基于双频GPS的分布式InSAR卫星系统高精度星间基线确定方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式InSAR卫星系统是将卫星编队技术与干涉合成孔径雷达(InterferometrySynthetic Aperture Radar,InSAR)技术相结合的新概念新体制雷达系统,极大地拓展了SAR卫星系统的总体性能,具有广泛的发展前景。然而,该系统的实现在基础理论和技术层面上面临着许多挑战,星间基线的高精度确定就是其中之一。鉴于此,本文以分布式InSAR卫星系统为背景,利用星载双频全球定位系统(GlobalPositioning System,GPS)作为测量手段,根据分布式InSAR任务尤其是星间基线确定与单星精密定轨、星间高精度相对定位之间的关系,围绕“单星—双星—基线”这一主线,开展了分布式InSAR卫星系统的高精度星间基线确定研究。
     本文的研究工作和贡献主要体现在以下三个方面:
     针对单颗卫星绝对位置、速度的确定问题,详细地研究了基于双频GPS的单星精密定轨方法,提出了一种综合考虑GPS接收天线相位中心变化系统误差和随机误差的混合误差建模与修正方法,有效地提高了低轨卫星的精密定轨精度。首先,探讨了星载双频GPS数据预处理的方法,研究了基于双频GPS的单星简化动力学精密定轨方法;其次,在GPS载波相位观测模型和GPS接收天线相位中心模型的基础上,提出了一种综合考虑GPS接收天线相位中心变化系统误差和随机误差的混合误差建模与修正方法,该方法按照GPS信号的接收方向,将相位中心变化误差按照系统部分和随机部分分别进行建模,并通过接收方向的相位定轨后验拟合残差的均值和标准差分别对相位中心变化误差混合模型的系统部分和随机部分的标准差进行估计,利用该方法对重力反演与气候实验(Gravity Recovery AndClimate Experiment,GRACE)双星编队实测GPS观测数据进行处理,生成了三种不同类型的轨道解,通过三种不同校验方式表明:经混合误差模型修正后得到的精密轨道解均优于其它两种类型的轨道解。与此同时,通过将由相位中心变化误差均值修正得到的轨道解与由混合误差模型修正得到的轨道解进行轨道比对的结果表明:对混合误差模型的随机部分的修正对于精密定轨而言是不可忽略的。
     针对双星相对位置、速度的确定问题,系统地研究了基于宽窄巷双差整周模糊度确定策略的高精度星间相对定位方法,提出了一种基于先验相对轨道和钟差解的双差整周模糊度确定方法,有效的提高了双差整周模糊度确定的成功率和相对定位精度,成功实现了GRACE卫星编队1mm星间相对定位。首先,针对参考GPS卫星频繁更换的问题,提出了一种模糊度分段解算的策略,确保在每个分段区间内共视的GPS卫星不发生变化,在此基础上,系统地研究了基于宽窄巷双差整周模糊度确定策略的简化动力学相对定位方法,并利用该方法对GRACE卫星编队实测数据进行了相对定位实验,实验结果表明:双差整周模糊度确定的成功率为84.73%,相对定位的K/Ka波段测距(K/Ka-band Ranging,KBR)系统校验标准差为1.26mm,从而验证了自编算法的有效性和正确性;其次,针对宽窄巷双差整周模糊度确定策略中存在双差宽巷整周模糊度的确定容易受到伪码观测质量影响的问题,提出了一种基于先验相对轨道和钟差解的双差整周模糊度确定方法,该方法首先利用简化动力学单差无电离层组合批处理最小二乘相对定位方法求解编队卫星之间的相对位置解和接收机之间的相对钟差解,并以此作为先验解,然后通过伪码、相位最优加权求解宽巷模糊度,通过对GRACE卫星编队实测数据的处理结果表明:第一,双差整周模糊度确定成功率为89.89%,提高了5%,该处理策略可以有效地克服宽窄巷双差整周模糊度确定策略中存在的问题;第二,相对定位的KBR校验标准差为1.01mm,相对定位的精度得到有效提高,成功实现了1mm星间相对定位;第三,将两种处理策略得到的相对定位解在径向、横向和法向上的比对结果分别为0.43mm,1.01mm,0.81mm,三维结果为1.37mm,该结果反映了新提出的处理策略引起的相对定位解的变化。
     在基于双频GPS的星间基线测量方案的基础上,详细研究了空间域基线确定中的各个误差项的性质,理论分析了各个误差项对空间域基线确定的影响,提出了一种空间域基线确定的误差建模与仿真分析方法,通过建立了各个误差项的数学模型,仿真分析了单个误差项、部分误差源以及整体误差源对星间基线确定的影响。首先,根据空间域基线的确定原理,将空间域基线确定的误差源划分为与GPS测量有关的误差源和与部位修正有关的误差源两大类,并在此基础上,对两大类误差源中所包含的各项误差的种类及特性进行了分析,理论分析了各误差项对空间域基线确定的影响;其次,根据各项误差的特性,提出了一种空间域基线确定的误差源建模与仿真分析方法,该方法通过对各误差项分别进行建模,利用仿真实验的方式,分析了单个误差项、部分误差源及整体误差源对空间域基线确定的影响,仿真结果表明:第一,与GPS测量有关的误差源是影响空间域基线确定精度的主要因素;第二,GPS相位观测噪声和GPS接收天线安装位置的地面标校误差是与GPS测量有关的误差源中影响最大的两个因素;第三,在地固坐标系中,整体误差源对空间域基线确定的影响为x方向0.500mm,y方向0.500mm,z方向0.452mm,三维影响为0.845mm,可以实现1mm(每轴)精度的分布式InSAR卫星系统星间基线确定。
The distributed InSAR satellite system is a new kind of the conceptual radarsystem, which combines the technology of the satellite formation and the InterferometrySynthetic Aperture Radar (InSAR). The entire performance of the SAR satellite systemcan be well enhanced, and the distributed InSAR satellite system has a broad prospect.However, there also exist some challenges in basic theory and technique. The highprecision determination of inter-satellite baseline is just one of challenges. As a result,in this paper, the high precision determination of inter-satellite baseline of thedistributed InSAR satellite system is selected as the research background, and thespacrborne dual-frequency GPS is used for measuring. According to the relationsbetween the distributed InSAR mission, especially the inter-satellite baselinedetermination and precise orbit determination of single satellite, high precision relativepositioning of inter-satellite, the high precision determination of inter-satellite baselineof the distributed InSAR satellite system is studied surrounding the main line of singlesatellite, inter-satellite and baseline.
     The main work includes three parts:
     Aiming at the single satellite absolute position and velocity determination, theprecise orbit determination approach of single satellite based on dual-frequencyGPS is studied, and a mixed error modeling and revising approach of the GPSreceiver phase center variation synthetically considered the systematic error andrandom error is proposed, which improves the precision of the precise orbitdetermination of single satellite. At first, the preprocessing of dual-frequency GPSobservations is studied, and the reduced dynamic prcise orbit determination approach ofsingle satellite is analyzed. Secondly, according to the GPS carrier phase observationmodel and GPS receiver phase center model, a mixed error modeling and revisingapproach of the GPS receiver phase center variation synthetically considered systematicerror and random error is proposed. In this approach, the phase center variation error ismodeled as a systematic and a random component each depending on the direction ofGPS signal reception, and the systematic part and the standard deviation of the randompart in the phase center variation error model are respectively estimated by the bin-wisemean and standard deviation values of phase post-fit residuals computed by orbitdetermination.. The GPS observation data of Gravity Recovery And ClimateExperiment (GRACE) satellites are processed, and there types of orbit solutions areproduced. These orbit solutions are tested by three validation methods. The validationresults show that the orbit solutions obtained by the mixed error modeling and revisingapproach are all the best of the three types of the orbit solutions. Meanwhile, by theresults of the orbit comparisions between the orbit solutions obtained by mean value revision of phase post-fit residuals and the mixed error modeling and revising approach,it is shown that the impact of random part of the mixed error model on precise orbitdetermination can not be neglected.
     Aiming at the inter-satellite relative position and velocity determination, thehigh precision inter-satellite relative positioning approach based on the wide andnarrow lane double difference (DD) integer ambiguity resolution strategy isstudied, and a new DD integer ambiguity resolution strategy based on the a-priorirelative orbit and clock solutions is proposed, the success rate of the DD integerambiguity resolution and the precision of relative positioning are both improved.1mm level relative positioning for GRACE formation can be realized. At first, aimingat the problem that the reference GPS satellite is continually replaced, a partitionstrategy of ambiguity resolution is proposed, which keeps the common reference GPSsatellite unchangeable in every partition interval. Based on this strategy, the reduceddynamic relative positioning approach based on the DD integer ambiguity resolutionstrategy of the wide and narrow lane strategy is studied, which is used for the relativepositioning expriment of GRACE satellites. In this experiment, the sucess rate of theDD integer ambiguity resolution is84.73%, and the standard deviation of K-bandRanging (KBR) system for relative position validation is1.26mm. These resultsillustrate the validation and correctness of the programme. Then, aiming at the problemof the forementioned strategy that the resolution of the DD integer wide-lane ambiguityis easily affected by the quality of GPS P-code observation, a new DD integerambiguity resolution strategy based on the a-priori relative orbit and clock solutions isproposed. In this strategy, the a-priori relative orbit and clock solutions are firstlygenerated by the single difference reduced dynamic ionosphere-free combination batchleast-squares relative positioning approach, and then the wide lane ambiguities aresolved by the optimization of the P-code and phase data. The GPS observation data ofGRACE satellites are processed. The sucess rate of the DD integer ambiguity resolutionis89.89%, and is improved by5%, which shows that this stretegy could overcome theproblem of the wide and narrow lane strategy. The standard deviation of KBR systemfor relative position validation is1.01mm, and the accuracy of relative positioning isalso improved.1mm level relative positioning can be realized. The relative positionsolutions obtained by two strategies are compared. The comparison results in radial,transverse and normal directions are0.43mm,1.01mm and0.81mm repectively. The3-dimensional result is1.37mm. These comparison results also indicate that thechanges induced by the newly proposed strategy.
     Aiming at the inter-satellite baseline measurement scheme based ondual-frequency GPS, the error characters of the spatial baseline determination arestudied in detail, and the impact of each error on the spatial baselinedetermination is theoretically analyzed. An error modeling and simulating approach for the spatial baseline determination is proposed, in which themathematical model of each error is set up, and the impacts of each error, thepartial error source, and entire error sources on inter-satellite baselinedetermination are analyzed by the the simulations. At first, according to the theoryof the spatial baseline determination, the error sources of the spatial baselinedetermination are classified into two parts, the error source related to GPS measurementand the error source related to baseline transformaion. The classifications and charactersof errors are analyzed, and the impacts of the error items on spatial baselinedetermination are theoretically analyzed. Then, according to the characters of erroritems, an error modeling and simulating approach for the spatial baseline determinationis proposed. In this approach, the error items are modeled separately, and the impacts ofa single error item, the partial error source and the entire error sources on spatialbaseline determination are analyzed by simulations. It is shown by the simulations thatthe error source related to GPS measurement is the main errors for the spatial baselinedetermination, and the carrier phase noise of GPS observation and the fixing error ofGPS receiver antenna are the main factors of the error source related to GPSmeasurement, and the impact of the entire error sources on spatial baselinedetermination in International Terrestrial Reference Frame (ITRF) is0.500mm ofx-axis,0.500mm of y-axis,0.452mm of z-axis, and0.845mm of3dimensions.Therefore,1mm (each axis) level InSAR spatial baseline determination can be realized.
引文
[1] Jiao M. L. A Review on Latest Interferometric Synthetic Aperture RadarResearches [C]. World Congress on Software Engineering, Lianyungang, China,2009:387~390.
    [2] Krieger G., Hajnsek I., Papathanassiou K. P., Younis M., et al. InterferometricSynthetic Aperture Radar (SAR) Missions Employing Formation Flying [J].Proceedings of the IEEE,2010,98(5):861~843.
    [3] Xiang W., Jorgensen J. L. Formation Flying: a Subject Being Fast Unfolding inSpace [C]. Proceedings of the5th IAA Symposium on Small Satellites for EarthObservation, Berlin, Germany, April4-8,2005.
    [4]王炯琦,吴翊.编队飞行的小卫星精确定轨方法的研究[J].中国空间科学技术,2005,3:8~13.
    [5]马涛,郝云彩,马骏.编队飞行卫星的星间跟踪与测量技术综述[J].航天控制,2005,23(3):91~96.
    [6] Rodriguez E., Martin J M. Theory and Design of Interferometric SyntheticAperture Radars [J]. IEE Proceedings, Part F: Radar and Signal Processing,1992,139(2):147~159.
    [7] Rosen P. A., Hensley S., Joughin I. R., et al. Synthetic Aperture RadarInterferometry [J]. IEEE Proceeding,2000,88(3):333~382.
    [8]王彤,保铮,廖桂生,分布式小卫星干涉高程测量[J].系统工程与电子技术,2004,26(7):859~862.
    [9]姚静.基于GNSS的分布式SAR卫星系统空间状态确定方法研究[D].长沙:国防科技大学,2008.
    [10]张永胜,黄海风,梁甸农,等.星载分布式InSAR测高性能的理论与系统仿真评价方法[J].电子学报,2008,36(7):1273~1278.
    [11]黄海风,梁甸农,何峰.主星带辅星编队单基线InSAR定位、测高两种方法[J].电子学报,2005,33(6):1084~1087.
    [12] Chen P H, Dowman I J. A Weighted Least Squares Solution for SpaceIntersection of Spaceborne Stereo SAR Data [J]. IEEE Transactions on GeoscienceRemote Sensing,2001,39(2):233~239.
    [13] Nico G. Exact Closed-Form Geolocation for SAR Interferometry [J]. IEEETransactions on Geoscience and Remote Sensing,2002,40(1):220~228.
    [14] Sansosti E. A Simple and Exact Solution for the Interferometric and StereoSAR Geolocation Problem [J]. IEEE Transactions on Geoscience and Remote Sensing,2004,42(8):1625~1634.
    [15]谷德峰.分布式InSAR卫星系统的空间状态测量研究[D].长沙:国防科技大学,2009.
    [16]李真芳.分布式小卫星SAR-InSAR-GMTI的处理方法[D].西安:西安电子科技大学,2006.
    [17]王彤,保铮,廖桂生.天基分布式雷达GMTI方法[J].电子学报,2006,34(3):399~403.
    [18]徐华平,周荫清,李春升.星载干涉SAR中的基线问题[J].电子学报,2003,31(3):437~439.
    [19]陈杰,周荫清,李春升.分布式星载干涉SAR基线设计与性能分析[J].电子学报,2004,32(12):1974~1977.
    [20]刘建平,梁甸农.微小卫星编队系统的干涉SAR空间基线稳定性分析[J].系统工程与电子技术,2005,27(2):218~220.
    [21] Wang W. Q. Optimal Baseline Design and Error Compensation for BistaticSpaceborne InSAR [C]. Proceedings of ESA Workshop Advances in SARInterferometry from Envisat and ERS Missions, Frascati, Italy, November28–December2,2005.
    [22] Kohlhase A. O, Kroes R., D’Amico S.Interferometric Baseline PerformanceEstimations for Multistatic Synthetic Aperture Radar Configurations Derived fromGRACE GPS Observations [J]. Joumal of Geodesy,2006,80(1):28~39.
    [23]刘洋,易东云,王正明.编队卫星星间基线的高精度测量方法研究[J].宇航学报,2007,28(6):1643~1647.
    [24]刘洋.编队卫星的星间基线确定方法研究[D].长沙:国防科技大学,2007.
    [25] Krieger G, Fiedler H, Hajnsek I, et al. TanDEM-X: Mission Concept andPerformance Analysis [C]. Proceedings of IEEE Geoscience and Remote SensingSymposum2005, Seoul, Korea, July25-29,2005:4890~4893.
    [26] Krieger G, Moreira A, Fiedler H, et al. TanDEM-X: A Satellite Formation forHigh-Resolution SAR Interferometry [J]. IEEE Transactions on Geoscience and RemoteSensing,2007,45(11):3317~3341.
    [27] Wang B. N., Xiang M. S. Relative Height Accuracy Analysis of TanDEM-XSystem [J]. Journal of Remote Sensing,2009,13(1):49~53.
    [28] Wermuth M., Montenbruck O., Wendleder A. Relative Navigation for theTanDEM-X Mission and Evaluation with DEM Calibration Results [C]. Proceedings ofthe22nd International Symposium on Space Flight Dynamics, Sao Jose dos Campos,Brazil, Febuary28-March4,2011.
    [29] Guinn J. R., Boain R. J. Spacecraft Autonomous Navigation for FormationFlying Earth Orbiters Using GPS [R]. AIAA-96-3655-CP,1996.
    [30] Kroes R., Montenbruck O., Bertiger W., et al. Precise GRACE BaselineDetermination Using GPS [J]. GPS Solutions,2005,9:21~31.
    [31] Montenbruck O., van Barneveld P. W. L., Yoon Y., et al. GPS-basedPrecision Baseline Reconstruction for the TanDEM-X SAR-formation [C]. Proceedingsof the20th International Symposium on Space Flight Dynamics, Annapolis, USA,September24-28,2007.
    [32] Montenbruck O., Markgraf M., Garcia-Fernandez M., et al. GPS forMicrosatellites–Status and Perspectives [C]. Proceedings of the6th IAA Symposiumon Small Satellites for Earth Observation, Berlin, Germany, April23-26,2007.
    [33] D’Amico S., Montenbruck O. Differential GPS: an Enabling Technology forFormation Flying Satellites [C]. Proceedings of the7th IAA Symposium on SmallSatellites for Earth Observation, Berlin, Germany, May4-8,2009:457~464.
    [34] Park C. W., How J. P., Capots L. Sensing Technologies for Formation FlyingSpacecraft in LEO Using CDGPS and an Inter-Spacecraft Communications System [C].Proceedings of the13th International Technical Meeting of the Satellite Division of theInstitue of Navigation, Salk Lake City, UT, USA, September19-22,2000:1595~1607.
    [35] Park C. W. Precise Relative Navigation Using Augmented CDGPS [D]. USA:Stanford University,2001.
    [36] Park C. W., Ferguson P., Pohlman N., et al. Decentralized Relative Navigationfor Formation Flying Spacecraft Using Augmented CDGPS [C]. Proceedings of the14th International Technical Meeting of the Satellite Division of the Institue ofNavigation, Salt Lake City, UT, USA, September11-14,2001:2304~2315.
    [37] Ebinumay T., Montenbruck O., and Lightsey E. G. Precise SpacecraftRelative Navigation Using Kinematic Inter-Spacecraft State Estimates [C]. Proceedingsof the15th International Technical Meeting of the Satellite Division of the Institue ofNavigation, Poland, USA, September24-27,2002:2038-2046.
    [38] Chang X. W., Christopher C. P. An Algorithm for Combined Code andCarrier Phase Based GPS Positioning [J]. BIT Numerical Mathematics,2003,43:915~927.
    [39] Kroes R., Montenbruck O. Spacecraft Formation Flying: Relative PositioningUsing Dual-Frequency Carrier Phase [J]. GPS World,2004,15(7):37~42.
    [40] Kroes R. Precise Relative Positioning of Formation Flying Spacecraft UsingGPS [D]. Delft: Nederlandse Commissie voor Geodetic Commission,2006.
    [41] J ggi, A., Hugentobler, U., Bock, H., et al. Precise Orbit Determination forGRACE Using Undifferenced or Doubly Differenced GPS Data [J]. Advance in SpaceResearch,2007,39(10):1612~1619.
    [42]秦显平,杨元喜.星载GPS的毫米级编队卫星相对定位[J].宇航学报,2010,31(2):369~372.
    [43] Zebker H A, Werner C L, Rosen P A, et al. Accuracy of Topographic MapsDerived from ERS-1Interferometric Radar [J]. IEEE Transactions on Geoscience andRemote Sensing,1994,32(4):823~836.
    [44] Massonnet D. Capabilities and Limitations of the Interferometric Cartwheel[J]. IEEE Transactions on Geoscience and Remote Sensing,2001,39(3):506~520.
    [45]周萌清,徐华平,陈杰.分布式小卫星合成孔径雷达研究进展[J].电子学报,2003,31(12A):1939~1944.
    [46]陈谷仓,王元钦,王天祥,等.高精度星间基线测量方法探讨[J].飞行器测控学报,2005,24(4):60~65.
    [47] Bertiger S. W., et al. GRACE: Millimeters and Microns in Orbit [C].Proceedings of the15th International Technical Meeting of the Satellite Division of theInstitue of Navigation, Poland, USA, September24-27,2002:2022~2029.
    [48] GRACE Payload [EB/OL]. http://op.gfzPotsdam.de/grace/payload/payload.html,2004.
    [49] Kang Z., Tapley B., Bettadpur S., et al. Precise Orbit Determination for theGRACE Mission Using Only GPS Data [J]. Journal of Geodesy,2006,80:322~331.
    [50]郑伟,许厚泽,钟敏,等. GRACE卫星关键载荷实测数据的有效处理和地球重力场的精确解算[J].地球物理学报,2009,53(8):1966~1975.
    [51] Moreira A., Krieger G., Hajnsek I., et al. TanDEM-X: A TerraSAR-XAdd-On Satellite for Single-pass SAR Interferometry [C]. Proceedings of IEEEGeoscience and Remote Sensing Symposum2004, Anchorage, Alaska, USA,September20-24,2004:1000~1003.
    [52] Krieger G., Moreira A. Tandem-X: Mission Concept, Product Definition andPerformance Prediction [C]. Proceedings of European Conference on SyntheticAperture Radar, Dresden, Germany, May16-18,2006.
    [53] Krieger G., Moreira A., Hajnsek I., et al. The TanDEM-X Mission Proposal[C]. Proceedings of ISPRS Hannover Workshop, Hannover, Germany, May17-20,2005.
    [54] Werninghaus R., Buckreuss S. The TerraSAR-X Mission and System Design[J]. IEEE Transactions on Geoscience and Remote Sensing,2010,48(2):606~614.
    [55] González J. H., Bachmann M., Krieger G., et al. Development of theTanDEM-X Calibration Concept: Analysis of Systematic Errors [J]. IEEE Transactionson Geoscience and Remote Sensing,2010,48(2):716~726.
    [56] Kouba J. A Guide Using International GPS Service (IGS) Products [EB/OL].http//igscb.jpl.nasa.gov/components/usage.html,2009/11/13.
    [57] Dach R., Brockmann E., Schaer S., et al. GNSS Processing at CODE: StatusReport [J]. Journal of Geodesy,2009,83(3-4):353~365.
    [58] Desai S. D., Bertiger D., Haines B. J. The JPL IGS analysis Center: Resultsfrom the Reanalysis of the Global GPS Network [C]. American Geophysical Union, FallMeeting2009.
    [59] Svehla D., Rothacher M. Kinematic and Reduced-dynamic Precise OrbitDetermination of Low Earth Orbiters [J]. Advances in Geosciences,2003,1:47~56.
    [60] Li J. C., Zhang S. J., Zou X. C., et al. Precise Orbit Determination for GRACEwith Zero-difference Kinematic Method [J]. Chinese Science Bulletin,2010,55(7):600~606.
    [61]郑作亚,党亚民,卢秀山,等.星载GPS非差运动学定轨中误差影响分析[J].大地测量与地球动力学,2010,30(6):66~70.
    [62] Thomas P., Yunck, Willian G. Melbourne et al. Precise Tracking of RemoteSensing Satellites with the Global Positioning System [J]. IEEE Transactions onGeoscience and Remote Sensing,1999,28(1):108~115.
    [63] Wu S., Yunck T., Thornton C. Reduced-dynamic Technique for Precise OrbitDetermination of Low Earth Satellites [J]. Journal of Guidance Control and Dynamics,1991,14(1):24~30.
    [64] Montenbruck O., Van H. T., Kroes R., et al. Reduced Dynamic OrbitDetermination Using GPS Code and Carrier Measurements [J]. Aerospace Science andTechnology,2005,9:261~271.
    [65] J ggi A., Beutler G., Hugentobler U. Efficient Stochastic Orbit ModelingTechniques Using Least Squares Estimators [C]. A window on the future of geodesy. F.Sansò (Ed.), Springer, New York,2004:175~180.
    [66] J ggi A., Hugentobler U., Beutler G. Pseudo-stochastic Orbit ModelingTechniques for Low-Earth Orbiters [J]. Journal of Geodesy,2006,80:47~60.
    [67] Beutler G., J ggi A., Hugentobler U., et al. Efficient satellite orbit modellingusing pseudo-stochastic parameters [J]. Journal of Geodesy,2006,80:353~372.
    [68] Peng D. J., Wu B. Zero-difference and Single-difference Precise OrbitDetermination for LEO Using GPS [J]. Chinese Science Bulletin,2007,52(15):2024~2030.
    [69]韩保民,许厚泽.重力场恢复中的基于星载GPS的低轨卫星简化动力学定轨方法研究[J].地球物理学进展,2007,22(1):73~79.
    [70] ESA. IGS LEO CHAMP Orbit Comparisons [Z]. http://nng.esoc.esa.de/gps/CH_cmp.html,2003.
    [71] Tae Suk Bae. Near Real-Time Precise Orbit Determination of Low EarthOrbit Satellites Using an Optimal GPS Triple-Differencing Technique [D]. USA: OhioState University,2006.
    [72]王家松.海洋高度计卫星精密轨道确定技术研究[D].长沙:国防科学技术大学,2007.
    [73]郑作亚. GPS数据预处理和星载GPS运动学定轨研究及其软件实现[D].上海:中国科学院上海天文台,2004.
    [74]郑作亚,卢秀山,彭军还. LP估计在星载GPS运动学定轨中的应用及精度分析[J].天文学报,2007,48(2):210~219.
    [75]郑作亚,蔡五三,黄珹,等.星载GPS相位观测值非差运动学定轨探讨[J].天文学进展,2005,23(1):80~92.
    [76]吴江飞,黄珹.抗差估计在星载GPS卫星非差运动学定轨中的应用[J].天文学报,2006,47(3):320~327.
    [77]吴江飞,杜鹏,王磊,等.星载GPS低轨卫星运动学定轨及研究进展[J].天文学进展,2006,24(2):113~128.
    [78]徐天河,杨元喜.利用CHAMP卫星几何法轨道恢复地球重力场模型[J].地球物理学报,2005,48(2):288~293.
    [79]郭金运,黄金维,曾子榜,等.基于星载GPS非差数据的COSMIC卫星几何定轨研究[J].自然科学进展,2008,18(1):75~79.
    [80]陈俊平,王解先.基于历元间差分的低轨卫星运动学精密定轨[J].大地测量与地球动力学,2007,27(4):57~61.
    [81]杜起飞,孙越强,刘正廷,等.双频GPS天线相位中心稳定性研究[J].GNSS World of China,2008,2:6~12.
    [82] Luthcke S. B., Zelensky N. P., Rowlands D. D., et al.. The1-centimeter Orbit:Jason-1Precision Orbit Determination Using GPS, SLR, DORIS, and Altimeter Data[J]. Marine Geodesy,2003,26(3):399~421.
    [83]胡志刚,赵齐乐,郭靖,等. GPS天线相位中心校正对低轨卫星精密定轨的影响研究[J].测绘学报,2011,40(Sup.):34~38.
    [84] J ggi A., Dach R., Montenbruck O., et al. Phase Center Modeling for LEOGPS Receiver Antennas and Its Impact on Precise Orbit Determination [J]. Journal ofGeodesy,2009,83:1145~1162.
    [85] Haines B., Bar-Sever Y., Bertiger W., et al. One-centimeter OrbitDetermination for Jason-1: New GPS-based Strategies [J]. Marine Geodesy,2004,27(1–2):299~318.
    [86] Haines B., Bar-Sever Y., Bertiger W., et al. Space-based Satellite AntennaMaps; Impact of Different Satellite Antenna Maps on LEO&Terrestrial Results [C].IGS Workshop, Miami, USA,2008.
    [87] Montenbruck O., Garcia-Fernandez M., Yoon Y., et al. Antenna Phase CenterCalibration for Precise Positioning of LEO Satellites [J]. GPS Solutions,2009,13(1):23~34.
    [88] Bock H., J ggi A., Meyer U., et al. Impact of GPS Antenna Phase CenterVariations on Precise Orbits of the GOCE Satellite [J]. Advances in Space Research,2011,47(11):1885~1895.
    [89] Dach R., Hugentobler U., Fridez P, et al. User manual of the Bernese GPSSoftware Version5.0[R]. Bern: Astronomical Institute, University of Bern, January2007.
    [90] J ggi A., Montenbruck O., Moon Y., et al. Inter-agency Comparison ofTanDEM-X Baseline Solutions [J]. Advances in Space Research,2012,50(2):260-271.
    [91] Teunissen P. J. G. An Analytical Study of Ambiguity Decorrelation usingDual Frequency Code and Carrier Phase [J]. Journal of Geodesy,1996,70:515-528.
    [92] Teunissen P. J. G., de Jonge P. J., Tiberius C. C. J. M. The Least-squaresAmbiguity Decorrelation Adjustment: its Performance on Short GPS Baselines andShort Observation Spans [J]. Journal of Geodesy,1997,71:589-602.
    [93] Teunissen P. J. G. An Optimality Property of the Integer Least SquaresEstimator [J]. Joumal of Geodesy,1999,73(11):587~593.
    [94] Joosten P., Teunissen P. J. G., Jonkman N. GNSS Three Carrier PhaseAmbiguity Resolution Using the LAMBDA-method [C]. Proceedings of the2ndEuropean Symposium on Global Navigation Satellite Systems, Genova, Italy, October5-8,1999:367~372.
    [95] Teunissen P. J. G. The GPS Integer Least-squares Statistics [J]. Phys. Chem.Earth,2000,25(9-11):613~617.
    [96] Teunissen P. J. G. The Success Rate and Precision of GPS Ambiguities [J].Journal of Geodesy,2000,74:321-326.
    [97] Teunissen P. J. G., Odijk D. Rank-defect Integer Estimation and Phase-onlyModernized GPS Ambiguity Resolution [J]. Journal of Geodesy,2003,76(9-10):523~535.
    [98] Verhagen S. Integer Ambiguity Validation: All Open Problem [J]. GPSSolutions,2004,8(1):36~43.
    [99] Teunissen P. J. G. The Least-squares Ambiguity Decorrelation Adjustment: aMethod for Fast GPS Integer Ambiguity Estimation [J]. Journal of Geodesy,2005,70:65~82.
    [100] Verhagen S., Teunissen P. J. G. On the Probability Density Function of theGNSS Ambiguity Residuals [J]. GPS Solutions,2006,10(1):21~28.
    [101]李济生.航天器轨道确定[M].北京:国防工业出版社,2003.
    [102]郗晓宁,王威.近地航天器轨道基础[M].长沙:国防科技大学出版社,2003.
    [103]刘林.航天器轨道理论[M].北京:国防工业出版社,2000.
    [104]王威,于志坚.航天器轨道确定-模型与算法[M].北京:国防工业出版社,2007.
    [105]刘林,胡松杰,王歆.航天器动力学引论[M].南京:南京大学出版社,2006.
    [106] McCarthy D. D. IERS Conventions (1996)[R]. IERS Technical Note21,Paris: Observatoire de Paris,1996,20~39.
    [107]王超,张红,刘智.星载合成孔径雷达干涉测量[M].北京:科学出版社,2002.
    [108] Zhang X. L., Shun J. H., Jian G. W. Approaches to Estimating TerrainHerght and Baseline for Interferpmetric SAR [J]. Electronics Letters,1998,34(25):2428~2429.
    [109] Eineder M, Krieger G. Interferometric Digital Elevation ModelReconstruction-Experiences from SRTM and Multi Channel Approaches for FutureMissions [C]. Proceedings of IEEE International Geoscience and Remote SensingSymposium2005, Seoul, Korea, July25-29,2005,2664~2667.
    [110] Xu H. P., Zhou Y. Q., Li C. S. Analysis and Simulation of Spaceborne SARInterferometric Baseline [C]. Proceedings of International Radar Conference2001,Beijing, China, October15-18,2001:639~643.
    [111] Reigber Ch., Lühr H., Schwintzer P. CHAMP Mission Status [J]. Advancesin Space Research,2002,30(2):129~134.
    [112] van den Ijssel J., Visser P., Pati o Rodriguez E. CHAMP Precise OrbitDetermination Using GPS Data [J]. Advances in Space Research,2003,31(8):1889~1895.
    [113] Kang Z., Nagel P., Pastor R. Precise Orbit Determination for GRACE [J].Advances in Space Research,2003,31(8):1875~1881.
    [114] Bock H., J ggi A., vehla D., et al. Precise Orbit Determination for theGOCE Satellite Using GPS [J]. Advances in Space Research,2007,39(10):1638~1647.
    [115] Montenbruck O., Yoon Y., Gill E., et al. Precise Orbit Determination for theTerraSAR-X Mission [C]. Proceedings of the19th International Symposium on SpaceFlight Dynamics, Kanazawa, Japan, June4-11,2006:1~6.
    [116] Wermuth M., Hauschild A., Montenbruck O. TerraSAR-X Rapid and PreciseOrbit Determination [C]. Proceedings of the21st International Symposium on SpaceFlight Dynamics, Toulouse, France, September28-October2,2009.
    [117] Kim Y. S., Lee S. R. Feasibility Study of Synthetic Aperture Radar—Adaptablility of the Payload to KOMPSAT Platform [J]. Journal of Astronomy andSpace Science,2002,19(3):225~230.
    [118] Lee S. R. Overview of KOMPSAT-5Program, Mission, and System [C].Proceedings of IEEE International Geoscience and Remote Sensing Symposium2010,Honolulu, Hawaii, USA, July25-30,2010:797~800.
    [119] Hwang Y., Lee B., Kim Y., et al. GPS Based Orbit Determination forKOMPSAT-5Satellite [J]. ETRI Journal,2011,33(4):487~496.
    [120] Montenbruck O., Ramos-Bosch P. Precision Real-time Navigation of LEOSatellites Using Global Positioning System Measurements [J]. GPS Solutions,2008,12(3):187~198.
    [121]谷德峰,孙蕾,易东云.抗差Vondrak滤波器设计及其在粗差探测中的应用[J].兵工学报,2008,29(6):696~700.
    [122]秘金钟,李毓麟. RAIM算法研究[J].测绘通报,2001,3:7~9.
    [123]黄继勋,周丽弦,范跃祖.时钟偏差辅助的GPS完整性监测算法[J].北京航空航天大学学报,2001,27(2):161~163.
    [124]刘准,陈哲. GPS自主式完整性检测技术研究[J].北京航空航天大学学报,2003,29(8):673~676.
    [125]王永超,黄智刚.时钟改进模型辅助RAIM算法研究[J].电子学报,2007,35(6):1084~1088.
    [126] Bisnath B. Efficient, Automated Cycle-slip Correction of Dual-frequencyKinematic GPS Data [C]. Proceedings of the13th International Technical Meeting ofthe Satellite Division of the Institue of Navigation, Salk Lake City, UT, USA,September19-22,2000:145-154.
    [127]严豪健,符养,洪振杰,等.天基GPS气象学与反演技术[M].北京:中国科学技术出版社,2007.
    [128]刘基余. GPS卫星导航定位原理与方法[M].北京:科学出版社,2007:187~196.
    [129]王惠南. GPS导航原理与应用[M].北京,科学出版社,2003.
    [130] Flechtner F., Gruber T., Güntner A., et al. System Earth viaGeodetic-Geophysical Space Technologies [M]. Heidelberg: Springer-Verlag,2010:29~39.
    [131] Standish, E. M. JPL Planetary and Lunar Ephemerides, DE405/LE405[R].JPL IOM312.F-98-048,1998.
    [132]李征航,张小红.卫星导航定位新技术及高精度数据处理方法[M].湖北武汉:武汉大学出版社,2009.
    [133]黄天衣,周庆林.用一次和的Adams-Cowell方法[J].天文学报,1992,33(4):413~419.
    [134]付兆萍,李红.轨道方程计算中Adams-Cowell方法的外推改进[J].中国空间科学技术,2006,26(1):22~26.
    [135] Montenbruck O., Gill E., Satellite Orbits [M], Heidelberg: Springer-Verlag,2000.
    [136] UTCSR Ocean Tide Model from Schwiderski andInterpolation/Extrapolation [EB/OL], ftp://ftp.csr.utexas.edu/pub/grav/OTIDES.CSRC,2010/02/06.
    [137] Akrour B., Santerre R., Geiger A. Calibrating Antenna Phase Centers [J].GPS world,2005,16(2):49~53.
    [138]范建军,王飞雪. GPS接收机天线相位中心变化对基线解的影响[J].宇航学报,2007,28(2):298~304.
    [139] Ickes B. P. A New Method for Performing Digital Control System AttitudeComputations Using Quaternions [J]. AIAA Journal,1970,8(1):13~17.
    [140]王俊,袁建平.四元数在伴随卫星姿态控制中的应用[J].飞行力学,2000,18(1):36~38.
    [141]孙兆伟,耿云海,何平,等.微小卫星高精度三轴稳定控制算法研究[J].上海航天,2000,2:1~6.
    [142]屠善澄.卫星姿态动力学与控制[M].北京:宇航出版社,2002.
    [143]胡雷鸣,张兴福,沈云中. CHAMP姿态数据间断的处理方法与精度分析[J].大地测量与地球动力学,2006,26(2):83~86.
    [144] Case K, Kruizinga G, Wu S. GRACE Level1B Data Product UserHandbook Version1.3[R]. Pasadena: Jet Propulsion Laboratory,2010.
    [145] Tapley B., Ries J., Bettapur S., et al. GGM02—An Improved Earth GravityField Model from GRACE [J]. Journal of Geodesy,2005,79:467~478.
    [146] Ferland R. ITRF Coordinator Report.2000IGS Annual Report [R].Pasadena: Jet Propulsion Laboratory,2001.
    [147] McCarthy D, Petit G. IERS Conventions2003. IERS Technical Note32[R].Paris: Observetoire de paris,2004.
    [148] Odijk D. Improving Ambiguity Resolution by Applying IonosphereCorrections from a Permanent GPS Array [J]. Earth Planets Space,2000,52:675~680.
    [149] Ya'acob N., Abdullah M., Ismail M., et al. Improving Ambiguity ResolutionUsing an Ionospheric Differential Correction [J]. European Journal of ScientificResearch,2009,29(1):6~12.
    [150] van Barneveld P. W. L., Montenbruck O., Visser P. N. A. M. DifferentialIonospheric Effects in GPS based Navigation of Formation Flying Spacecraft [C].Proceedings of the3rd International Symposium on Formation Flying, Missions andTechnology, Rhodes, Greece, May26-30,2008.
    [151] Leick, A. GPS Satellite Surveying [M], John Wiley and Sons, New York,1994.
    [152] Ming Y., Tand C. H., Yu T. T. Development and Assessment of aMedium-Range Real-Time Kinematics GPS Algorithm Using an IonosphereInformation Filter [J]. Earth Planets Space,2000,52:783-788.
    [153] Hernandez P. M., et al. Application of Ionospheric Tomography to Real-timeGPS Carrier-phase Ambiguities Resolution, at Scales of400-1000km and with HighGeomagnetic Activity [J]. Geophysical Research Letters,2000,27(13):2009-2012.
    [154] Garcia M., Montenbruck O. TerraSAR-X/TanDEM-X GPS Antenna PhaseCenter Analysis and Results [R]. German Space Operations Center, Germany,2007.
    [155]李锐,李建新.窄波束天线的相位中心定位技术研究[J].微波学报,2010,8:103~105.
    [156]尚军平,傅德民,邓颖波.天线相位中心的精确测量方法研究[J].西安电子科技大学学报(自然科学版),2008,35(4):673~677.
    [157]倪晋麟,王德纯.星载SAR性能与T/R组件不一致性的关系[J].宇航学报,2001,22(5):82~85.
    [158]於洪标.有源相控阵雷达T/R组件稳定性分析设计[J].电子学报,2005,33(6):1102~1104.
    [159]王五兔. SAR天线功率方向图误差补偿的新方法[J].中国空间科学技术,1997,3:65~70.
    [160]陈杰.星载SAR相控阵天线展开误差的模糊性能分析[J].电子学报,2003,31(12A):2026~2030.
    [161]王正明,易东云,周海银,等.弹道跟踪数据的校准与评估[M].长沙:国防科技大学出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700