准平面宽带圆极化微带天线研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微带天线的宽带圆极化技术是本文的研究内容。随着现代无线通信的发展和人类对通信质量要求的不断提高,为了适应地面及卫星通信中各种通信方式,对天线模块的要求也变得日益严苛。微带天线以其体积小、重量轻,易和载体共形,便于集成应用等优点,在无线通信领域中得到了广泛的应用。微带天线容易实现圆极化,但带宽较窄,为了扩展其在无线通信、卫星通信领域中的应用,开展圆极化微带天线的宽带实现技术研究具有相当的实际意义和价值。
     本文针对微带天线的宽带圆极化进行了一些新的研究和设计,研究内容集中于天线设计的基本原理、新型天线结构的提出和设计、新型天线结构的LTCC(Low Temperature Cofired Ceramic低温共烧陶瓷)设计三个方面,给出了具体的设计过程和实验结果。论文分为以下几个部分:
     首先,综述了微带天线圆极化技术、展宽微带天线频带的技术,介绍了宽带圆极化微带天线的实现方法和已有进展,并详细介绍了轴向模螺旋天线的工作原理。
     其次,基于螺旋天线原理,提出了一种新型的圆极化微带螺旋天线。该天线使用多层微带结构来模拟螺旋天线结构,借用螺旋天线的理论和设计方法,给出了该天线的设计过程,并实际制作了天线,对比了天线的仿真结果和实测结果,两者吻合的很好。仿真和实测结果表明,该天线的阻抗带宽、轴比带宽和方向图带宽都达到了30%以上,具有优良的宽带圆极化特性,证明了设计的有效性。最后,对该天线进行了参数分析,并针对该天线阻抗特性给出了一种枝节调谐改进阻抗匹配的设计。
     最后,介绍了现有的LTCC技术及其在天线设计上的应用,在微带螺旋天线结构的基础上,利用LTCC技术优点,使用LTCC基板,采用1/3分段圆弧设计了螺旋天线,天线性能优良,在集成应用中具有突出优点。
Researches on broadband circularly polarized microstrip antenna have been done in this dissertation. With the rapid development of modern wireless communication and the higher requirements of communication quality, antenna module is becoming the critical component in communication systems in order to adapt to variety of applications in ground and satellite communication. Microstrip antenna has been widely used in wireless communication system for its advantages that are compact size, light weight, conformability to mounting hosts and easy integration. It is easy to realize circularly polarized, but its narrow bandwidth property limits its application in wireless communication,and studies on broadening circularly polarized microstrip antenna’s bandwidth have practical significance and value.
     In this dissertation, three aspects, including the basic design theories of helical antennas, the novel microstrip heliacal antenna structures, and the design of heliacal antennas using LTCC technology are research focuses. The major contents are listed as follows:
     Firstly, summaries of techniques to achieve circularly polarized and broaden bandwidth of microstrip antenna have been done. Method and some new designs of broadband circularly polarized microstrip antenna are introduced and the operating principle of helical antenna working in axial mode is described in detail.
     Secondly, a novel microstrip helical antenna with broad circularly polarized bandwidth is proposed based on the traditional helical antenna. The helix is realized by connecting stacked multilayer microstrip circular arcs with vertical via holes. Details of the antenna design method and parameter analysis are described. A comparison between simulated and measured results is also presented and discussed. Measure results show that good radiation performance can be achieved. Finally, an improved antenna design to reduce the return loss with a tuning stub is presented.
     At last, LTCC technique and its application in antenna design are introduced. A new helical antenna design with one third circular arc component is described based on the characteristic of LTCC technique that is easy to fabricate multilayer structure.
     Simulation results show that good radiation performance can also be obtained and this type of antenna has outstanding advantage in integration application.
引文
[1] R. Garg, P. Bhartia, I. Bahl et al., Microstrip Antenna Design Handbook, Boston: Artech House, 2001.
    [2]林昌禄,宋锡明,圆极化天线:人民邮电出版社, 1986.
    [3] S.-H. David, and I. D. Robertson,“A Survey of Broadband Microstrip Patch Antennas,”Microwave Journal, vol. September, pp. 60-84, 1996.
    [4]钟顺时,微带天线理论与应用,西安:西安电子科技大学出版社, 1991.
    [5] P.S.HALL, "Review of Techniques for Dual and Circularly Polarised Microstrip Antennas," Microstrip antennas: The analysis and design of microstrip antennas and arrays, D. M. Pozar and D. H. Schaubert, eds., pp. 107-116, New York: Institute of Electrical and Electronics Engineers, 1995.
    [6] L. C. Godara主编,左群生,金玲等译,无线通信天线手册:国防工业出版社, 2004.
    [7] K.-L. Wong, "Compact CP microstrip antenna," Compact and Broadband Microatrip Antennas, K. Chang, ed.: John Wiley & Sons, Inc, 2002.
    [8] J. HUANG,“A technique for an array to generate circular polarization with linearly polarized elements,”IEEE Transations on Antennas and Propagation, vol. 34, no. 9, pp. 1113-1124, 1986.
    [9] P. S. Hall,“Microstrip linear array with polarisation control,”Microwaves, Optics and Antennas, IEE Proceedings H, vol. 130, no. 3, pp. 215-224, 1983.
    [10] J. Henriksson, K. Markus, and M. Tiuri,“A Circularly Polarized Traveling-Wave Chain Antenna,”in European Microwave Conference, 9th, 1979, pp. 174-178.
    [11] S. Nishimura, Y. Sugio, and T. Makimoto,“Crank-type circularly polarized microstrip line antenna,”in Antennas and Propagation Society International Symposium, 1983, pp. 162-165.
    [12] D. M. Pozar, "A Review of Bandwidth Enhancement Technique for Microstrip Antennas," Microstrip antennas: the analysis and design of microstrip antennas and arrays D. M. Pozar and D. H. Schaubert, eds., New York Institute of Electrical and Electronics Engineers, 1995.
    [13] H. F. Pues, and A. R. V. d. Capelle,“An impedence matching technique for increasing the bandwidth of microstrip antennas,”IEEE Transations on Antennas and Propagation, vol. AP-37, pp. 1345-1354, 1989.
    [14] K. S. Fong, H. F. Pues, and M. J. Withers,“Wideband multilayer coaxial-fed microstrip antenna element,”Electronics Letters, vol. 21, no. 11, pp. 497-499, 1985.
    [15] G. A. E. Vandenbosch, and A. R. Van de Capelle,“Study of the capacitively fed microstripantenna element,”Antennas and Propagation, IEEE Transactions on, vol. 42, no. 12, pp. 1648-1652, 1994.
    [16] K.-L. W. Wen-Hsiu Hsu,“A dual capacitively fed broadband patch antenna with reduced cross-polarization radiation,”Microwave and Optical Technology Letters, vol. 26, no. 3, pp. 169-171, 2000.
    [17] G.-Y. L. Wen-Hsiu Hsu, Kin-Lu Wong,,“A wideband capacitively fed circular-E patch antenna”Microwave and Optical Technology Letters, vol. 27, no. 2, pp. 134-135, 2000.
    [18] P. S. Hall,“Probe compensation in thick microstrip patches,”Electronics Letters, vol. 23, no. 11, pp. 606-607, 1987.
    [19] M. C. Liang, W. C. Lai, Y. M. Yen et al.,“A capacitor-loaded broadband circular patch antenna,”in Antennas and Propagation Society International Symposium, IEEE, 2001, pp. 302-304.
    [20] C.-L. T. Jui-Han Lu, Kin-Lu Wong,,“Slot-coupled compact broadband circular microstrip antenna with chip-resistor and chip-capacitor loadings,”Microwave and Optical Technology Letters, vol. 18, no. 5, pp. 345-349, 1998.
    [21] D. M. Pozar,“Microstrip antenna aperture-coupled to a microstripline,”Electronics Letters, vol. 21, no. 2, pp. 49-50, 1985.
    [22] N. Herscovici,“A wide-band single-layer patch antenna,”Ieee Transactions on Advanced Packaging, vol. 46, no. 4, pp. 471-474, Apr, 1998.
    [23] N. Herscovici,“New considerations in the design of microstrip antennas,”Antennas and Propagation, IEEE Transactions on, vol. 46, no. 6, pp. 807-812, 1998.
    [24] K. F. Lee, K. M. Luk, K. F. Tong et al.,“Experimental and Simulation Studies of the Coaxially Fed U-Slot rectangular patch antenna,”Microwaves, Antennas and Propagation, IEE Proceedings vol. 144, no. 5, pp. 354-358, 1997.
    [25] R. Bhalla, and L. Shafai,“Resonance behavior of single U-slot and dual U-slot antenna,”in Antennas and Propagation Society International Symposium, IEEE, Boston, MA, USA, 2001, pp. 700-703.
    [26] A. A. Deshmukh, and G. Kumar,“Compact E and S-shaped microstrip antennas,”in Antennas and Propagation Society International Symposium, IEEE, 2005, pp. 389-392.
    [27] A. A. Deshmukh, and G. Kumar,“Compact broadband S-shaped microstrip antennas,”Electronics Letters, vol. 42, no. 5, pp. 260-261, 2006.
    [28] A. Bzeih, S. A. Chahine, K. Y. Kabalan et al.,“Empirical Formulation and Design of a Broadband Enhanced E-Patch Antenna,”in Radio Science Conference, NRSC, 2007, pp. 1-9.
    [29] Y. Xiao, D. Su, Y. Wang et al.,“Planar Compact Multiresonator Broadband Microstrip Antenna with Slots loading,”in 7th International Symposium on Antennas, Propagation & EM Theory., 2006, pp. 1-3.
    [30] H.V.Prabhakar, U. K. Kummuri, R. M. Yadahalli et al.,“Effect of various meandering slots in rectangular microstrip antenna ground plane for compact broadband operation,”Electronics Letters, vol. 43, no. 16, pp. 848-850, August, 2007.
    [31] K.-L. Wong, and Y.-F. Lin,“Microstrip-line-fed compact broadband circular microstripantenna with chip-resistor loading,”Microwave and Optical Technology Letters, vol. 17, no. 1, pp. 53-55, 1998.
    [32] J.-S. Row, and S.-W. Wu,“Circularly-Polarized Wide Slot Antenna Loaded With a Parasitic Patch,”IEEE Transactions on Antennas and Propagation, vol. 56, no. 9, pp. 2826-2832, 2008.
    [33] K. L. Chung, and A. S. Mohan,“A Systematic Design Method to Obtain Broadband Characteristics for Singly Fed Electromagnetically Coupled Patch Antennas for Circular Polarization,”IEEE Transactions on Antennas and Propagation, vol. 12, pp. 3239-3247, 2003.
    [34] Nasimuddin, Z. N. Chen, and K. P. Esselle,“Wideband Circularly Polarized Microstrip Antenna Array Using a New Single Feed Network,”Microwave and Optical Technology Letters, vol. 50, no. 7, pp. 1784-1789, 2008.
    [35] X. Q. Nasimuddin Z. N. Chen,“Aperture-coupled C-shape slot cut square microstrip antenna for circular polarization,”Microwave and Optical Technology Letters, vol. 50, no. 12, pp. 3175-3178, 2008.
    [36] T. W. Chiou, and K. L. Wong,“Single-layer wideband probe-fed circularly polarized microstrip antenna,”Microwave and Optical Technology Letters, vol. 25, pp. 74-76, 2000.
    [37] K. L. Wong, and T. W. Chiou,“A broadband single-patch circularly polarized microstrip antenna with dual capacitively-coupled feeds,”IEEE Transactions on Antennas and Propagation, vol. 49, pp. 41-44, 2000.
    [38] T. B. Chen, Y. C. Jiao, and F. S. Zhang,“The design of Broad Band Circularly Polarized Microstrip Antenna,”in APMC, 2005.
    [39] W. Yazhou, S. Donglin, and X. Yongxuan,“Broadband circularly polarized square microstrip antenna,”in 7th International Symposium on Antennas, Propagation & EM Theory., 2006, pp. 1-4.
    [40] K.-L. Wong, "Broadband and dual-band circularly polarized microstrip antenna," Compact and Broadband Microatrip Antennas, K. Chang, ed.: John Wiley & Sons, Inc, 2002.
    [41] k. M. Lum, C. Laohapensaeng, and C. Free,“A novel traveling-wave feed technique for circularly polarized planar antennas,”IEEE Microwave and Wireless Components Letters, vol.15, no. 3, pp. 180-182, 2005.
    [42] J.-W. Wu, and J.-H. Lu,“2×2 Circularly polarized Patch Antenna Arrays with Broadband Operation,”Microwave and Optical Technology Letters, vol. 39, no. 5, pp. 360-363, 2003.
    [43] L. Jian-Gang, G. Xiang-Jun, and Z. Hai-Zhou,“The Design of Broadband Circularly Polarized Planar Microstrip Antenna Array,”Microwave and Optical Technology Letters, vol. 49, no. 12, pp. 2936-2939, 2007.
    [44] R. P. Xu, X. D. Huang, and C. H. Cheng,“Broadband Circularly Polarized Wide-slot Antenna,”Microwave and Optical Technology Letters, vol. 49, no. 5, pp. 1005-1007, 2007.
    [45] N. M. Natashah, M. I. Muammar, P. J. Soh et al.,“Design of a microstrip patch antenna using Low Temperature Co-Fired Ceramic Technology,”in Electronic Design, 2008. ICED 2008. International Conference on, 2008, pp. 1-3.
    [46] Wojciech J. Krzysztofik,“CP-microstrip coplanar patch antenna for satellite reception,”Microwave and Optical Technology Letters, vol. 50, no. 2, pp. 372-375, 2008.
    [47] J. D. Kraus, and R. J. Marhefka, "chp8 & chp9," Antennas: For All Applications, New York: McGraw-Hill, 2002.
    [48]林昌禄,陈海,吴为公, "螺旋天线,"近代天线设计:人民邮电出版社, 1990.
    [49] J. D. Kraus,“The helical antenna,”in IRE National Convention, New York, 1948, pp. 263-272.
    [50] A. R. Djordjevic, A. G. Zajid, and M. M. Ilai,“Enhancing the Gain of Helical Antennas by Shaping the Ground Conductor,”IEEE Antennas and Wireless Propagation Letters, vol. 5, pp. 138-140, 2006.
    [51] J.L.Wong, and K. H.E,“Empirical helix antenna design,”in IEEE International Symposium on Antennas and Propagation, 1982, pp. 366-369.
    [52] A. R. Djordjevic, A. G. Zajid, M. M. Ilai et al.,“Optimization of Helical antennas [Antenna Designer's Notebook],”IEEE Transactions on Antenna and Propagation, vol. 48, no. 6, pp. 107-115, 2006.
    [53] C.-J. Wang, C. F. Jon, and S. T. Peng,“Small microstrip helical antenna,”in APMC, 1999, pp. 367-370.
    [54] H. Nakano, M. Sakai, and J. Yamauchi,“A quadrifilar helical antenna printed on a dielectric prism,”in APMC, Sydney, 2000, pp. 1432-1435.
    [55] H. Nakano, N. Masui, M. Ikeda et al.,“Monofilar and Quadrifilar Helical Antennas Wound on Dielectric Rods,”in IEEE Antennas and Propagation Society International Symposium, 2003, pp. 849-852.
    [56] H. Nakano, G. Tsutsumi, and J. Yamauchi,“Small helix with conducting rectangularparallelepiped,”Electronics Letters, vol. 43, no. 8, 2007.
    [57] T. F. Huang,“Methodology of external dual-band printed helix design,”in IEEE Antennas and Propagation Society International Symposium, 2005, pp. 458-461.
    [58] J. Jung, H. Lee, and Y. Lim,“Modified helix chip antenna for WiBro and WLAN applications,”Electronics Letters, vol. 44, no. 11, 2008.
    [59] "Design Guidelines For LTCC: Heralock HL2000 Materials System," Heraeus Technical Information.
    [60] "LTCC A6 system for wireless solutions. materials, specifications and guidelines," Ferro Company, 2002.
    [61] "DuPont Microcircuit Materials: DuPont Green Tape Material System Design and Layout Guidelines," 2003, pp. 1-21.
    [62]王传声,王正义,“LTCC应用于大功率射频电路的可能性研究,”电子元器件应用, vol. 4, no. 4, pp. 52-54, 2002.
    [63]杨慧萍,“LTCC低介高频微波介质材料,”硕士论文,材料学专业,浙江大学, 2004.
    [64]江简富,“Low Temperature Co-fired Ceramic,”课件,电信电波组,台湾大学.
    [65] A. Schweighofer, E. Leitgeb, U. Birnbacher et al.,“Microstrip antennas using multi-layer packaging technology,”in The 10th IEEE International Symposium on Electron Devices for Microwave and Optoelectronic Applications, 2002, pp. 265-270.
    [66] G. DeJean, R. L. Li, M. M. Tentzeris et al.,“Radiation-pattern improvement of patch antennas using a compact soft/hard surface (SHS) structure on LTCC multilayer technology,”in IEEE Antennas-and-Propagation-Society International Symposium, Monterey, CA, 2004, pp. 317-320.
    [67] E. Tentzeris, R. L. Li, K. Lim et al.,“Design of compact stacked-patch antennas on LTCC technology for wireless communication applications,”in Antennas and Propagation Society International Symposium, IEEE, 2002, pp. 500-503 vol.2.
    [68] R. L. Li, G. DeJean, M. Maeng et al.,“Design of compact stacked-patch antennas in LTCC multilayer packaging modules for wireless applications,”Ieee Transactions on Advanced Packaging, vol. 27, no. 4, pp. 581-589, Nov, 2004.
    [69] K. In Kwang In, and V. V. Varadan,“LTCC Metamaterial Substrates for Millimeter-Wave Applications,”in Region 5 Technical Conference, IEEE, 2007, pp. 109-112.
    [70] I. K. Kim, V. V. Varadan, and Ieee,“Microstrip Patch Antenna on LTCC Metamaterial Substrates in Millimeter Wave Bands,”in IEEE Antennas-and-Propagation-Society International Symposium, San Diego, CA, 2008, pp. 1064-1067.
    [71] A. Panther, A. Petosa, M. G. Stubbs et al.,“A wideband array of stacked patch antennas usingembedded air cavities in LTCC,”IEEE Microwave and Wireless Components Letters, vol. 15, no. 12, pp. 916-918, Dec, 2005.
    [72] T. Seki, N. Honma, K. Nishikawa et al.,“A 60-GHz multilayer parasitic microstrip array antenna on LTCC substrate for system-on-package,”IEEE Microwave and Wireless Components Letters, vol. 15, no. 5, pp. 339-341, May, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700