亚临界燃煤机组动态建模及非线性控制应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电网用电量的高峰和低谷的频繁变动要求联网发电的燃煤火电机组的运行工况不断地改变。在这个过程中,机组展现出的强非线性、耦合性及参数的时变性等常常造成现有的控制系统性能下降,有时会造成控制系统失灵而被迫采用手工调节,严重的影响了机组运行的安全性和经济性。应对措施之一就是引进适应性强的高性能控制系统。为此,研究机组的动态特性并建立模型是研发高性能控制系统成功的关键。过热系统是大型燃煤机组中的重要组成部分,其输出的主蒸汽压力和温度是要控制的主要参数。本文先提出一种能够确定具有两个独立自变量函数关系式的新方法-双线性拟合法,并予以证明。然后,从过热蒸汽的热力特性入手导出过热蒸汽的比焓函数和密度函数的简化计算式。在此基础之上,依据质量平衡和能量平衡原理建立了过热器的数学模型,揭示了蒸汽流量、吸热量和减温器喷水流量对主蒸汽压力和温度动态特性的影响。
     燃料系统的延迟时间、动态系数以及蒸发系统的热惯性是影响锅炉响应负荷指令变化速度的主要因素。本文依据守恒定律建立了这两个系统的模型。利用炉膛辐射能信号能够及时反映燃料燃烧释放出的热量的特点,可以确定燃料系统的延迟时间及高温段过热器吸热量;燃料系统的动态系数由辨识方法确定;通过分析和拟合将复杂的蒸发系统热惯性表达式转化为简便的计算式。利用一台300MW燃煤机组运行数据和计算对de Mello的简化模型中汽包出口蒸汽流量的计算式进行了修正。在验证模型方面,本文仅用实际机组变负荷运行条件下测量的数据。这样,可以避免外加试验信号对机组正常运行的干扰。
     将适当的非线性控制方法引入到火电机组的控制设计中对提高机组控制系统的性能大有裨益。微分几何非线性控制和非线性模型预测控制是两种令人感兴趣的控制方法,它们适于处理运行条件变化大的非线性过程的控制问题。本文利用微分几何非线性控制方法对一台300MW燃煤机组非线性模型进行了解耦线性化控制设计。在设计方案中,考虑到实际控制执行机构具有幅值约束条件的限制,增加了指令处理器的设计,通过减缓指令的轨迹以使控制约束条件得到满足。由于非线性机组模型被解耦线性化,因此,该控制系统能够使机组在大范围内跟随指令要求且保持稳定。
     基于泰勒级数展开式的非线性模型预测控制方法可以导出解析形式的控制规律,避免了在线滚动优化的计算负担。因而,在复杂的过程控制中具有明显的优点。本文将这种控制方法引入到一台燃油火电机组的控制研究中。为了克服机组的某一状态变量不可测量的缺陷,将控制器的实现形式采用为模型状态反馈内模控制结构。这样,一方面可以避免设计非线性观测器的麻烦,另一方面也增强了控制系统的抗干扰能力。通过证明发现,该设计方案具有一定的鲁棒性。
To match frequent varying electricity demands from the power network, the grid-connected generate units in the coal-fired power plants have to be operated over wide varying operation range. During the course, the severe nonlinearity of boiler-turbine unit, the coupling variables and time-varying parameter et al usually degrade the performance of the existing control system, sometime can confuse it and the manual regulation is switched, then the unit operation safety and economy can be badly decreased. One of the suitable methods to overcome these challenges is to develop the high-performance control system. Investigating the dynamic of the unit and modeling it are the key basal work for developing the high-performance control system.
     The super-heater is a significant part of the large-scale coal-firing power generating unit, and the steam pressure and temperature out of it are the major objective parameters. In the study, firstly, a new bilinear fit method which can determine the expression of the two variables function is developed and proved, then the thermodynamic property of superheated steam is viewed and the simple expressions of the enthalpy and density of superheated steam are deduced through bilinear fit. In the work, the model of super-heater is set up based on first-principle equations (mass, energy balance et al). Influence of steam mass flow rate, heat flux rate and desuperheating spray water mass flow rate on the dynamic performance of superheated steam pressure and temperature is shown in the model.
     The delay time constant and dynamic coefficient of the fuel system and the thermal inertia of the evaporator in boiler are the major elements which affect the boiler to response to the load command. In the study, the dynamic model of the fuel system and evaporator are set up based on the mass and energy balance equations. The furnace radiation energy signal, displaying the heat energy from fuel combustion immediately, is applied to determine the delay time constant in the fuel system and the heat flux rate to the high temperature segment super-heater. And the dynamic coefficient in the fuel system is determined by the identification technique. By analyzing and fitting, the complicated expression of the thermal inertia of the evaporator is substituted by a simple one. The expression of steam mass flow rate out of drum in boiler in de Mello’s simple model is revised and validated by using the operating data from a 300MW coal-fired generate electricity unit. Finally, the model can be validated through only using the data from a 300MW coal-fired generation unit operating over a varying operation range, and the trial is not needed. Hence, large disturbance on the normal operation of the generation electricity unit is avoided.
     It is very helpful to improve the performance of unit’s control system that the suitable nonlinear control methods are introduced into the control design of boiler-turbine unit. The differential geometric control and nonlinear model predictive control are of interest two methods which can be applied to the control design for nonlinear process operating over wide operation range. In the study, the differential geometric approach is applied to design the control system of a 300MW coal-fired generation electricity unit. To meet the saturation constraints on actuator, a reference governor is designed in the control scheme to make the reference trajectories sluggish. Since the unit’s model is decoupled and linearized exactly over a wide operation range, the control design can achieve tracking performance in the power output and the control system is stable.
     Based on Talyor series expansion to certain order, the nonlinear model predictive control approach can deduce an analytic controller and the online optimization computation burden on a receding horizon is avoided. Therefore, the control method has the obvious strongpoint in complex nonlinear process control. In the study, the control method is introduced into the control design for an oil-fired boiler-turbine unit. To solve the issue of an unmeasurable state variable in the unit, the controller is implemented in the model state feedback form, a sort of internal model control structure. In this way, on the one hand, the complex design of a nonlinear observer isn’t avoided; on the other hand, the control system’s capability to reject disturbance is strengthened. The proof shows the designed control system is robust.
引文
[1]乌若思.未来的燃煤电厂-中国绿色煤电计划.中国电力,2007, 40(3): 6-8
    [2]吕崇德,任挺进,姜学智等.大型火电机组系统仿真与建模.北京:清华大学出版社,2002
    [3]冯俊凯,沈幼庭.锅炉原理及计算(第二版).北京:科学出版社,1998
    [4]张家琛.火电厂仿真.北京:水利电力出版社,1994
    [5] C. Maffezzoni. Boiler-Turbine Dynamics in Power-Plant Control. Control Engineering Practice. 1997, 5(3): 301-312
    [6]刘红波,李少远.火电机组先进智能控制及其应用.北京:科学出版社,2005
    [7]张玉铎,王满稼.热工自动控制系统.北京:水利电力出版社,1984
    [8]倪维斗,徐向东,李政等.热动力系统建模与控制的若干问题.北京:科学出版社,1996
    [9] Astrom K J, Eklund K. A simplified non-linear model for a drum boiler-turbine unit. International Journal of Control, 1972, 16(1): 145-169
    [10] Astrom K J, Eklund K. A simplified non-linear drum boiler model. International Journal of Control, 1975, 22(5): 739-740
    [11] Bell R D, Astrom K J. Dynamic models for boiler-turbine-alternator units: data logs and parameter estimation for a 160MW unit. Technical report, Lund Institute of Technology, Sweden, 1987.
    [12] Astrom K J, Bell R D. Drum-boiler dynamic. Automatica, 2000, 36(3): 363-378
    [13] IEEE Working Group. Dynamic models for fossil fueled steam units in power system studies. IEEE Transactions on Power Systems, 1991, 6(2):753-761
    [14] IEEE Committee Report. Dynamic models for steam and hydro turbines in power system studies. IEEE Transactions on Power Apparatus and Systems. 1973, 92(6): 1904-1915
    [15] IEEE Committee Report. MW response of fossil fueled steam units. IEEE Transactions on Power Apparatus and Systems 1973, 92(2): 455-463.
    [16] de Mello F P. Boiler models for system dynamic performance studies. IEEE Transactions on Power Systems. 1991, 6(1): 66-74.
    [17] Bolek W, Sasiadek J, Wisniewski T. Linearization of nonlinear MIMO model of large power plant station. Proceedings of the American Control Conference, Chicago, Illinois, June, 2000, 4435-4436.
    [18] Yu Daren, Xu Zhiqiang. Nonlinear Coordinated Control of Drum Boiler Power Unit Based on Feedback Linearization. IEEE Transactions on Energy Conversion. 2005, 20(1): 204-210.
    [19] Cheres E, Palmor Z J, Tuch J. Drum type boiler following control configuration. IEEE Transactions on Energy Conversion. 1994, 9(1): 199-205.
    [20] Cheses E. Small and medium size drum boilers suitable for long team dynamic response. IEEE Transactions on Energy Conversion. 1990, 5(4): 686-692.
    [21] Leva A, Maffezzoni C, Benelli G. Validation of boiler models through complete dynamic tests. Control Engineering Practice. 1999, 7(1): 11-26.
    [22] Hogg B W, Ei-Rabaie N H. Generalized predictive control of steam pressure in a drum boiler. IEEE Transactions on Energy Conversion. 1990, 5(3): 485-492.
    [23] Hogg B W, Ei-Rabaie N H. Multivariable generalized predictive control of a boiler system. IEEE Transactions on Energy Conversion. 1991, 6(2): 282-288.
    [24] Prasad G, Irwin G M, Swidenbank E, et al. Plant-wide predictive control for a thermal power plant based on a physical plant model. IEE Proceedings: control Theory and Applications. 2000, 147(5): 523-537.
    [25] Chawdhy P K, Hogg B W. Identification of boiler models. IEE Proceedings, Part D: Control Theory and Applications, 1989, 136(5): 261-271.
    [26] Lu S, Hogg B W. Dynamic nonlinear modeling of power plant by physical principles and neural networks. International Journal of Electrical Power and Energy Systems. 2000, 22(1): 67-78.
    [27]章臣樾.锅炉动态特性及其数学模型.北京:水利电力出版社,1987
    [28]范永胜,徐治皋,陈来九.超临界直流锅炉蒸汽发生器的建模与仿真研究(一).中国电机工程学报,1998,18(4): 246-253.
    [29]范永胜,徐治皋,陈来九.超临界直流锅炉蒸汽发生器的建模与仿真研究(二).中国电机工程学报,1998,18(5): 350-256.
    [30]范永胜. 600MW超临界机组直流锅炉的全工况建模与仿真研究:博士学位论文.东南大学,1997.
    [31]范永胜,程芳真,睢喆,等. 600MW超临界直流锅炉动态特性研究.清华大学学报,2000,40(10): 104-107.
    [32]范永胜,睢喆,姜学智,等.一种高精度的锅炉单相区段集总参数修正模型.中国电机工程学报,2000,20(1): 50-54.
    [33]曾德良,刘吉臻.汽包锅炉的动态模型结构与负荷/压力增量预测模型.中国电机工程学报,2000,20(12): 75-79.
    [34]曾德良,赵征,陈彦桥,等. 500MW机组锅炉模型及实验分析.中国电机工程学报,2003, 23(5): 149-152.
    [35]田亮,曾德良,刘吉臻,等. 330MW机组非线性动态建模.中国电机工程学报,2004,24(8): 180-184.
    [36]刘吉臻,田亮,曾德良,等. 660MW机组负荷-压力非线性特性的分析.动力工程,2005,25(4): 533-540.
    [37]李运泽,杨勇献.超临界直流锅炉长期动态特性的建模与仿真.热能动力工程,2003,18(1): 23-26.
    [38]张小桃,倪维斗,李政等.基于主元分析与现场数据的过热气温动态建模研究.中国电机工程学报,2005,25(3): 131-135.
    [39]陈立甲,伞冶,王子才,等.锅炉过热器系统机理与神经网络组合建模方法.中国电机工程学报,2001,21(1): 73-76.
    [40]罗毅.火电机组热工控制系统的优化整定及其应用:博士学位论文.中国电力科学研究院,2001.
    [41]沈炯.火电单元机组协调控制系统的自整定:博士学位论文.东南大学,1993.
    [42] Bolis V, Maffezzoni C,Ferrarini L.Synthesis of boiler-turbine control system by single loop auto-tuning.Control Engineering Practice.1995, 3(6):761-771
    [43]沈炯,陈来九.协调控制系统的极点配置自整定方法.中国电机工程学报,1995,15(1):8-15.
    [44] Hang M E, Stoustrup J, Anderson P, el a1. Gain-scheduled control of a fossil fired power plant boiler. Proceedings of the 1999 IEEE Conference on Control Applications. USA, 1999, 201-206.
    [45]王东风,韩璞,曾德良.单元机组协调控制系统的发展和现状.中国电力,2002,35(11): 69-73.
    [46]王德进. H 2和H∞优化控制理论.哈尔滨:哈尔滨工业大学出版社,2001
    [47] Tan W, Niu Y G, Liu J Z. Robust control for a nonlinear boiler-turbine system. Control Theory and Applications. 1999, 16(6): 863-867.
    [48] Tan W, Marquez, H J, Chen T W. Multivariable Robust Controller Design for a Boiler System. IEEE Transactions on Control Systems Technology, 2002, 10(5): 735-742.
    [49]刘建江,李政,倪维斗,等.基于H∞理论的状态变量控制在主蒸汽温度控制中的应用.动力工程,2000,20(3): 669-673.
    [50]刘建江,倪维斗,张法文,等.基于H∞理论的状态变量控制在再热温度控制中的应用.动力工程,2000,20(5): 867-871.
    [51] Doyle J C. Analysis of feedback system with structured uncertainties. IEE Proceedings, Part D, 1982, 129(6): 242-250.
    [52] Weng C K, Ray A. Robust wide-range control of steam-electric power plants. IEEE Transactions on Control Systems Technology. 1997, 5(1): 74-88.
    [53] Zhao H P, Li W, Taft C, at el. Robust control design for simultaneous control of throttle pressure and megawatt output in a power plant unit. Proceedings of the 1999 IEEE International Conference on Control Applications. USA, 1999, 1: 802-807.
    [54] Kallapa P , Holmes M S, Ray A. Life-extending control of fossil fuel power plants. Automatica, 1997, 33(6): 1101-1118.
    [55] Prasad G, Swidenbank E, Hogg S W. A neural net model-based multivariable long-range predictive control strategy applied in thermal power plant control. IEEE Transactions on Energy Conversion. 1998, 13(2): 176-182.
    [56] Marcelle K A W, Chiang K H, Houpt P K, at el. Optimal load cycling of large steam turbines. Proceedings of the IEEE International Conference on Fuzzy Systems, 1994,667-672.
    [57]张化光,吕剑虹,陈来九.模糊广义预测控制及其应用.自动化学报,1993,19(1):9-17.
    [58]雎刚,陈来九.模糊预测控制及其在过热汽温控制中的应用.中国电机工程学报,1996, 16(1):17-21.
    [59] Alturki F A, Abdennour A B. Neuro-Fuzzy control of a steam boiler-turbine unit. Proceedings of the IEEE International Conference on Control Applications. Kohala Coasl-Island of Hawaii, Hawaii, USA, August 22-27, 1999, 1050-1055.
    [60] Moon U C, Lee, K Y. A boiler-turbine system control using a fuzzy auto-regressive moving average (FARMA) model. IEEE Transactions on Energy Conversion. 2003, 18(1): 142-148.
    [61] Li S Y, Liu H B, Cai W J, at el. A new coordinated control strategy for boiler-turbine system of coal-fired power plant. IEEE Transactions on Control Systems Technology. 2005, 13(6): 943-954.
    [62] Dimeo R, Lee K Y. Boiler-turbine control design using a genetic algorithm. IEEE Transactions on Energy Conversion. 1995, 10(4): 752-759.
    [63]陈彦桥,刘吉臻,覃文,等.模糊多模型控制及其对500MW单元机组协调控制系统的仿真研究.中国电机工程学报,2003,23(10): 199-203.
    [64]荣雅君,窦春霞,袁石文.过热汽温模糊神经网络预测控制器的设计.中国电机工程学报,2003,23(1): 177-180.
    [65]金以慧.过程控制.北京:清华大学出版社,1991
    [66] Richalet J, Rault A, Testud J L, at el. Model predictive heuristic control: applications to industrial processes. Automatica, 1978, 14(5): 413-428.
    [67] Rovnak J A, Corlis R. Dynamic matrix based control of fossil power plants. IEEE Transactions on Energy Conversion. 1991, 6(2): 320-326.
    [68] Li D, Chen T, Marquez, at el. Life extending control of boiler-turbine systems via model predictive methods. Control Engineering Practice. 2006, 14(4): 319-326.
    [69] Clarke D W, Mohtadi C, Tuffs P S. Generalized predictive control: Part 1 and 2. Automatica. 1987, 23(2): 137-160.
    [70] Demircioglu H, Gawthrop P J. Continuous-time generalised predictive control. Automatica. 1991, 27(1): 55-74.
    [71] Demircioglu H, Gawthrop P J. Multivariable continuous-time generalized predictive control. Automatica. 1992, 28(4): 697-713.
    [72] Orays A W, Clarke D W. A state-space description for GPC controllers. International Journal of the Systems Science. 1993, 24(9): 1727-1744.
    [73] Hogg B W, Lu S, Ni W D. Generalized predictive control of steam temperature control for power plant systems. Proceedings of the IEEE International Conference on Power System Technology. Beijing, China 1994, 266-270.
    [74] Moelbak T. Advanced control of superheater steam temperatures-an evaluation based on practical applications. Control Engineering Practice. 1999, 7(1): 1-10.
    [75] Lu S, Hogg B W. Predictive coordinated control for power-plant steam pressure and power output. Control Engineering Practice. 1997, 5(1): 79-84.
    [76] Havlena V, Findejs J. Application of model predictive control to advance combustion control. Control Engineering Practice. 2005, 13(6): 671-680.
    [77] Prasad G, Swidenbank E, Hogg B W. A neural net model-based multivariable long-range predictive control strategy applied in thermal power plant control. IEEE Transactions on Energy Conversion. 1998, 13(2): 176-182.
    [78]张建华,董菲,侯国莲,等.基于神经网络预测控制的单元机组协调控制策略.动力工程,2006,26(3): 392-395.
    [79] Peng H, Ozaki T, Haggan-Ozaki V, at el. A nonlinear exponential ARX model-based multivariable generalized predictive control strategy for thermal power plants. IEEE Transactions on Control Systems Technology. 2002, 10(2): 256-262.
    [80]朱红霞,沈炯,丁轲轲.单元机组负荷非线性预测控制及其仿真研究.中国电机工程学报,2006,26(23): 72-77.
    [81]张铁军,吕剑虹,华志刚.机炉协调系统的模糊增益调度预测控制.中国电机工程学报, 2005,25(4): 158-165.
    [82] Soroush M, Soroush H M. Input-output linearizing nonlinear model predictive control. International Journal of Control. 1997, 68(6): 1449-1473.
    [83] Vallur S, Soroush M. A nonlinear controller design method for processes withsaturating actuators. International Journal of Control. 2003, 2003, 76(7): 698-716.
    [84] Chen W H, Balance D J, Gawthrop P J. Optimal control of nonlinear system: a predictive control approach. Automatica. 2003, 39(4): 633-641.
    [85] Lee P L, Sullivan G R. Generic model control (GMC). Computer Chemistry Engineering. 1988, 12(6): 573-580.
    [86] Isidori A. Nonlinear control systems: An introduction (3rd Edition.). Springer-Verlag, Berlin, 1995.
    [87]葛友,李春文.反馈线性化方法在锅炉-汽轮机系统中的应用.清华大学学报. 2001,41(7):125-128.
    [88]房方,刘吉臻.单元机组协调系统的非线性内模控制.中国电机工程学报. 2004,24(4): 195-199.
    [89]王军,李东海,薛亚丽.一种锅炉系统模型分析及其非线性控制.中国电机工程学报. 2007,27(14): 6-12.
    [90] Rugh W J, Shamma J S. Research on gain scheduling. Automatica. 2000, 36(10): 1401-1425.
    [91]于达仁,徐志强,翁一武,等. DEB的新认识-增益调度控制.热能动力工程. 1999,14(9): 379-381.
    [92]黄祖毅,李东海,姜学智,等.机炉协调的增益调度伺服系统.中国电机工程学报. 2003,23(10): 191-198.
    [93] Chen P C, Shamma J S. Gain-scheduled l 1-optimalcontrol for boiler-turbine dynamics. Journal of Process Control. 2004, 14(3): 263-277.
    [94]韩忠旭,张智.状态观测器及状态反馈控制在亚临界锅炉蒸汽温度控制系统中的应用.中国电机工程学报. 1999,19(11): 76-80.
    [95]韩忠旭.锅炉过热器动态特性数理分析及其状态观测器的鲁棒性.中国电机工程学报. 2004,24(6): 195-200.
    [96]华志刚,吕剑虹,张铁军.状态变量-预测控制技术在600MW机组再热汽温控制中的研究与应用.中国电机工程学报. 2005,25(12):103-107.
    [97]于达仁,鲍文,徐基豫.汽轮机负荷控制的容错控制方案.动力工程. 1994,14(1):7-10.
    [98]吕震中,沈炯.采用变频调速的均衡燃烧计算机控制系统.动力工程. 1996,16(2): 47-50.
    [99]沈炯,顾峻,吕震中.新型均衡燃烧控制系统的设计及其应用研究.中国电机工程学报. 2000,20(10): 80-83.
    [100]周怀春.炉内火焰可视化检测原理与技术.北京:科学技术出版社,2005.
    [101]张师帅.基于辐射能信号反馈的锅炉燃烧与机组负荷控制:博士学位论文.华中科技大学,2002.
    [102] Lee S H, Kong J, Sen J H. Observers for bilinear systems with unknown inputs and application to superheater temperature control. Control Engineering Practice. 1997, 5(4): 493-506.
    [103] Schmidt E, Grigull U. Properties of water and steam in SI-units. Berlin, Springer-Verlag, 1981.
    [104]姜印平,张宏军,张涛等.等温曲线插值法计算过热蒸汽密度.天津大学学报. 1998,31(6): 835-839.
    [105]白德英.过热蒸汽温压空间曲面补偿法.化工自动化及仪表. 2001,28(3): 29-31.
    [106]容銮恩,袁镇福,刘志敏,等.电站锅炉原理.北京,中国电力出版社,1997.
    [107]范轶.超临界机组控制中的频域信息融合方法研究:博士学位论文,哈尔滨工业大学,2005.
    [108]马海堂,李兴武.大容量锅炉配套磨煤机综述.电站辅机,2006,98(3):36-38.
    [109]李希武.直接能量平衡法(DEB)协调控制系统分析.中国电力,2000,33(6):74-77.
    [110] Weiss J, Iveson B. EPRI and vendors working to improve sensor technology. Power Engineering, November 1995, 28-30.
    [111]吴占松.发光火焰的图像处理及其在燃烧检测中的应用:博士学位论文,清华大学,1988.
    [112]王补宣,李天铎,吴占松.图像处理用于发光火焰温度分布测量的研究.工程热物理学报,1989,10(4): 446-448
    [113]徐伟勇,余岳峰,孙江,吴建繁.数字图像处理技术在火焰检测上的应用.中国电力, 1994. (10):41-44
    [114]孙江,徐伟勇,余岳峰,吴建繁.据煤粉火焰图像判断燃烧状况的计算机判断算法.热力发电,1997. (1):14-18, 38
    [115]何万青,余岳峰,张银桥,徐伟勇.基于图像处理和数字视频技术的锅炉多路火焰检测系统.热力发电,2000. (3):45-48, 58
    [116]许柯夫.数字图象处理技术在电厂锅炉燃烧监测中的应用研究.电力系统自动化, 1995. 19(4): 43-47
    [117]王飞,薛飞,马增益,等.运用彩色CCD测量火焰温度场的试验研究及误差分析.热能动力工程,1998. 13(2): 81-84
    [118]王飞,马增益,卫成业,严建华,岑可法.根据火焰图像测量煤粉炉截面温度场的研究.中国电机工程学报, 2000. 20(7):40-43
    [119]苏红雨,杨华远,苏昌林等.电站锅炉炉膛温度分布测量仪的研制.计量学报,2000,21(1): 134-140
    [120]周怀春.基于火焰图象处理的煤粉炉内燃烧过程研究.华中理工大学博士后研究报告. 1996
    [121]贾涛,程强,韩曙东,於正前,周刚,周怀春.一种火焰辐射图像探头的标定方法.热力发电,2002. 31(5):23-25
    [122] Jiang Z W, Zhou H C, Lou C, Yu Z Q. A detecting method of flame temperature and emissivity image based on color image processing, Advances in Multiphase Fows Vol.1 - Measurement Technology. Beijing: International Academic Publishers/Beijing World Publishing Corporation. 2004. 361-365
    [123]曹建福.非线性系统理论及应用.西安:西安交通大学出版社,2001
    [124]洪奕光,程代展.非线性系统的分析与控制.北京:科学出版社,2005
    [125] Su R. On the linear equivalents of nonlinear systems. Systems and Control Letters, 1982, 2(1): 48-52.
    [126] Hunt L R, Su R, Meyer G. Design for multi-input nonlinear systems. Differential Geometric Control Theory, Birkhauser, Bostonne, the US, 1983.
    [127] Kravaris C, Soroush M. Synthesis of multivariable nonlinear controllers by input/output linearization. AIChE Journal,1990, 36(2): 249-264.
    [128] Panjapornpon C, Soroush M, Seider W D. A model-based control method applicable to unstable, non-minimum-phase, nonlinear processes. Proceedings of American Control Conference, Boston, Massachusetts, June, 2004, 2921-2924.
    [129] Soroush M, Kravaris C. Short horizon nonlinear model predictive control. Proceedings of International Conference on Control Applications, Power Pool, New York, September, 1995, 943-948
    [130] Garica C E, Morari M. Internal model control: 1. A Unifying Review and Some New Results. Industrial and Engineering Chemistry, 1982, 21(2): 308-323
    [131] Valluri S, Soroush M, Nikravesh M. Shortest-prediction-horizon nonlinear model predictive control. Chemical Engineering Science, 1998, 53(2): 273-292.
    [132] Chen W H. Closed-form nonlinear MPC for multivariable nonlinear systems with different relative degree. Proceedings of the American Control Conference, Denver, Colorado, June 4-6, 2003, 4887-4892.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700