左手介质异常电磁特性激发机理与应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,左手介质由于其异常的电磁特性在固体物理学、材料科学、光学和应用电磁学领域内获得愈来愈多的青睐。但不可否认的是,左手介质研究作为一门新兴的前沿科学在很多方面还很不完善,仍然处于一种摸索前进的状态,还有很多的基本理论、实践问题亟待解决。基于这样的原因,作者遵循“以左手介质电磁特性分析结合理论创新为基础,以性能优良的左手介质设计承上启下,以利用左手介质改善现有微波器件性能的应用效果为检验标准”的研究思路撰写了本篇论文,进而实现综合发展左手介质研究的目的。
     首先,本文针对左手介质的异常电磁特性激发机理展开研究。从多个研究角度建立了左手介质本构参数解析模型,并通过多种手段验证了所建立模型的正确性和准确性。本研究所得到的解析模型在保持精度的同时,其推导过程的物理意义更明确,更易于理解。
     其次,本文针对小单元粒子型左手介质展开研究,设计出工作频段在9.2 ~ 11.8 GHz的微小单元左手介质,其长度最低可以达到0.11个工作波长,相比于国际上已报导的最优结果又缩小了41%。研究中,清晰地观察到了该左手介质的双负特性、后向波特性以及负折射特性,从而验证了该小单元左手介质设计的正确性。最后,本文还基于该左手介质的后向波特性,将其成功应用在小型化贴片天线的设计中,首次应用真实的粒子型左手介质而不是理论模型将普通贴片天线的长度从0.5个工作波长降低到了0.17个工作波长,获得了与理论预测完全吻合的近场分布和远场辐射特性。
     第三,本研究提出了一种新颖的基于左手介质与负介电常数介质的谐振结构,实现长度和宽度同时得到缩小的超小型矩形金属谐振腔,并利用该谐振腔设计出两种小型化带通滤波器。通过数值仿真和实验测试证实了该小型化谐振腔和滤波器设计的正确性。
     最后,本文通过对具有平面金属网格的零折射介质进行优化,得到一种具有更好通带特性的零折射介质。而在将其合理地布置在喇叭天线口面内之后,构造出一种基于零折射介质的高增益小型化喇叭天线。研究结果表明该喇叭天线相比同尺寸的普通喇叭天线在1.1GHz带宽上增益普遍提高2 dB,而轴向尺寸只有最优喇叭的56%。
     本文的研究成果综合发展了左手介质的相关理论分析方法、设计方法以及应用领域,在更为深刻地向人们展示左手介质异常电磁特性及其激发机理的同时,设计了性能更为优良的左手介质,并将其应用于改善现有微波器件的性能,加快了左手介质向实用阶段前进的步伐,拓宽了左手介质的应用领域,对左手介质相关研究的发展具有重要的指导意义和实用价值。
In recent years, the left-handed metamaterial (LHM) has attracted more and more attentions in the fields of solid physics, material science, optics and electromagnetism. However, the detail research on the LHM is just at its beginning stage, and it is still incomplete in many research aspects such as the electromagnetics (EM) analysis of the LHM, the design of the high performance LHM and the applications of the LHM to microwave, radio-frequency and optical devices for the improvement of the performance. In this paper, we make a comprehensive research on the LHM in order to develop the different research directions in a complementary way.
     Firstly, the essential principle for the left-handed properties of the LHM is deeply investigated. The analytical models for the constitutive parameters of the LHM consisting of SRR and wires are derived based on the constitutive relations and equivalent transmission line theory. The accuracy of these analytical models is verified through different methods. Compared with previously published results, the theoretical derivation process of our analytical models is simpler and clearer, and the corresponding physical concept is easier to understand.
     Secondly, a particle-type LHM with miniaturized unit cell and broad bandwidth is designed. Its unit cell length is only 0.11 wavelength at the lowest working frequency, and the frequency range, where the LHM is available, is from 9.2 GHz to 11.8 GHz. Compared with other reported LHMs, the unit cell length has been reduced by 41%. The left-handed properties of the designed LHM are demonstrated through detailed discussions of double-negative, backward wave and negative refraction characteristics. Results show that the negative refraction and backward wave phenomena for the LHM are clearly observed in 9.2 ~ 11.8 GHz where the effective permittivity and permeability are simultaneously negative. Moreover, a miniaturized LHM patch antenna dependent on backward wave characteristics of the LHM is proposed, and the length of the patch antenna has been reduced to 0.17 from original conventional 0.5 working wavelength by embedding real particle-type LHM units instead of a theoretical model. Results show that both near field distribution and radiation pattern of the miniaturized patch antenna are in good agreement with the theoretical analysis.
     Thirdly, a novel resonance structure dependent on above designed LHM is presented and used to design and fabricate an improved miniaturized cavity resonator (IMCR), whose length and width are less than half of a conventional cavity resonator. Compared with the reported miniaturized LHM cavity resonator based on Engheta’s miniaturized resonance structure, both the length and the width reduction for the IMCR have been obtained simultaneously, instead of the miniaturization realized only in the length. The numerical simulations and experimental measurements are used to confirm the performance of the IMCR, and results show that both the simulation results and measurement results are in good agreements. Moreover, two types of cavity filters based on the MCR are designed, fabricated and tested, and the performance is verified by the simulation results and measurement results, which coincide very well with each other.
     Finally, a miniaturized rectangular horn antenna with the high gain is designed based on an improved zero refraction metamaterial (ZRM). The results show that the gain is enhanced with over 2 dB in the bandwidth of 1.1 GHz compared with a conventional horn antenna, and the longitudinal length shortens to only 56% of that of the optimized horn antenna for the same antenna performance.
     The analysis, design and application for the LHM are developed in this research. It is summarized as that a LHM with good performance is designed and applied to improve some microwave devices after EM characteristics of the LHM is analyzed. These important research results will be useful for the applications of the LHM to microwave and millimeter wave circuits and devices.
引文
[1] J. B. Pendry. A Chiral Route to Negative Refraction. Science. 2004, 306(5700): 1353~1355
    [2] 赵乾, 赵晓鹏, 康雷, 张富利, 刘亚红, 罗春荣. 一维负磁导率材料中的缺陷效应. 物理学报. 2004, 53(7): 2206~2211
    [3] 张东科, 张冶文, 赫丽, 李宏强, 陈鸿. 利用集总 L-C 元件构造的一维metamaterials 特性的实验研究 . Acta Physica Sinica. 2005, 54(2): 768~772
    [4] 郑晴, 赵晓鹏, 付全红, 赵乾, 康雷, 李明明. 左手材料的反射特性与负折射率行为. 物理学报. 2005, 54(12): 5683~5687
    [5] J. Pacheco Jr, T. M. Grzegorczyk, B. I. Wu, Y. Zhang, J. A. Kong. Power Propagation in Homogeneous Isotropic Frequency-Dispersive Left-Handed Media. Physical Review Letters. 2002, 89(25): 257401:1~4
    [6] C. D. Moss, T. M. Grzegorczyk, Y. Zhang, J. A. Kong. Numerical Studies of Left Handed Metamaterials. Journal of Electromagnetic Waves and Applications. 2002, 16(10): 1445~1446
    [7] V. G. Veselago. The Electrodynamics of Substances with Simultaneously Negative Values of Ε and Μ. Soviet Physics Uspekh1. 1968, 10(4): 509~511
    [8] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz. Composite Medium with Simultaneously Negative Permeability and Permittivity. Physical Review Letters. 2000, 84(18): 4184~4187
    [9] R. A. Shelby, D. R. Smith, S. Schultz. Experimental Verification of Negative Index of Refraction. Science. 2001, 292(6): 77~79
    [10] J. B. Pendry. Negative Refraction Makes a Perfect Lens. Physical Review Letters. 2000, 85(18): 3966~3969
    [11] J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs. Extremely Low Frequency Plasmons in Metallic Mesostructures. Physical Review Letters. 1996, 76(25): 4773~4776
    [12] J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart. Magnetism from Conductors and Enhanced Nonlinear Phenomena. IEEE Transactions on Microwave Theory and Techniques. 1999, 47(11): 2075~2084
    [13] D. R. Smith, S. Schultz, P. Markos, C. M. Soukoulis. Determination of Effective Permittivity and Permeability of Metamaterials from Reflection and Transmission Coefficients. Physical Review B. 2002, 65(19): 195104:1~5
    [14] D. R. Smith, D. Schurig, J. B. Pendry. Negative Refraction of Modulated Electromagnetic Waves. Applied Physics Letters. 2002, 81(15): 2713~2715
    [15] R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, S. Schultz. Microwave Transmission through a Two-Dimensional, Isotropic, Left-Handed Metamaterial. Applied Physics Letters. 2001, 78(4): 489~491
    [16] R. A. Shelby, D. R. Smith, S. Schultz. Experimental Verification of a Negative Index of Refraction. Science. 2001, 292(5514): 77~79
    [17] A. N. Lagar'kovV. N. Kisel. Electromagnetic Properties of the Simple Bodies Consisting of Matter with Negative Permeability and Permittivity. Doklady Akademii Nauk. 2001, 377(1): 40~44
    [18] C. CalozT. Itoh. Application of the Transmission Line Theory of Left-Handed (Lh) Materials to the Realization of a Microstrip "Lh Line". IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), 2002:412~415.
    [19] L. Liu, C. Caloz, C.-C. Chang, T. Itoh. Forward Coupling Phenomena between Artificial Left-Handed Transmission Lines. Journal of Applied Physics. 2002, 92(9): 5560~5565
    [20] L. Liu, C. Caloz, T. Itoh. Dominant Mode (Dm) Leaky Wave Antenna with Backfire-to-Endfire Scanning Capability. Electronics Letters. 2002, 38(23): 1414~1416
    [21] N. Engheta. An Idea for Thin Subwavelength Cavity Resonators Using Metamaterials with Negative Permittivity and Permeability. IEEE Antennas and Wireless Propagation Letters. 2002, 1: 10~13
    [22] Y. Li, L. Ran, H. Chen, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, J. A. Kong. Experimental Realization of a One-Dimensional LHM-RHM Resonator. IEEE Transactions on Microwave Theory and Techniques. 2005, 53(4 II): 1522~1525
    [23] M. A. AntoniadesG. V. Eleftheriades. Compact Linear Lead/Lag Metamaterial Phase Shifters for Broadband Applications. IEEE Antennas and Wireless Propagation Letters. 2003, 2: 103~106
    [24] J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, I. Gil, T. Lopetegi, M. A. G. Laso, M. Sorolla, R. Marques. Spurious Passband Suppression in Microstrip Coupled Line Band Pass Filters by Means of Split Ring Resonators. IEEE Microwave and Wireless Components Letters. 2004, 14(9): 416~418
    [25] M. A. AntoniadesG. V. Eleftheriades. A Broadband Wilkinson Balun Using Microstrip Metamaterial Lines. IEEE Antennas and Wireless Propagation Letters. 2005, 4(1): 209~212
    [26] K. Li, S. J. McLean, R. B. Greegor, C. G. Parazzoli, M. H. Tanielian. Free-Space Focused-Beam Characterization of Left-Handed Materials. Applied Physics Letters. 2003, 82(15): 2535~2537
    [27] A. A. Houck, J. B. Brock, I. L. Chuang. Experimental Observations of a Left-Handed Material That Obeys Snell's Law. Physical Review Letters. 2003, 90(13): 137401:1~4
    [28] M. Sanz, A. C. Papageorgopoulos, W. F. Egelhoff Jr, M. Nieto-Vesperinas,N. Garcia. Transmission Measurements in Wedge-Shaped Absorbing Samples: An Experiment for Observing Negative Refraction. Physical Review E. 2003, 67(62): 067601:1~4
    [29] J. A. Kong, B.-I. Wu, Y. Zhang. Lateral Displacement of a Gaussian Beam Reflected from a Grounded Slab with Negative Permittivity and Negative Permeability. Applied Physics Letters. 2002, 80(12): 2084~2086
    [30] L. Ran, J. Huangfu, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk, J. A. Kong. Beam Shifting Experiment for the Characterization of Left-Handed Properties. Journal of Applied Physics. 2004, 95(5): 2238~2241
    [31] A. GrbicG. V. Eleftheriades. Experimental Verification of Backward-Wave Radiation from a Negative Refractive Index Metamaterial. Journal of Applied Physics. 2002, 92(10): 5930~5935
    [32] A. GrbicG. V. Eleftheriades. Overcoming the Diffraction Limit with a Planar Left-Handed Transmission-Line Lens. Physical Review Letters. 2004, 92(11): 117403:1~4
    [33] A. GrbicG. V. Eleftheriades. Negative Refraction, Growing Evanescent Waves, and Sub-Diffraction Imaging in Loaded Transmission-Line Metamaterials. IEEE Transactions on Microwave Theory and Techniques. 2003, 51(12): 2297~2305
    [34] T. Koschny, M. Kafesaki, E. N. Economou, C. M. Soukoulis. Effective Medium Theory of Left-Handed Materials. Physical Review Letters. 2004, 93(10): 107402:1~4
    [35] L. Chen, S. He, L. Shen. Finite-Size Effects of a Left-Handed Material Slab on the Image Quality. Physical Review Letters. 2004, 92(10): 107404:1~4
    [36] N. GarciaM. Nieto-Vesperinas. Left-Handed Materials Do Not Make a Perfect Lens. Physical Review Letters. 2002, 88(20): 207403:1~4
    [37] P. M. Valanju, R. M. Walser, A. P. Valanju. Wave Refraction in Negative-Index Media: Always Positive and Very Inhomogeneous. Physical Review Letters. 2002, 88(18): 187401:1~4
    [38] S. Foteinopoulou, E. N. Economou, C. M. Soukoulis. Refraction in Media with a Negative Refractive Index. Physical Review Letters. 2003, 90(10): 107402:1~4
    [39] J. B. Pendry. Focus Issue: Negative Refraction and Metamaterials. Optics Express. 2003, 11(7): 639~639
    [40] T. Weiland, R. Schuhmann, R. B. Greegor, C. G. Parazzoli, A. M. Vetter, D. R. Smith, D. C. Vier, S. Schultz. Ab Initio Numerical Simulation of Left-Handed Metamaterials: Comparison of Calculations and Experiments. Journal of Applied Physics. 2001, 90(10): 5419~5424
    [41] J. B. Pendry, M. Nieto-Vesperinas, N. Garcia. Comment On "Left-Handed Materials Do Not Make a Perfect Lens" [2] (Multiple Letters). Physical Review Letters. 2003, 91(9): 99701:1~1
    [42] J. B. Pendry, D. R. Smith, P. M. Valanju, R. M. Walser, A. P. Valanju.Comment On "Wave Refraction in Negative-Index Media: Always Positive and Very Inhomogeneous" (Multiple Letters). Physical Review Letters. 2003, 90(2): 029703:1~1
    [43] D. R. SmithN. Kroll. Negative Refractive Index in Left-Handed Materials. Physical Review Letters. 2000, 85(14): 2933~2936
    [44] E. Shamonina, V. A. Kalinin, K. H. Ringhofer, L. Solymar. Imaging, Compression and Poynting Vector Streamlines for Negative Permittivity Materials. Electronics Letters. 2001, 37(20): 1243~1244
    [45] J. Paul, C. Christopoulos, D. W. P. Thomas. Time-Domain Modelling of Negative Refractive Index Material. Electronics Letters. 2001, 37(14): 912~913
    [46] C. Luo, S. G. Johnson, J. D. Joannopoulos, J. B. Pendry. Negative Refraction without Negative Index in Metallic Photonic Crystals. Optics Express. 2003, 11(7): 746~754
    [47] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, C. M. Soukoulis. Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens. Physical Review Letters. 2003, 91(20): 207401:1~4
    [48] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C. M. Soukoulis. Negative Refraction by Photonic Crystals. Nature. 2003, 423(6940): 604~605
    [49] D. ArtigasL. Torner. Dyakonov Surface Waves in Photonic Metamaterials. Physical Review Letters. 2005, 94(1): 013901:1~4
    [50] W. J. Padilla, T. J. Yen, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, X. Zhang, D. N. Basov. Infrared Spectroscopy and Ellipsometry of Magnetic Metamaterials. San Jose, CA, United States, 2005:460~469.
    [51] F. J. Garcia-Vidal, L. Martin-Moreno, J. B. Pendry. Surfaces with Holes in Them: New Plasmonic Metamaterials. Journal of Optics A: Pure and Applied Optics. 2005, 7(2): 97~101
    [52] J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart. Low Frequency Plasmons in Thin-Wire Structures. Journal of Physics Condensed Matter. 1998, 10(22): 4785~4809
    [53] M. C. K. Wiltshire, J. V. Hajnal, J. B. Pendry, D. J. Edwards, C. J. Stevens. Metamaterial Endoscope for Magnetic Field Transfer: Near Field Imaging with Magnetic Wires. Optics Express. 2003, 11(7): 709~715
    [54] J. B. Pendry, D. Schurig, D. R. Smith. Controlling Electromagnetic Fields. Science. 2006, 312(5781): 1780~1782
    [55] F. J. Garcia-VidalJ. B. Pendry. Collective Theory for Surface Enhanced Raman Scattering. Physical Review Letters. 1996, 77(6): 1163~1166
    [56] J. B. Pendry. Calculating Photonic Band Structure. Journal of Physics Condensed Matter. 1996, 8(9): 1085~1108
    [57] A. J. WardJ. B. Pendry. Refraction and Geometry in Maxwell's Equations. Journal of Modern Optics. 1996, 43(4): 773~793
    [58] D. R. Smith, D. C. Vier, N. Kroll, S. Schultz. Direct Calculation ofPermeability and Permittivity for a Left-Handed Metamaterial. Applied Physics Letters. 2000, 77(14): 2246~2248
    [59] H.-Y. Yao, W. Xu, L.-W. Li, Q. Wu, T.-S. Yeo. Propagation Property Analysis of Metamaterial Constructed by Conductive SRRs and Wires Using the Mgs-Based Algorithm. IEEE Transactions on Microwave Theory and Techniques. 2005, 53(4 II): 1469~1475
    [60] A. K. Iyer, P. C. Kremer, G. V. Eleftheriades. Experimental and Theoretical Verification of Focusing in a Large, Periodically Loaded Transmission Line Negative Refractive Index Metamaterial. Optics Express. 2003, 11(7): 696~708
    [61] A. GrbicG. V. Eleftheriades. An Isotropic Three-Dimensional Negative-Refractive-Index Transmission-Line Metamaterial. Journal of Applied Physics. 2005, 98(4): 043106:1~5
    [62] C.-Y. ChengR. W. Ziolkowski. Tailoring Double-Negative Metamaterial Responses to Achieve Anomalous Propagation Effects Along Microstrip Transmission Lines. IEEE Transactions on Microwave Theory and Techniques. 2003, 51(12): 2306~2314
    [63] R. W. ZiolkowskiA. D. Kipple. Causality and Double-Negative Metamaterials. Physical Review E. 2003, 68(2 2): 026615:1~9
    [64] A. N. Lagarkov, V. N. Semenenko, V. N. Kisel, V. A. Chistyaev. Development and Simulation of Microwave Artificial Magnetic Composites Utilizing Nonmagnetic Inclusions. Journal of Magnetism and Magnetic Materials. Journal of Magnetism and Magnetic Materials. 2003, 258: 161~166
    [65] Y.-J. Hsu, Y.-C. Huang, J.-S. Lih, J.-L. Chern. Electromagnetic Resonance in Deformed Split Ring Resonators of Left-Handed Meta-Materials. Journal of Applied Physics. 2004, 96(4): 646~648
    [66] A. Alu, A. Salandrino, N. Engheta. Negative Effective Permeability and Left-Handed Materials at Optical Frequencies. Optics Express. 2006, 14(4): 1557~1567
    [67] J. L. Garcia-PomarM. Nieto-Vesperinas. Transmission Study of Prisms and Slabs of Lossy Negative Index Media. Optics Express. 2004, 12(10): 2081~2095
    [68] J. Bonache, I. Gil, J. Garcia-Garcia, F. Martin. Novel Microstrip Bandpass Filters Based on Complementary Split-Ring Resonators. IEEE Transactions on Microwave Theory and Techniques. 2006, 54(1): 265~271
    [69] 许静平, 王立刚, 羊亚平. 利用含负折射率材料的光子晶体实现角度滤波器. 物理学报. 2006, 55(6): 2765~2770
    [70] 王 素 玲 , 张 冶 文 , 赫 丽 , 李 宏 强 , 陈 鸿 . 可 调 谐 一 维 特 异 材 料(Metamaterial)的微波传输性质. 物理学报. 2006, 55(1): 226~229
    [71] 庄飞沈建其. 双轴各向异性负折射率材料光纤中光子波函数几何相位研究. 物理学报. 2005, 54(2): 955~960
    [72] 沈建其庄飞. 双轴螺旋向性负材料中极化光波的左-右旋偏振耦合. 物理学报. 2004, 53(6): 2000~2004
    [73] 罗春荣, 康雷, 赵乾, 付全红, 宋娟, 赵晓鹏. Effect of Nonuniform-Defect Split Ring Resonators on the Left-Handed Metamaterials. Acta Physica Sinica. 2005, 54(4): 1607~1612
    [74] L. Wu, S. He, L. Chen. On Unusual Narrow Transmission Bands for a Multi-Layered Periodic Structure Containing Left-Handed Materials. Optics Express. 2003, 11(11): 1283~1290
    [75] C. R. Simovski, P. A. Belov, S. He. Backward Wave Region and Negative Material Parameters of a Structure Formed by Lattices of Wires and Split-Ring Resonators. IEEE Transactions on Antennas and Propagation. 2003, 51(10 I): 2582~2591
    [76] S. Xiao, M. Qiu, Z. Ruan, S. He. Influence of the Surface Termination to the Point Imaging by a Photonic Crystal Slab with Negative Refraction. Applied Physics Letters. 2004, 85(19): 4269~4271
    [77] Q. ChengT. J. Cui. Lateral Shifts of Optical Beams on the Interface of Anisotropic Metamaterial. Journal of Applied Physics. 2006, 99(6): 066114:1~3
    [78] Q. ChengT. J. Cui. Infinite Guided Modes in a Planar Waveguide with a Biaxially Anisotropic Metamaterial. Journal of the Optical Society of America A: Optics and Image Science, and Vision. 2006, 23(8): 1989~1993
    [79] Q. Cheng, T. J. Cui, W. B. Lu. A Compact Structure for Energy Localization Using a Thin Grounded Left-Handed Medium Slab. Optics Express. 2005, 13(3): 770~775
    [80] W. B. Lu, T. J. Cui, Z. G. Qian, X. X. Yin, W. Hong. Accurate Analysis of Large-Scale Periodic Structures Using an Efficient Sub-Entire-Domain Basis Function Method. IEEE Transactions on Antennas and Propagation. 2004, 52(11): 3078~3085
    [81] X. Teng, J. Zhao, T. Jiang, Y. Feng. Negative Refraction and Partial Focusing in an Anisotropic Metamaterial Realized by a Loaded Transmission Line Network. Journal of Physics D: Applied Physics. 2006, 39(1): 213~219
    [82] J. Sun, W. Sun, T. Jiang, Y. Feng. Directive Electromagnetic Radiation of a Line Source Scattered by a Conducting Cylinder Coated with Left-Handed Metamaterial. Microwave and Optical Technology Letters. 2005, 47(3): 274~279
    [83] Y. Feng, J. Wu, J.-P. Song. Effect of Wires in Negative Refractive Index Material. Acta Physica Sinica. 2006, 55(6): 2794~2798
    [84] T. jiang, J. Zhao, Y. Feng. Planar Sub-Wavelength Cavity Resonator Containing a Bilayer of Anisotropic Metamaterials. Journal of Physics D:Applied Physics. 2007, 40: 1821~1826
    [85] D. C. O'Shea. Metamaterials and Photonic Crystals in Warsaw. Optical Engineering. 2005, 44(11): 110101:1~3
    [86] H. Li, J. Hao, L. Zhou, Z. Wei, L. Gong, H. Chen, C. T. Chan. All-Dimensional Subwavelength Cavities Made with Metamaterials. Applied Physics Letters. 2006, 89(10): 104101:1~3
    [87] L. ZhouC. T. Chan. High-Impedance Reflectivity and Surface-Wave Band Gaps in Metamaterials. Applied Physics Letters. 2004, 84(9): 1444~1446
    [88] D. Zhang, F. Liu, Y. Zhang, L. He, H. Li, H. Chen. Experimental Investigation of a Power Divider Based on Microstrip and Metamaterials with L-C Lumped-Elements. Microwave Journal. 2005, 48(11): 114~120
    [89] Q. Zhao, X.-P. Zhao, L. Kang, F.-L. Zhang, Y.-H. Liu. Defect Effect in the One-Dimensional Negative Permeability Material. Acta Physica Sinica. 2004, 53(7): 2206~2211
    [90] C.-R. Luo, L. Kang, Q. Zhao, Q.-H. Fu, J. Song, X.-P. Zhao. Effect of Nonuniform-Defect Split Ring Resonators on the Left-Handed Metamaterials. Acta Physica Sinica. 2005, 54(4): 1607~1612
    [91] Z. M. Thomas, T. M. Grzcgorczyk, B.-I. Wu, X. Chen, J. A. Kong. Design and Measurement of a Four-Port Device Using Metamaterials. Optics Express. 2005, 13(12): 4737~4744
    [92] H. Chen, L. Ran, J. Huangfu, T. M. Grzegorczyk, J. A. Kong. Equivalent Circuit Model for Left-Handed Metamaterials. Journal of Applied Physics. 2006, 100(2): 024915:1~3
    [93] H. Chen, B.-I. Wu, L. Ran, T. M. Grzegorczyk, J. A. Kong. Controllable Left-Handed Metamaterial and Its Application to a Steerable Antenna. Applied Physics Letters. 2006, 89(5): 053509:1~3
    [94] H. Chen, L. Ran, D. Wang, J. Huangfu, Q. Jiang, J. A. Kong. Metamaterial with Randomized Patterns for Negative Refraction of Electromagnetic Waves. Applied Physics Letters. 2006, 88(3): 031908:1~3
    [95] 隋强, 李廉林, 李芳. 负介电常数和负磁导率微波媒质的实验. 中国科学(G 辑). 2003, 33(5): 416~427
    [96] F. Huang, J. Lu, N. Jiang, X. Zhang, W. Wu, Y. Wang. Frequency-Independent Asymmetric Double-Pi Equivalent Circuit for on-Chip Spiral Inductors: Physics-Based Modeling and Parameter Extraction IEEE Journal of Solid-State Circuits. 2006, 41(10): 2272~2283
    [97] W.-Y. Yin, S.-J. Pan, L.-w. Li. Double-Level Spiral Inductors with Multiple-Via Interconnects on Gaas Substrates. IEEE Transaction On Magnetics. 2004, 40(5): 1756~1758
    [98] J. HongB. Karyamapudi. A General Circuit Model for Defected Ground Structure's in Planar Transmission Lines IEEE Microwave and Wireless Components Letters. 2005, 15(10): 706~708
    [99] J. Huangfu, L. Ran, H. Chen, X.-M. Zhang, K. Chen, T. M. Grzegorczyk, J. A. Kong. Experimental Confirmation of Negative Refractive Index of a Metamaterial Composed of Omega-Like Metallic Patterns. Applied Physics Letters. 2004, 84(9): 1537~1539
    [100] H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, J. A. Kong. Negative Refraction of a Combined Double S-Shaped Metamaterial. Applied Physics Letters. 2005, 86(15): 151909:1~3
    [101] H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, J. A. Kong. Left-Handed Materials Composed of Only S-Shaped Resonators. Physical Review E. 2004, 70(5 2): 057605:1~3
    [102] R. W. Ziolkowski. Design, Fabrication, and Testing of Double Negative Metamaterials. IEEE Transactions on Antennas and Propagation. 2003, 51(7): 1516~1529
    [103] D. R. Smith, P. Rye, D. C. Vier, A. F. Starr, J. J. Mock, T. Perram. Design and Measurement of Anisotropic Metamaterials That Exhibit Negative Refraction. IEICE Transactions on Electronics. 2004, E87-C(3): 359~370
    [104] F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin, M. Sorolla. Babinet Principle Applied to the Design of Metasurfaces and Metamaterials. Physical Review Letters. 2004, 93(19): 197401:1~4
    [105] A. Ourir, A. De Lustrac, J. M. Lourtioz. Optimization of Metamaterial Based Subwavelength Cavities for Ultracompact Directive Antennas. Microwave and Optical Technology Letters. 2006, 48(12): 2573~2577
    [106] A. Erentok, P. L. Luljak, R. W. Ziolkowski. Characterization of a Volumetric Metamaterial Realization of an Artificial Magnetic Conductor for Antenna Applications. IEEE Transactions on Antennas and Propagation. 2005, 53(1 I): 160~172
    [107] D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, M. J. Wilhelm. The Design Synthesis of Multiband Artificial Magnetic Conductors Using High Impedance Frequency Selective Surfaces. IEEE Transactions on Antennas and Propagation. 2005, 53(1 I): 8~17
    [108] A. Monorchio, G. Manara, L. Lanuzza. Synthesis of Artificial Magnetic Conductors by Using Multilayered Frequency Selective Surfaces. IEEE Antennas and Wireless Propagation Letters. 2002, 1: 196~199
    [109] H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, J. A. Kong. Negative Refraction of a Combined Double S-Shaped Metamaterial. Applied Physics Letters. 2005, 86(15): 1~3
    [110] S. A. TretyakovM. E. Ermutlu. Modeling of Patch Antennas Partially Loaded with Dispersive Backward-Wave Materials. IEEE Antennas and Wireless Propagation Letters. 2005, 4: 266~269
    [111] S. Hrabar, J. Bartolic, Z. Sipus. Waveguide Miniaturization Using Uniaxial Negative Permeability Metamaterial. IEEE Transactions on Antennas and Propagation. 2005, 53(1 I): 110~119
    [112] T. Jiang, Y. Chen, Y.-J. Feng. Subwavelength Rectangular Cavity Partially Fillled with Left-Handed Metamaterial. Chinese Physics. 2006, 15(06): 1009~1936
    [113] R. W. Ziolkowski. Ultrathin, Metamaterial-Based Laser Cavities. Journal of the Optical Society of America B: Optical Physics. 2006, 23(3): 451~460
    [114] R. Marques, J. Martel, F. Mesa, F. Medina. Left-Handed-Media Simulation and Transmission of Em Waves in Subwavelength Split-Ring-Resonator-Loaded Metallic Waveguides. Physical Review Letters. 2002, 89(18): 183901:1~4
    [115] F.-Y. Meng, Q. Wu, B.-S. Jin, H.-L. Wang, J. Wu. Comment On "Waveguide Miniaturization Using Uniaxial Negative Permeability Metamaterial". IEEE Transactions on Antennas and Propagation 2007, 55(3): 1016~1017
    [116] S. Hrabar, J. Bartolic, Z. Sipus. Reply To "Comments on Waveguide Miniaturization Using Uniaxial Negative Permeability Metamaterial". IEEE Transactions on Antennas and Propagation. 2007, 55(3): 1017~1018
    [117] S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, P. Vincent. A Metamaterial for Directive Emission. Physical Review Letters. 2002, 89(21): 213902:1~4
    [118] B.-I. Wu, W. Wang, J. Pacheco, X. Chen, J. Lu, T. M. Grzegorczyk, J. A. Kong, P. Kao, P. A. Theophelakes, M. J. Hogan. Anisotropic Metamaterials as Antenna Substrate to Enhance Directivity. Microwave and Optical Technology Letters. 2006, 48(4): 680~683
    [119] P. Baccarelli, P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, S. Paulotto. Effects of Leaky-Wave Propagation in Metamaterial Grounded Slabs Excited by a Dipole Source. IEEE Transactions on Microwave Theory and Techniques. 2005, 53(1): 32~43
    [120] G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, D. R. Wilton. Analysis of Directive Radiation from a Line Source in a Metamaterial Slab with Low Permittivity. IEEE Transactions on Antennas and Propagation. 2006, 54(3): 1017~1030
    [121] J. Hu, C.-S. Yan, Q.-C. Lin. New Patch Antenna with Metamaterial Cover. Journal of Zhejiang University: Science. 2006, 7(1): 89~94
    [122] S. P. SinghN. Sinha. Metallic Delay Lens and Radiation Characteristics of X-Band Horn-Lens Combination. Iete Technical Review. 1999, 16(1): 53~58
    [123] W. E. Kock. Metal Lens Antennas. Proc.IRE. Proceeding of the IRE. 1946, 34: 828~836

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700