热电器件的热弹性应力分析及外加电、磁场环境下的性能测试
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,全球性的环境恶化和能源危机正威胁着人类的长期稳定发展,各国政府对绿色环保技术的研究与利用给予了前所未有的关注和支持。热电制冷器是一种无需化学反应的全固态能量转换方式,具有无噪音、体积小、移动方便、使用寿命长等优点,有广泛的应用前景,因而探寻较高热电性能材料以及合理优化热电制冷器结构,从而提高热电制冷器制冷效果成为备受瞩目的焦点。
     为了方便今后热电制冷器结构的优化设计,避免材料承受过大的应力而发生变形,本文以薄膜式热电制冷器件为例,在对热电材料薄膜进行热分析的基础上,建立弯曲热弹性应力模型,来描述热电材料薄膜内部的热弹性应力分布状态,并分析了影响薄膜内热弹性应力分布的因素。且考虑到热电制冷器件经常工作在航空航天、深海等特殊环境下,将受到自然界电磁场的影响。为验证外界电磁场对半导体制冷片制冷效果的影响,本文构建实验平台,系统测试了在外加电场或外加磁场环境下,半导体制冷片的制冷性能的改变。
Recently, global environmental degradation and energy crisis are threatening long-term stable development of mankind. Governments of many countries have given more and more attention and support on green technology research and utilization. Thermoelectric cooler is an energy conversion device without chemical reaction, having wide application for no noise, small size, easy to move and long life. To improve the cooling effect thermoelectric cooler, attentions should be taking on exploring materials with higher thermoelectric properties and optimizing thermoelectric cooler structure rational.
     In order to optimize the structure of thermoelectric cooler and avoid material deformation because of too much stress, this paper takes thin film thermoelectric cooling device for example, making corresponding thermal analysis firstly. Then establish a bending thermal elastic stress model to analyze the thermal elastic stress state of thermoelectric film material. Finally analyzes the influence of thermal elastic stress under different factors. Taking into account the thermoelectric cooling devices often work in the aerospace, deep-sea or other special circumstances which will be subject to natural electromagnetic fields. To verify the influence of external electromagnetic field on cooling effect, this paper constructs the experimental platform and sisterly tests the cooling performance of thermoelectric cooling device in external electric field or magnetic field environment.
引文
[1]Sei-ichi Tanuma. Thinking of the Past and Tomorrow.17th IEEE International Conference on Thermoelectrics.1998:33-35
    [2]G.Mahan, B.Sales, J.Sharp. Thermoelectric materials. New approaches to an old problem. Phy Today. March 1997:42-47
    [3]GChen, M.S.Dresselhaus, G.Dresselhuas, et al. Recent developments in thermoelectrics. Int.Mater. Rev.2003.48(1):1-22
    [4]H.Bottner. Thermoelectric micro devices:current state, recent developments and future aspects for technological progress and applications. Proceedings of the 21st International Conference on Thermoelectronics. IEEE.2002:511-518
    [5]马乔矢.半导体制冷技术的应用和发展.沈阳建筑工程学院学报.1999.15(1):82-86
    [6]Paulh.Egli. Thermoelectricity. John Wiley and Sons(New York).1960
    [7]Whelan, Hodgson. Essential Principles of Physics. John Murray General Publishing Division.1978
    [8]Heike Upe. Thermoelectricity. Science and Engineering. Interscience Publisher.1961
    [9]Moon J W, Masuda Yoshitake, Seo W S,et al. Influnence of RCoO3- type perovskite cobalt oxides [J]. Mater.Sci. Eng..2001.B85.70
    [10]倪美琴,陈兴华,庄斌舵.关注半导体制冷研究与发展.制冷与空调.2001.Vol.1.No.1
    [11]龚定农等.Te-Bi-Se稀散元素化合物半导体制冷材料的合成及应用研究.辽宁大学学报自然科学版.1999.Vol.26 No.4
    [12]A.F.Ioffe. Semiconductor Thermoelements and Thermoelectric Cooling. London Press. 1957
    [13]宣向春,王维扬.半导体制冷器的进展.半导体技术.1999.Vol.24.No.1
    [14]黄忠宇,陈光辉.半导体制冷技术在医疗仪器中的应用.医疗装备.1998.No.2
    [15]周永安,欧林林.新型半导体制冷真空冰箱的研究.真空电子技.2002
    [16]苏成仁.半导体制冷电脑CPU温控器.甘肃高师学报.2000.Vol.5.No.5
    [17]А.Ф.约飞著.温差电制冷[M],北京.科学出版社.1959:2-8
    [18]R.Martin. Lopez, B.Lenoir, A.Dauseher, H.Seherrer, et al. Preparation of n-type Bi-Si-Te thermoelectric material by mechanical alloying. Solid State Communication.1998. 108:285-288
    [19]J.Yang, T.Aizawa, A.Yamamoto, T.Ohta. Thermoeleetric Properties of p-tyPe (Bi2Te3)x(Sb2Te3)1-x prepared via bulk mechanical alloying and hot Pressing, Journal of alloys and compounds.2000.325:225-228.
    [20]吉晓华.纳米结构Bi2Te3基热电材料的合成与性能.浙江大学博士学位论文.2005.1
    [21]X.F.Tang, L.D.Chen, T.Goto, T.Hirai. Effeets of Bafilling fraction and Fe content on thermoeleetric properties of BayFexCo4-xSb12. J. Materials Researeh.2001.16:837-843.
    [22]J.P.Fleurial, T.Caillat, A.Borshchevshy. Skutterudites:An update.16th International Conference on thermoeleetrics. IEEE.1997.1-11.
    [23]G.A. Slack, V.G.Tsoukala. J.APPI.Phys.1995.761:678-1679.
    [24]B.C.Sales, D.Mandrus, B.C Chakoumakos, et al. Filled skutterudite antimonides: Electron crystal and Phononglasses. Phys.Rev.B.1997.56:15081-15089
    [25]M.Puyet, B.Lenoir, A.Danseher. High temperature transport properties of partially filled CaxCo4Sb12 skutterudites. J.APPI. Phys.2004.95:4852-4855
    [26]唐新峰,陈立东,后藤孝,平井敏雄,袁润章.Skutterudite化合物FexCo4-xSb12的固相反应合成及热电性能.物理学报.2000.49:1120-1123.
    [27]T.Tanaka, S.Nakamura. Observation of distinct metallic conductivity in NaCo2O4. J.APPI.Phys.1994.33:581-582.
    [28]Takahata K, Iguchi Y, Tanaka D,et al. Low thermal conductivity of the layered oxide (Na,Ca) Co2O4:Another example of a phonon glass and electron crystal [J] Mater. Sci. Eng..2001.B86.20
    [29]Rowe D M. CRC Handbook of Thermoeleetrics London:CRC Press,1995.267-275
    [30]S.L.Chen, Jiming An, K. F.Cai, C.W.Nan. Chemical synthesis of Ca3(Co1-xNix)2O6 and thermoelectrically properties. The 20th International Conference on Thermoelectrics IEEE.2001.P.205
    [31]M.I.Fedorov, E.A.Gurieva, P.P.Konstantinov, et al. Thermoelectrical figure of merit in PbTe-based solid solutions with phonon scattering by off center impurities.222nd International conferece on thermoelectics. IEEE.2003.271-274.
    [32]M.Orihashi, Y,Noda, L-D.Chen, et al.. Effeet of tin content on the thermoelectric properties of p-type lead tin telluride. J.Phys.Chem.solids.2000.61:919-923
    [33]K.Schackenberg, E.Muller, J.Sehilz, et al.. Carrier density behavior during ageing of doped plasma spray formed iron disilicide.17th international conference on thermoelectric. IEEE.1998.42-425.
    [34]IchiroShiota, IsanA.Nishida. Development of FGM Thermoelectric Materials In Japan. 16th International conference on thermoelectric. IEEE.1997.364-370,
    [35]Z.Dashevsky, Y.Gelbstein, I.Edry, et al. Optimization of thermoelectric efficiency in graded materials.22th International conference on thermoelectric. IEEE.2003. 421-424.
    [36]崔教林、周邦昌、赵新兵.梯度热电材料的设计和研究进展.材料科学与工程.2001.11:122-126.
    [37]M.Orihashi, Y.Nioda, L.D.Chen, et al. Preparation of Pb-Te-FGM by joining melt-grown materials. Proceedings of the 4th International symposium on Functionally Graded Materials.1996.569-573.
    [38]G.J.Snyder, J.R.Lim, C.K.Huan, et al. Thermoelectric microdevice fabricated by a MEMS-like electro-chemical process. Nature Materials.2003.2:528-531
    [39]A.Leithe-Jasper, D.Kaczorowski et al. Synthesis Crystal-structure Determination and Physical Properties of YbFe4Sb12. Solid State Communication.1999.109:395-400
    [40]G.Chen. Phonon engineering in nanostructures for solid-state energy conversion. Mater. Sci. Eng. A.2000.292:155-161
    [41]L.D.Hicks, M.S.Dresselhaus. Effect of quantum-well structures on the thermoelectric figure of merit. Phys.Rev.B.1993.47:12727-12731
    [42]Zheng X J, Zhu L L, Zhou Y H. Impact of grain sizes on phonon thermal conductivity of bulk thermoelectric materials. Applied physics letters.2005.87:242101
    [43]Zhu L L, Jin K, Zheng X J. Effect of quantum transport on the resistivity of metal nanocrystalline materials in an electric field. Applied physics letters.2007.91:103108
    [44]杨育梅,王省哲.热电材料声子热导率的晶粒尺寸和形态效应的初步分析.中国力学学会学术大会.2009
    [45]高原文,何月洲,朱林利.多晶块材热电材料Seebeck系数的晶粒尺寸效应.科学通报.2009.54(21):3278-3282
    [46]廖波,孔德文,李娜,刘强.一种MEMS热电制冷器的设计.北京理工大学学报.Sep.2004.Vol24.No.9
    [47]Gao Min, D.M.Rowe. Improved model for calculation the coefficient of performance of a Peltier module. Energy Conversion & Management.2000(41): 163-171
    [48]X.C.Xuan. Investigation of thermal contact effect on thermoelectric coolers. Energy Conversion and Management.2003. Vol.44(3):399-41
    [49]李茂德,卢希红.热电制冷过程中散热强度对制冷参数的影响分析.同济大学学报.2002.Vol.30(7):811-813
    [50]卢希红.散热强度对半导体制冷性能影响的分析研究.同济大学硕士学位论文.1999
    [51]张华俊.半导体热电堆电臂尺寸之研究.太阳能学报.2002.23(2):154-159
    [52]Jianlin Yu, Hua Zhao, Kangshan Xie. Analysis of optimum configuration of two-stage thermoelectric modules. Cryogenies.2007(47):89-93
    [53]X.C.Xuan. On the optimal design of multistage thermoelectric coolers. Semicond. Sci. Technol.2002.(12):625-629
    [54]陈振林,孙中泉.多级半导体制冷器设计.仪表技术与传感器.2000(H):20-21
    [55]王宏杰,陈金灿.耦合半导体制冷系统性能特性的优化分析.半导体学报.2001.Vol.22(7):938-943
    [56]陈旻,廖波,孔德文.基于MEMS技术的微热电器件的研究进展.微电子学.2004.Vol34.No 1
    [57]Shafai C, Brett M J. A Micro-Integrated Peltier Heat Pump For Localized On-Chip Temperature Control [C]. Canadian Conference on Electrical and ComputerEngineering. IEEE.1996.88-91.
    [58]Volklein F, Gao M. Modeling of microelectromechanical thermoelectric cooler [J].Sensors and Actuators A:Physical.1999.75(2):95-101.
    [59]Y. Hori, D. Kusano, T. Ito and K. Izumi. Analysis on thermo-mechanical stress of thermoelectric module.18th International Conference on Thermoelectrics.
    [60]Mei-Jiau Huang, Po-Kuei Choua, Ming-Chyuan Lin. Thermal and thermal stress analysis of a thin-film thermoelectric cooler under the influence of the Thomson effect. Sensors and Actuators A 2006.126.122-128.
    [61]Cadoff I.B, Miller E. Thermoelectric Materials and Devices. New York; Reinhold. 1959
    [62]Goldsmid HJ. Application of thermoelectricity.London:Methuen. Monograph.1960
    [63]高敏,张景韶,罗(D.M.Rowe)编著.温差电转换及其应用.北京:兵器出版社,1996
    [64]S. M. Sze, Kwok K. Ng. Physics of semiconductor devices 1936耿莉,张瑞智译.半导体器件物理
    [65]Mei-Jiau Huang, Po-Kuei Choua, Ming-Chyuan Lin. Thermal and thermal stress analysis of a thin-film thermoelectric cooler under the influence of the Thomson effect. Sensors and Actuators A 2006.126.122-128.
    [66]吴业正,韩宝琦.制冷器[M].北京.机械工业出版社1990.8
    [67]Neng-Hui Zhang. Thermoelastic stresses in multilayered beams. Thin Solid Films 2007(515).8402-8406.
    [68]洪万亿.热电制冷器最佳工作状态的研究2006.6
    [69]M.Sakurai, N.Satoh, S.Tanuma, I.Yoshida. Energy conversion by galvanomagnetic and thermomagnetic effects with the use of Bi88Sb12 alloys.16th International conference on thermoelectric. IEEE.1997.180-183
    [70]Osamu Yamashita, Shoichi Tomiyoshi. Effect of geometrical shape on magnet-Peltier and Ettingshausen cooling in Biand Bi0.88Sb0.12 polycrystals. Journal Of Applied Physics.2002.Vol.92. No.7.3794-3802

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700