]Mashimo T,Ariga I.Effects of fluid leakage on performance of centrifugal compressor[J].ASME Journal of Engineering for Power.1979,101(7):1017-1039.
    [53]张楚华,王宝潼,栾辉宝等.叶顶间隙对离心叶轮气动性能影响研究[J].流体机械,2006,34(12):13-16
    [54]周宁.ANSYS机械工程应用实例。北京,中国水利水电出版社,2006:p1
    [55]HUJiaShun.An iterative method for calculating blade disc strength.Journal of Engineering for Thermal Energy &Power,2002,17(3):279-281
    [56]关振群、罗阳军、王学军等,离心式叶轮三维参数化形状优化设计方法,机械强度,2006,28(6):833-838
    [57]Miyamoto Hiroyuki,Nakashima Yukitoshi.Effects of splitter blades on the flow and characteristics in centrifugal impeller.JSME International Series Ⅱ,1992,35(2):238-246
    [58]崔宝玲,朱祖超,林勇刚等.长短叶片半开式离心叶轮内部的流动的数值模拟.浙江大学学报,2007,41(5):809-813
    [59]钱泽球钱泽球,蔡元虎,苏莫名等.分流叶片对离心压缩机叶轮内流及性能影响的数值研究.风机技术,2007年第6期:24-27
    [60]何有世,袁寿其,郭晓梅等.偏置分流叶片离心泵叶轮内部流动数值模拟.农业机械学报,2006,37(2):33-36
    [61]孙晓伟,张朝磊,黄淑娟.分流叶片的位置对离心泵叶轮内流动的影响.中国工程热物理学会,2003年学术会议
    [62]陈松山,周正富,何钟宁等.离心泵偏置短叶片叶轮内部流动的粒子图像速度测量.机械工程学报,2008,44(1)
    [63]朱士灿,陈正德.一种分流叶片偏置的径流式压气机的研制.内燃机学报,1986,1:40-55
    [64]刘瑞韬,徐忠.分流叶片位置对高转速离心压气机性能的影响.空气动力学学报,2005,23(1)
    [65]Dean R,Senoo Y.Rotating wakes in vaneless diffusers.ASME Journal of Basic Engineering,1960,82:563-574
    [66](苏)里斯,B.X..离心压缩机械.北京:中国工业出版社.1965
    [67]Inous M,Cumpsty N A.Experimental study of centrifugal impeller discharge flow in vaneless and vaned diffusers.ASME Journal of Engineering for Gas Turbines and Power,1984,106:455-467
    [68]Pinarbasi A,Johnson M W.Detailed flow measurements in a centrifugal compressor vaneless Diffuser.ASME Journal of Turbomachinery,1994,116:453-461
    [69]席光,王尚锦.离心式叶轮出口及其无叶扩压器内部流场的实验研究.工程热物理学报,1992,13(2):91-96
    [70]Pinarbasi A,Mark,Johnson W.Experimental flow field investigation in a centrifugal compressor vaned diffuser.ASME Paper 95-GT-80,1995
    [71]Senoo Y.Japaness Patent Application Disclousure 119411/78.1978(in Japaness)
    [72]Hoshino Masakazu,Ohki Hiroshi,Yoshinaga Yoich.The effect of guide vane height on the Diffuser flow in centrifugal compressors.Tran JSME,1985,51(470) B:3366-3369
    [73]Yoshinaga Y.A study of performance improvement for high specific speed centrifugal compressor by using diffusers with half guide vanes.ASME Journal of Fluid Engineering,1987,109:359-367
    [74]Sitaram N,Issac J M.An experimental investigation of a centrifugal compressor with hub vane Diffusers.Proc Instn Mech Engrs,Part A,1997,211:411-427
    [75]谢蓉,慈磊,海洋等.离心压缩机无叶扩压器的改进新方法.热科学与技术,2007,6(4):336-339
    [76]范孝铨,双列叶栅扩压器的研究,铁道学报,1988年3月
    [77]朱营康、杨彦、姚承范等,半高导叶扩压器的研究,流体工程,1992年8月第20卷第8期,p4-10
    [78]汤华、杜建一、祁志国等,带大小叶片楔形扩压器设计及流场分析,热力透平,2005年9月第34卷第三期
    [79]范孝铨,离心压气机双列叶栅扩压器设计和试验
    [80]范孝铨,双列叶栅扩压器几何参数对离心式压气机特性影响的试验研究,内燃机学报,Vol.3(1985)No.2:172-184
    [81]郭齐胜,钱涵欣,罗兴琦等.水轮机导叶双列栅的水力优化.水利学报,1996年10月:6-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700