基于工业CT切片数据的三角网格模型简化及优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业CT技术能在对被检测产品无损伤的条件下,以二维或三维的形式,清晰、准确、直观的展现被检测产品内部的结构、组成、材质及缺损状况,该技术被誉为当今最佳的无损检测技术。但采用工业CT扫描被检测产品时,往往由于测量手段和技术的限制、被检测产品本身已有损坏等原因,使得工业CT切片数据重建的网格模型存在不封闭的现象,另外,对于复杂的被检测产品,重建模型还存在数据量大、三角形形状不规范等问题,这些问题的存在不利于重建模型的存储、传输以及网格模型的后续处理。
     针对上述问题,本文以工业CT切片数据为研究对象,重点对网格模型的重建、网格模型的简化以及网格模型的优化进行了研究,主要的研究内容及研究成果包括以下几个方面:
     ①针对工业CT测量手段存在的问题,即扫描时只对被检测产品的有效区域进行扫描,而无法获得被检测产品上下端面处的数据信息,本文提出了一种修改端面处体元数据的方法,保证重建时端面处等值面的完整提取,实现被检测产品端面处的封闭。另外,本文采用改进的MC算法对所有体元数据进行重建,以消除MC算法的二义性,避免二义性所产生的孔洞。
     ②为了解决重建模型的庞大数据量给存储、传输等方面带来的困难,本文分别从边折叠和三角形折叠两个方面提出了两种三角网格模型的简化方法。这两种简化方法不仅在生成高质量简化模型的同时降低了简化模型的几何误差,而且还有效地保持了原始模型的几何特征,避免了目前大多数网格简化方法在简化网格模型时丢失模型特征的问题。
     ③提出了波前法和最小二乘拟合函数相结合的网格孔洞修补方法,以修补被检测产品因本身损坏、产品部位遮挡等原因所产生的孔洞。首先,该方法对识别出的孔洞边界进行预处理;然后,采用波前法对孔洞区域进行三角化;最后,通过最小二乘拟合函数的方法调整孔洞区域中各三角形顶点的位置。该孔洞修补方法实现了孔洞区域原始形貌的恢复,并保证了孔洞区域与周围原始网格的光滑过渡,初步优化了网格模型。
     ④经孔洞修补处理后,封闭的网格模型在孔洞区域中常存在三角形的形状、大小与孔洞周围的原始网格不一致的情形,此外,在整个网格模型中还存在大量狭长三角形。针对这些问题,本文提出了一种采用二阶加权伞算子局部优化网格模型的方法。该方法通过二阶加权伞算子对网格模型中的孔洞区域以及原始网格模型中的狭长三角形区域进行优化处理,改善网格模型中狭长三角形的质量,保证最终获得优化的网格模型。
     本文的研究成果已集成到所开发的逆向软件系统中,并成功应用于具有复杂内腔产品的逆向设计。应用实例验证这些方法不仅能保证最终可获得简化的、高质量的网格模型,而且这些网格模型符合后续处理的需求。
Industrial CT (Industrial Computerized Tomography, ICT), owing to the feature ofbeing able to display the inner structure, composition, material and defect status of theinspected complex objects with2D slicing image or3D mesh model clearly, accurately,intuitively and without any damage to the inspected complex objects, is awarded as thebest non-destructive testing technology nowadays. But due to the limits ofmeasurements and technology, defect status of the inspected objects, and so on, themesh model reconstructed from industrial CT scanning data is often not closed, besides,the reconstructed mesh model with huge data and narrow triangle have the problem ofstorage, transmitting and subsequent processing.
     To counter the problems above, this paper takes industrial CT scanning data as theresearch object, and focuses on mesh reconstruction, mesh simplification and meshoptimization. The main contents and achievements are listed as follows:
     ①To counter the existing problems of industrial CT measurement, that is, onlyvalid area of the inspected objects is scanned, the contour information about thebeginning and the end of the inspected objects can not be obtained. We present amethod of modifying voxels at end face, this method is benefit for the extraction ofcomplete iso-surface when reconstructing mesh model and the closure of the end face.Besides, an improved MC algorithm is used to reconstruct all voxels and avoid theambiguity of original MC algorithm.
     ②To solve the problem of storage, transmitting3D reconstruction models withhuge data, two triangular mesh simplification algorithms based on edge collapse andtriangle collapse are proposed in this paper. Compared to the majority simplificationalgorithms at present, the presented simplification algorithms work well for generatinghigh quality simplified model, reducing the error of the simplified model whilstpreserving the sharp geometric features of the original model, and making up defect oflosing features of the original model.
     ③In order to repair the hole derived from defect status of the inspected objects,the overlapping of the part of the inspected objects, and so on, a novel hole-fillingmethod is proposed. Firstly, identify all holes existed in the mesh model and performpreprocessing to boundary edges. Then the identified holes are triangulated by theimproved advancing front mesh method. Finally, adjust the position of triangle vertices existed in the patch meshes by the least square fit. The proposed hole-filling approachrestores the original shape and has smooth transition with the surrounding meshes, themesh model is optimized primarily.
     ④After hole filling, triangles in the area of the hole may be spiky, and can notadapt to the surrounding shape of the hole well. Besides, there are some irregularsituations in mesh model, such as narrow triangle, redundant triangle, and so on. Inview of these problems, a normalization method for mesh model is proposed. Firstly, inorder to improve the quality of mesh model, patch mesh and the area of the narrowtriangle are optimized by applying the weighted bi-umbrella operator, and then repairother defects to obtain normalization mesh model.
     Above-mentioned research results have been integrated into a prototype system ofreverse engineering, this system has been applied successfully in reverse design. Theapplied examples prove that the presented algorithm not only help obtain high qualitysimplified model, but also benefit subsequent processing.
引文
[1]刘伟军,孙玉文等.逆向工程:原理·方法及应用[M].北京:机械工业出版社,2008.
    [2]杜永平,腾启.反求工程技术[J].起重运输机械,2003,(1):1-4.
    [3]《国防科技工业无损检测人员资格鉴定与认证培训教材》编审委员会编.计算机层析成像检测[M].北京:机械工业出版社,2006.
    [4] S Bonnet, A Koening, S Roux, P Hugonnard, et al. Dynamic X-Ray ComputedTomography[J]. Proceedings of the IEEE,2003,91(10):1574-1587.
    [5]段黎明,刘元宝,吴志芳,张金波.基于工业计算机断层成像技术的三维CAD模型重构方法[J].计算机集成制造系统,2009,15(3):479-486.
    [6]章雅娟.逆向工程中三角网格模型优化技术的研究与实现[D].苏州大学,2009.
    [7] E Keppel. Approximating complex surfaces by triangulation of contour lines[J]. IBM Journalof Research and Development,1975,19(1):2-11.
    [8] I Braude, J Marker, K Museth, et al. Contour-based surface reconstruction using MPUimplicit models[J]. Graphical Models,2007,69(2):139-157.
    [9] Y C Chen, Y C Chen, A S Chiang, et al. A reliable surface reconstruction system inbiomedicine[J]. Computer Methods and Programs in Biomedicine,2007,86(2):141-152.
    [10] N C Gabrielides, A I Ginnis, P D Kaklis, et al. G1-smooth branching surface construction fromcross sections[J]. Computer-Aided Design,2007,39(8):639-651.
    [11] J G He. The correspondence and branching problem in medical contour reconstruction[C].IEEE International Conference on Systems, Man and Cybernetics,2008:1591-1595.
    [12]段黎明,许万源.工业CT切片图像直接生成快速原型层片数据[J].强激光与粒子束,2010,22(11):2733-2736.
    [13] P T Truc, T S Kim, S Y Lee, Y K Lee. Homogeneity and density distance-driven activecontours for medical image segmentation[J]. Computers in Biology and Medicine,2011,41(5):292-301.
    [14] Y W Meng. Research on the algorithm of automatic branch modeling in3D modelreconstruction from parallel contours[C]. Proceedings of SPIE-The International Society forOptical Engineering,2013:1-5.
    [15] G T Herman, H K Liu. Three-dimensional display of human organs from computedtomograms[J]. Computer Graphics and Image Processing,1979,9(1):1-21.
    [16]石教英,蔡文立.科学计算可视化算法与系统[M].北京:科学出版社,1996.
    [17]杨兴强,张彩明.具有线性精度的Cuberille方法[J].计算机研究与发展,2004,41(7):1213-1219.
    [18] W Lorensen, H Cline. Marching cubes: A high resolution3D surface constructionalgorithm[J]. Computer Graphics,1987,21(4):163-169.
    [19] S Peer, J L Longin, S Marcelo. Topological equivalence between a3D object and thereconstruction of its digital image[J]. IEEE Transaction on Pattern Analysis and MachineIntelligence,2007,29(1):126-140.
    [20] H Carr, N Max. Subdivision analysis of the trilinear interpolant[J]. IEEE Transactions onVisualization and Computer Graphics,2010,16(4):533-547.
    [21] L V Gerard, D Marc, M Christianne, et al. Simplified marching cubes:An efficientdiscretization scheme for simulations of deposition/ablation in complex media[J].Computational Materials Science,2011,50(3):893-902.
    [22] T Etiene, L G Nonato, C Scheidegger, et al. Topology verification for isosurface extraction[J].IEEE Transactions on Visualization and Computer Graphics,2012,18(6):952-965.
    [23] G L Masala, B Golosio, P Oliva. An improved marching cube algorithm for3D datasegmentation[J]. Computer Physics Communications,2013,184(3):777-782.
    [24] L Custodio, T Etiene, S Pesco, C Silva. Practical considerations on Marching Cubes33topological correctness[J]. Computer&Graphics,2013,37(7):840-850.
    [25] C M Li, Z X Li, Y H Wang, et al. Some improvements of the marching cubes algorithm forthe rendering of an orebody[J]. Journal of China University of Mining&Technology,2008,18(2):194-198.
    [26] H Lee, H S Yang. Marching cube and octree based level of detail modeling of3D objects[J].International Journal of Modeling and Simulation,2009,29(2):121-126.
    [27] A Virasin, S Hendra, C W S Simon, et al. GPGPU acceleration algorithm for medical imagereconstruction[C]. IEEE Computer Society,2011:41-46.
    [28] M P Arakeri, G R M Reddy. An effective and efficient approach to3D reconstruction andquantification of brain tumor on magnetic resonance images[J]. International Journal ofSignal Processing, Image Processing and Pattern Recognition,2013,6(3):111-128.
    [29] M V M Cirme, H Pedrini. Marching cubes technique for volumetric visualization acceleratedwith graphics processing units[J]. Journal of Brazilian Computer Society,2013,19(3):223-233.
    [30] C A Dietrich, C E Scheidegger, J Schreiner, et al. Edge transformations for improving meshquality of marching cubes[J]. Visualization and Computer Graphics, IEEE Transactions on,2009,15(1):150-159.
    [31] S J Liu, J Li. Preserving zeros in surface construction using marching cubes[J]. MachineGraphics and Vision,2010,19(1):97-123.
    [32] L Ma, D X Zhao, Z Z Yang. A software tool for visualization of molecular face (VMF) byimproving marching cubes algorithm[J]. Computational and Theoretical Chemistry,2014,1028(15):34-45.
    [33] A Gueziec, R Hummel. Exploiting triangulated surface extraction using tetrahedraldecomposition[J]. IEEE Transaction on Visualization and Computer Graphics,1995,1(4):328-342.
    [34] M L Raghavan, B Ma, R E Harbaugh. Quantified aneurysm shape and rupture risk[J]. JNenrosurg,2005,102(2):355-362.
    [35] O Seungtaik, K K Bon. Data perturbation for fewer triangles in marching tetrahedral[J].Graphical Models,2007,69(3-4):211-218.
    [36] T Lu, F W Chen. Quantitative analysis of molecular surface based on improved MarchingTetrahedra algorithm[J]. Journal of Molecular Graphics and Modelling,2012,38:314-323.
    [37] H E Cline, W E Lorensen, S Ludke. Two algorithm for the three dimensional reconstructionof tomograms[J]. Medical Physics,1988,15(3):320-327.
    [38] W Bao, R Zhou, J G Yang, et al. Anti-aliasing lifting scheme for mechanical vibration faultfeature extraction[J]. Mechanical Systems and Signal Processing,2009,23(5):1458-1473.
    [39] Y W Zhang, W X Zhong, H B Zhu, et al. Establishing the3D finite element solid model offemurs in partial by volume rendering[J]. International Journal of Surgery,2013,11(9):930-934.
    [40] M Levoy. Efficient ray tracing of volume data[J]. ACM Transactions on Graphics,1990,9(3):245-261.
    [41] M Zeng, F K Zhao, J X Zheng, et al. Octree-based fusion for realtime3D reconstruction[J].Graphical Models,2013,75(3):126-136.
    [42] K Aaron, H Younis, W Rolf, et al. Volume ray casting with peak finding and differentialsampling[J]. IEEE Transactions on Visualization and Computer Graphics,2009,15(6):1571-1578.
    [43] Q Wang, J Jaja. Interactive high-resolution isosurface ray casting on multicore processors[J].IEEE Transactions on Visualization and Computer Graphics,2008,14(3):603-614.
    [44] S Lim, B S Shin. A distance template for octree traversal in CPU-based volume ray casting[J].Visual Computer,2008,24(4):229-237.
    [45] B Lee, J Yun, J Seo, et al. Fast high-quality volume ray-casting with virtual sampling[J]. IEEETransactions on Visualization and Computer Graphics,2010,16(6):1525-1532.
    [46]梁荣华,吴云飞,马祥音.局部特征加强的体绘制算法[J].计算机辅助设计与图形学学报,2012,24(10):1302-1311.
    [47]罗月童,薛晔,刘晓平.基于GPU的多分辨率体数据重构和渲染[J].计算机辅助设计与图形学学报,2009,21(1):107-111.
    [48] T H Lee, J Lee, H Lee, H Kye, et al. Fast perspective volume ray casting method usingGPU-based acceleration techniques for translucency rendering in3D endoluminal CTcolonography[J]. Computers in Biology and Medicine,2009,39(8):657-666.
    [49] L Westove. Footprint evaluation for volume rendering[J]. Computer Graphics,1990,24(4):367-376.
    [50] P Schlegel, R Pajarola. Layed volume splatting[C]. Proceedings of the5th InternationalSymposium on Advances in Visual Computing,2009:1-12.
    [51] G Nichols, C Wyman. Interactive indirect illumination using adaptive multi-resolutionsplatting[J]. IEEE Transactions on Visualization and Computer Graphics,2010,16(5):729-741.
    [52] R F Ivo, C A Vidal, J B Cavalcante-Neto. A method for clipping splats on sharp edges andcorners[J]. The Visual Computer,2012,28(10):995-1004.
    [53] H Zhang, A E Kaufman. Point-and–edge model for edge-preserving splatting[J]. The VisualComputer,2007,23(6):397-408.
    [54] C Weber, S Hahmann, H Hagen, et al. Sharp feature preserving MLS surface reconstructionbased on local feature line approximation[J]. Graphical models,2012,74(6):335-345.
    [55] T K Dey, X Ge, Q Que, et al. Feature-preserving reconstruction of singular surfaces[J].Computer Graphics Forum,2012,31(5):1787-1796.
    [56] B Li, L F Tian, S X Qu. An optical model for translucent volume rendering and itsimplementation using the preintegrated shear-warp algorithm[J]. International Journal ofBiomedical Imaging,2010,2010(2010):1-11.
    [57] K Y Choi, S Jo, H Lee, et al. CPU-based speed acceleration techniques for shear warp volumerendering[J]. Multimedia Tools and Applications,2013,64(2):309-329.
    [58] P Abellan, D Tost. Multimodal volume rendering with3D textures[J]. Computer&Graphics,2008,32(4):412-419.
    [59]邹华.基于可编程GPU的体绘制关键技术研究[D].西安电子科技大学,2009.
    [60] M M Zhang, Z G Pan, J Y Shi. A hybrid rendering algorithm for textile objects[J]. Science inChina Series F-Information Sciences,2009,52(3):490-499.
    [61] M Howison, E W Bethel, H Child. Hybrid parallelism for volume rendering on large-, multi-,and many-core systems[J]. IEEE Transactions on Visualization and Computer Graphics,2012,18(1):17-29.
    [62] W T Zheng, H J Bao, Q S Peng. A real-time rendering algorithm based on a hybrid renderingscheme[J]. Progresses in Natural Science,2000,10(4):366-371.
    [63] T Boubekeur, M Alexa. Mesh simplification by stochastic sampling and topologicalclustering[J]. Computers&Graphics,2009,33(3):241-249.
    [64] R Chang, T Butkiewicz, C Ziemkiewicz, et al. Legible simplification of textured urbanmodels[J]. IEEE Computer Graphics and Applications,2008,28(3):27-36.
    [65] C H Chiang, B S Jong, T W Lin. A robust feature-preserving semi-regular remeshing methodfor triangular meshes[J]. Visual Computer,2011,27(9):811-825.
    [66] J W Niu, Z Z Li, G Salvendy. Multi-resolution description of three-dimensionalanthropometric data for design simplification[J]. Applied Ergonomics,2009,40(4):807-810.
    [67] W Schroder, J Zarge, W Lorensen. Decimation of triangle meshes[J]. Computer Graphics,1992,26(2):65-70.
    [68]千学明,江平宇.基于限定误差界的三角网格简化[J].西北工业大学学报,2007,27(3):234-237.
    [69] M Adrien, C Courbet, P Alliez, et al. Progressive compression of manifold polygon meshes[J].Computers&Graphics,2012,36(5):349-359.
    [70] C Chuon, S Guha. Volume cost based mesh simplification[C]. Proceeding of IEEE SixthInternational Conference on Computer Graphics, Imaging and Visualization,2009:164-169.
    [71] H Hoppe, T Derose, T Duchamp, et al. Mesh optimization[C]. Proceeding of theSIGGRAPH’93,1993:19-26.
    [72] M Garland, P S Heckbert. Surface simplification using quadric error metrics[C]. Proceedingsof the SIGGRAPH’97. Los Angeles: Computer Graphics,1997:209-216.
    [73]计忠平,刘利刚,王国瑾.基于割角的保特征网格简化算法[J].计算机研究与发展,2006,43(12):2144-2151.
    [74]刘晓东,董显法,郭威,等.保持特征的三角形有限元网格简化方法[J].计算力学学报,2010,27(4):682-686.
    [75] M D Zhou, Y W Michael. Engineered model simplification for simulation based structuraldesign[J]. Computer-aided design and applications,2012,9(1):87-94.
    [76]易兵,刘振宇,谭建荣.边界特征保持的网格模型分级二次误差简化算法[J].计算机辅助设计与图形学学报,2012,24(4):427-434.
    [77] K W Ng, Y P Wong. Adaptive model simplification in real-time rendering for visualization[J].Journal of Visualization,2007,10(1):111-121.
    [78] P Castello, M Sbert, M Chover, et al. Viewpoint-driven simplification using mutualinformation[J]. Computers and Graphics,2008,32(4):451-463.
    [79] P Castello, M Sbert, M Chover, et al. Viewpoint-based simplification using f-divergences[J].Information Sciences,2008,178(11):2375-2388.
    [80]卢威,曾定浩,潘金贵.支持外观属性保持的三维网格模型简化[J].软件学报,2009,20(3):713-723.
    [81] H Muhammad. Volume and normal field based simplification of polygonal models[J]. Journalof Information Science and Engineering,2013,29(2):267-279.
    [82] Z Wang, H Y Li, L X Wu, et al. Feature-preserved geometry simplification of triangularmeshes from LiDAR sensor[J]. Sensor Letters,2013,11(5):787-795.
    [83] B Hamann. A data reduction scheme for triangulated surface[J]. Computer Aided GeometricDesign,1994,11(2):197-214.
    [84] T S Gieng, B Hamann, K I Joy. Smooth hierarchical surface triangulations[C]. ProceedingsIEEE Visualization1997.1997:379-386.
    [85] Z G Pan, K Zhou, J Y Shi. A new mesh simplification algorithm based on triangle collapses[J].Journal of Computer Science and Technology,2001,16(1):57-63.
    [86]周元峰,张彩明,贺平.体积平方度量下的特征保持网格简化方法[J].计算机学报,2009,32(2):203-212.
    [87] J Chen, X Shi. Real-time LOD algorithm based on triangle collapse optimization[C]Proceedings of the7th International conference on computational intelligence and security.2011:312-315.
    [88]段黎明,吴志芳,张霞.利用顶点预测方法实现三维网格的保形简化[J].重庆大学学报,2012,35(6):15-20.
    [89] D Joel, C T Sliva, S Jason, et al. Quadrilateral mesh simplification[J]. ACM Transactions onGraphics,2008,27(5):1-9.2
    [90]陈华鸿,罗笑南,凌若天,马建平.基于n边形折叠的网格简化算法[J].计算机研究与发展,2008,45(6):1011-1019.
    [91] G Barequet, M Sharir. Filling gaps in the boundary of a polyhedron[J]. Computer AidedGeometric Design,1995,12(2):201-229.
    [92] P Liepa. Filling holes in meshes[C]. Processings of the2003Eurographics/ACM SIGGRAPHSymposium on Geometry Processing,2003:200-205.
    [93] M Attene. A lightweight approach to repairing digitized polygon meshes[J]. The VisualComputer,2010,26(11):1393-1406.
    [94] X J Wu, Y W Michael, B Han. An automatic hole-filling algorithm for polygon meshes[J].Computer-Aided Design&Application,2008,5(6):889-899.
    [95] W Zhao, S M Gao, H W Lin. A robust hole-filling algorithm for triangular mesh[J]. VisualComputer,2007,23(12):987-997.
    [96]王小超,曹俊杰,刘秀平,等.波前法在三角网格孔洞修补中的应用[J].计算机辅助设计与图形学学报,2011,23(6):1048-1054.
    [97] J P Pernot, G Moraru, P Veron. Filling holes in meshes using a mechanical model to simulatethe curvature variation minimization[J]. Computer&Graphics,2006,30(6):892-902.
    [98] M Panchetti, J P Pernot, P Veron. Towards recovery of complex shapes in meshes usingdigital images for reverse engineering applications[J]. Computer-Aided Design,2010,42(8):693-707.
    [99] Y Jun. A piecewise hole filling algorithm in reverse engineering[J]. Computer-Aided Design.2005,37(2):263-270.
    [100] Z Li, D S Meek, D J Walton. Polynomial blending in a mesh hole-filling application[J].Computer-Aided Design,2010,42(4):340-349.
    [101] L C Wang, Y C Hung. Hole filling of triangular mesh segments using systematic greyprediction[J]. Computer-Aided Design,2013,44(12):1182-1189.
    [102] J Davis, S Marschner, M Carr, M Levoy. Filling holes in complex surfaces using volumetricdiffusion[C]. Proceedings of the First International Symposium on3D Data ProcessingVisualization and Transmission,2002:428-438.
    [103] T Ju. Robust repair of polygonal models[J]. Journal ACM Transactions on Graphics,2004,23(3):888-895.
    [104] S Bischoff, L Kobbelt. Structure preserving CAD model repair[J]. Computer Graphica Forum,2005,24(3):527-536.
    [105] S Bischoff, D Pavi, L Kobbelt. Automatic restoration of polygon models[J]. Journal ACMTransactions on Graphics,2005,24(4):1332-1352.
    [106] F Hetroy, S Rey, C Andujar, et al. Mesh repair with user-friendly topology control[J].Computer Aided Design,2011,43(1):101-113.
    [107] T Ju. Fixing geometric errors on polygonal models: a survey[J]. Journal of Computer Scienceand Technology,2009,24(1):19-29.
    [108] H Edelsbrunner, D Guoy. Sink insertion for mesh improvement[J]. International Journal ofFoundations of Computer Science,2002,13(2):223-242.
    [109] W Yue, Q Guo, J Zhang, G Wang.3D triangular mesh optimization in geometry processingfor CAD[C]. Proceedings of the2007ACM Symposium on Solid and Physical Modeling,2007:23-33.
    [110] M K Misztal, J A Baerentzen, F Anton, K Erleben. Tetrahedral mesh improvement usingmulti-face retriangulation[C]. Proceedings of the18th International Meshing Roundtable,2009:539-555.
    [111] C Ollivier-Gooch. A mesh-database-independent edge-and face-swapping tool[J].International Journal for Numerical Methods in Engineering,2007,72(3):1-27.
    [112] S Yamakawa, K Shimada. Removing self intersections of a triangular mesh by edge swapping,edge hammering, and face lifting[C]. Proceedings of the18th International MeshingRoundtable,2009:13-29.
    [113] P Alliez, D Cohen-Steiner, O Devillers, et al. Anisotropic polygonal remeshing[J]. ACMTransaction on Graphics,2003,22(3):485-493.
    [114] S Valette, J M Chassery, R Prost. Generic remeshing of3D triangular meshes withmetric-dependent discrete voronoi diagrams[J]. IEEE Transactions on Visualization andComputer Graphics,2008,14(2):369-381.
    [115] D M Yan, B Levy, Y Liu, et al. Isotropic remeshing with fast and exact computation ofrestricted voronoi diagram[J]. Computer Graphics Forum,2009,28(5):1445-1454.
    [116] S Fuhrmann, J Ackermann, T Kalbe, M Goesele. Direct resampling for isotropic surfaceremeshing[C]. Proceedings of Vision, Modeling and Visualization,2010:9-16.
    [117] R Dyer, H Zhang, T Moler. Delaunay mesh constructon[C]. Proceedings of the FifthEurographics Symposium on Geometry Processing,2007:273-282.
    [118] L Liu, C L Tai, Z Ji, et al. Non-interative approach for global mesh optimization[J].Computer-Aided Design,2007,39(9):772-782.
    [119] T Winkler, K Hormann, C Gotsman. Mesh massage: a versatile mesh optimizationframework[J]. Visual Computer,2008,24(7):775-785.
    [120] S T Zhang, J Z Huang, D N Metaxas. Robust mesh editing using Laplacian coordinates[J].Graphical Models,2011,73(1):10-19.
    [121] A Nealen, T Igarashi, O Sorkine, M Alexa. Laplacian mesh optimization[C]. Proceedings ofthe4th International Conference on Computer Graphics and Interactive Techniques inAustralasia and Southeast Asia,2006:381-389.
    [122] J Wang, Z Yu. Quality mesh smoothing via local surface fitting and optimum projection[J].Graphical Models,2011,73(4):127-139.
    [123] V Vincent, W Christian, D Florent. Combinatorial mesh optimization[J]. Visual Computer,2012,28(5):511-525.
    [124] G Nielson, B Hamann. The Asymptotic Decider: Resolving the Ambiguity in MarchingCube[C]. IEEE Visualization,1991:83-91.
    [125]朱虎,杨忠凤,张伟. STL文件的应用与研究进展[J].机床与液压,2009,37(6):186-189.
    [126]金涛,童水光.逆向工程技术[M].北京:机械工业出版社,2003.
    [127] C. Y. Chen, K. Y. Cheng. A sharpness-dependent filter for recovering sharp features inrepaired3D mesh models[J], IEEE Transactions on Visualization and Computer Graphics,2008,14(1):200-212.
    [128] P Cignon, C Rocchini, R Scopigno. Metro: measuring error on simplified surfaces[J].Computer Graphics Forum,1998,17(2):167-174.
    [129]张丽艳,周儒荣,周来水.三角网格模型孔洞修补算法研究[J].应用科学学报,2002,20(3):221-224.
    [130]陈杰,高诚辉,何炳蔚.三角网格曲面孔洞修补算法[J].计算机集成制造系统,2011,17(8):1821-1826.
    [131]蔡强.限定Voronoi网格剖分的理论及应用研究[M].北京:北京邮电大学出版社,2010.
    [132] J Sarrate, J Palau, A Huerta. Numerical representation of the quality measures of triangles andtrianglar meshes[J]. Communications in numerical methods in engineering,2003,19(7):551-561.
    [133] A Guziec. Locally toleranced surface simplification[J]. IEEE Transactions on Visualizationand Computer Graphics,1999,5(2):168-189.
    [134]吴志芳.三维网格模型重建与优化系统的研究和开发[D].重庆大学,2011.
    [135] M Wardetzky, M Bergou, D Harmon, et al. Discrete quadratic curvature energies[J].Computer Aided Geometric Design,2007,24(8-9):499-518.
    [136] Y Zhang, A B Hamza. Vertex-based diffusion for3-d mesh denoising[J]. IEEE Transactionson Image Processing,2007,16(4):1036-1045.
    [137]张冬梅,刘利刚.保特征的加权最小二乘三角网格光顺算法[J].计算机辅助设计与图形学学报,2010,22(9):1497-1501.
    [138]陈中,段黎明,刘璐.保特征的三角网格均匀化光顺算法[J].计算机集成制造系统,2013,19(3):461-467.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700