全球共享降水数据在我国的适用性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水文学科未来发展很大程度上取决于能否获得模型率定和校正所需要的充足数据,遥感技术能够在这个过程中起到关键作用。遥感数据能够通过共享平台获得,以实现数据的共享和流动。全球目前能够共享的遥感数据除了直接的卫星图片外,还有众多的基于卫星遥感数据源制作成的产品。本文针对卫星降水观测数据在我国的适用性进行了详细的分析比较,并对差异性进行深入探讨,以期为无资料地区的水文研究提供数据支撑。
     论文的主要研究内容及取得的成果包括:
     (1)首先对卫星观测降水数据GPCP (Global Precipitation Climatology Project)和CMAP (the CPC Merged Analysis of Precipitation)在我国陆地区域进行了时空分析。①1980—2006年12个月空间相关分析发现,GPCP与CMAP数据在东经100°E以东适用性好于东经100°E以西的区域,同时研究还发现其他季节的相关性要好于冬季。这主要与卫星降水产品对于降雪的反演原理还不是很清楚有关。②空间差异性研究表明东北区、黄淮海区、长江及以南区、西北及西南区的一致性呈递减趋势。分析认为对于西北及西南等台站分布较疏的地区而言,GPCP与CMAP不同的融合方法是造成两者差异大的原因;而在北纬40°N以南的我国大部分地区,两者均使用基于GPI算法融合的卫星数据,只是GPCP在使用前经过了微波数据的校正,而CMAP数据则没有,这可能是造成黄淮海区域与长江及以南区域差异的内在原因。北纬40°N以北两者差异小的主要原因是数据源均来源于SSM/I。结果得出GPCP数据是更适合研究我国降水特征的卫星降水产品。
     (2)其次,基于GPCP数据与气象台站多年平均、季平均、月平均降水量等不同时间尺度分析得出,降水较少月份GPCP数据与气象台站的相关性要高于降水量较多的月份,这主要是与台站实测降水对于局地性降水代表性差有关。GPCP与台站数据空间一致性研究结果表明:对于东北区、黄淮海区、长江及以南区域研究的56个流域中各评级时间段内,当面积达到7万km2以上时,GPCP各评价时间段相对误差达到12%以下。而由于西北及西南的广大地区GPCP相对误差太大,GPCP数据基本不适用。分析原因认为GPCP数据网格内的站点疏密对结果造成直接影响;另外一个原因与我国各地区降水类型有关。
     (3)比较分析了我国四个不同地区GPCP数据的精度,结果表明:GPCP数据精度最高的区域位于长江及以南区,站点个数在4个以上,面积4.9万km2,精度能达到11%以上;黄淮海区的精度次之,站点个数为5,面积阈值为6.7万km2,精度达到12%;东北区也能达到较高精度,相对误差不超过15%,流域面积大于7万km2,站点个数达到5个以上。西南及西北区GPCP数据误差较大,只能在个别地区适用。
     (4)基于GPCP数据应用线性回归、差积曲线、M-K检验方法、小波等方法,研究了东北某河流1980—2006年降水演变规律,并应用PREC/L数据进行了检验。证明年、春、夏、秋季GPCP数据均能很好地表征流域的降水变化,但是冬季的结果较差。这主要与微波对于降雪的反演机理还不明确有关。
The future development of hydro- disciplinary depends largely on the data which is required to improve the model availability and adequacy for calibration. Remote sensing technology can play a key role in this process. Remote sensing data can be obtained through a shared platform, which allows data shared and flowed. The current global remote sensing data can be shared except satellite pictures. There are a number of satellite-based remote sensing data products. In this paper, we compare the applicability of the satellite observations of precipitation in China, and discuss the differences of them. We look forward to providing data to support the no information region hydrological study.
     The main conclusions of this paper include the following aspects:
     Firstly, we analyze GPCP and CMAP precipitation data in the China's land area. Found that:GPCP and CMAP have a better correlation east of 100°E than the west of 100°E. Another result is that the correlation is worse in the winter than the other seasons. This is mainly because of satellite precipitation products for the principle of inversion of snow is not very clear. The spatial difference indicats that the Northeast area, the Huanghuai sea area, Yangtze River and south of the area, northwest and the southwest area's conformity showing a decreasing progressively tendency. Analysis for the areas, which has little station distribution of it, for example northwest and southwest etc, has a big difference between GPCP and CMAP. We think it is relate to different fusion method in the process of production between them. From the 40°N to the south of most regions of China, both are using of satellite data which based on the GPI algorithm. GPCP before using it after microwave data calibration, but CMAP data is not. This may be the internal causes of difference of Huang-huai-hai region and the Yangtze and south of the Yangtze River area. In the north of 40°N, the difference is small because of the data source is derived from the SSM/I. Results indicate that GPCP is more suitable for China's rainfall characteristics.
     Secondly, based on GPCP data and the rain gause, we analysis different time scales including the annual average、quarter average and average month, finding that the rainfall in less GPCP data and rain gause has a better correlation than the rainfall in more. This is mainly because the precipitation stations for local precipitation representative poor. GPCP and rain gause space station consistency show that:the 56 river basin which belong to the northeast area, south of the Yangtze river and yellow sea area. When the area is above 70000 km, GPCP and rain gause's relative error is below 12%. In the large areas of the northwest and southwest, relative error is too big. We analyze the reason that density of meteorological stations plays a very important role, and another reason is relevant to type of precipitation in each region.
     Thirdly, to compare of our four different areas GPCP data accuracy, the results indicate that:The highest accuracy of GPCP data is the Yangtze River and south of the Yangtze River area. In this area when the number of sites in above 4, and the area above 49000 km2, precision can reach more than 11%. The accuracy of the yellow sea area is less than the Yangtze River and south of the Yangtze River area, when the number of site above 5, area threshold for 67000 km2, precision can reach 12%. The northeast area also can achieve a high precision, a relative error less than 15%, a basin area more than 70000 km2, the number of sites more than 5. Because of the Northwest and southwest area GPCP data error poor, can be only applied in individual region.
     Finally, based on GPCP data using linear regression, residual mass curve, M-K inspection, and wavelet methods, this paper researches a typical river basin evolution of precipitation from 1980 year to 2006. And using PREC/L data verifies the conclusion. That year, spring, summer, autumn GPCP data can be a very good characterization of precipitation, but the result of the winter was poor.
引文
[1]陈守峰,田莉,王涛.水文数据库建设现状分析.河南水利与南水北调,2009,7:56.
    [2]韩敏译,Gert A. Schultz, Edwin T. Engman编.水文与水管理中的遥感技术[M].中国水利水电出版社,北京,2006。
    [3]陈根发,张秋霞,秦大庸.降雨研究进展[J].中国人口资源与环境,2008,18:663-665.
    [4]吕少宁,文军,刘蓉.中国大陆地区不同降水资料的适用性及其应用潜力[J].高原气象,2011,6(3):628-640.
    [5]David R Easterling, Thomas C Peterson, Thomas P Karl. On the development and use of homogenized climate datasets [J]. Climate,1996,9(6):1429-1434.
    [6]Poccard I, Janicot S, Camberlin P. Comparison of rainfall structures between NCEP/NCAR reanalysis and observed data over Tropical Africal[J]. Climate Dynamics,2000,16(12):897-915.
    [7]Jaeger, L. Monatskarten des Niederschlags f u r die Ganze Erde(Monthly precipitation maps for the whole earth). Berichte des Deutscher Wetterdienstes,33 pp.
    [8]Legates, D.R.,C. J. Willmott. Mean seasonal and spatial variability in gauge corrected, global precipitation[J]. Int. J. Climatol.,1990,10,111-127.
    [9]New, M. G., M. Hulme, and P. D. Jones. Representing twentieth century space-time climate variability. Part Ⅰ:Development of a 1961-90 mean monthly terrestrial climatology[J]. J. Climate,1999,12,829-856.
    [10]Eischeid, J. K., H. F. Diaz, R. S. Bradley, and P. D. Jones. A comprehensive precipitation dataset for global land areas. U.S.Department of Energy Tech. Rep. DOE/ER-6901T-H1,1991,81 pp.
    [11]Bradley,H. F. Diaz, J. K. Eischeid, P. D. Jones, P. M. Kelly, C. M.Goodess. Precipitation fluctuations over Northern Hemisphere land areas since the mid-19th century [J]. Science,1987,237,171-175.
    [12]Diaz, H. F., R. S. Bradley, and J. K. Eischeid. Precipitation fluctuations over global land areas since the late 1800s [J]. J. Geophys.Res.,1989,94,1195-1210.
    [13]Hulme, M. An intercomparison of model and observed global precipitation climatologies[J]. Geophys. Res. Lett.,1991,18,1715-1718.
    [14]Hulme, M. A 1951-80 global land precipitation climatology for the evaluation of general circulation models[J]. Climate Dyn.,1992,7,57-72.
    [15]Hulme, M. Validation of large-scale precipitation fields in general circulation models. Global Precipitations and Climate Change [J] M. Desbois and F. Desalmand, Eds., Springer-Verlag,1994,387-405.
    [16]Kalnay E, Kanamitsu M, Kistler R,et al. The NCEP/NCAR40-year reanalysis project [J].Bulletin of the American Meteoro-logicalSociety,1996,77:437-471.
    [17]KistlerR, Kalnay E, CollinsW,et al. The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation [J].Bulletin of the American Meteorological Society,2001,82:247-267.
    [18]SimmonsA J, Gibson JK. The ERA-40 Project Plan[R].ECM-WF Re-Analysis Project Report Series No.1,2000.
    [19]Uppala SM, Kallberg PW, SimmonsA J, etal. The ERA-40 re-analysis [J].Quarterly Journal of the Royal Meteorological So- ciety,2005,131:2961-3012.
    [20]杨扬.1948-2001年全球陆地9-11月降水场的气候变化和特征研究[D].2003,南京,南京气象学院.
    [21]Adler, R. F., C. Kidd, G. Pretty, M. Morissssey, H. M. Goodman.: Intercomparison of global precipitation products:The third Precipitation Intercomparison project (PIP-3)[J]. Bull. Amer. Meteor.Soc.,2001,82,1377-1396.
    [22]Ebert, E. E., and M. J. Manton.Performance of satellite rainfall estimation algorithms during TOGA COARE [J]. Atmos. Sci.1998,55,1537-1557.
    [23]Spencer, R. W.. Global oceanic precipitation from the MSU during 1979-91 and comparisons to other climatologie s[J]. Climate,1993,6:1301-1326.
    [24]Xie, P., and P. A. Arkin. An intercomparison of gauge observations and satellite estimates of monthly precipitation [J]. Appl.Meteor.1995:34,1143-1160.
    [25]Rudolf, B.Management and analysis of precipitation data on a routine basis. Proc. Int. WMO/IAHS/ETH Symp. on Precipitation and Evaporation, Vol.1, Bratislava, Slovakia, Slovak Hydrometeorological Institute,1993:69-76.
    [26]Kondragunta, C., and A. Gruber,1997:Intercomparison of spatial and temporal variability of various precipitation estimates [J]. Adv. Space Sci.,19,457-460.
    [27]Janowiak, J. E., and P. A. Arkin.Rainfall variations in the Tropics during 1986-1989 [J]. Geophys. Res.,1991,96,3359-3373.
    [28]McCollum, J. A., A. Gruber, and M. Ba. Discrepancy between gauges and satellite estimates of rainall in equatorial Africa. J. Appl. Meteor.,2000,39,666-679.
    [29]Krajewski, W. F., G. J. Ciach, J. R. McCollum, and C. Bacotiu.Initial validation of the Global Precipitation Climatology Project over the United States[J]. Appl. Meteor.,2000,39,1071-1087.
    [30]Yin Xungang,Gruber A,Arkin P.Comparison of the GPCP and CMAP merged gauge-satellite monthly precipitation products for the period 1979~2001 [J]. J Hydrometeor,2004,5(6):1207~1222.
    [31]Gruber A,Su X,Kanamit su M,etal.The comparison of two merged rain gauge2satellite precipitation datasets [J]. Bull.A mer. Meteor. S oc.,2000,81 2631-2644.
    [32]R.Aznar, M.G. Sotillo, M.L. Martin, S. Somot, F. Valero. Comparison of model and satellite-derived long-term precipitation databases over the Mediterranean basin: A general overview [J]. Atmospheric Research,2010,97:170-184.
    [33]吕少宁,文军,刘蓉.中国大陆地区不同降水资料的适用性及其应用潜力[J].高原气象,2011,6(3):628-640.
    [34]自勇,许吟隆,傅云飞.GPCP与中国台站观测降水的气候特征比较[J].2007,65(1):63-74.
    [35]王红丽,刘健,况雪源.四种再分析资料与长江中下游地区降水观测资料的对比研究[J].长江流域资源与环境,2008,17(5):703-711.
    [36]MINGYUE CHEN, PINGPING XIE, JOHN E. JANOWIAK. Global Land Precipitation:A 50-yr Monthly Analysis Based on Gauge Observations [J]. C H E N ET A L.2002,3:249-266.
    [37]李锐,傅云飞.GPCP和TRMM PR热带月平均降水的差异分析[J].2005,63(2):146-160.
    [38]陈举,施平,杜岩.南海及其邻近地区几种常用降雨产品的相互比较[J].热带海洋学报.2004,23(6):40-51.
    [39]Ke Zhang, John S. Kimball, Qiaozhen Mu, Lucas A. Jones, Scott J. Goetz, Steven W. Running. Satellite based analysis of northern ET trends and associated changes in the regional water balance from 1983 to 2005 [J]. Journal of Hydrology, 2009,379:92-110.
    [40]Douglas Alsdorf, Shin-Chan Han, Paul Bates, John Melack. Seasonal water storage on the Amazon floodplain measured from satellites [J]. Remote Sensing of Environment,2010,114:2448-2456.
    [41]Naoyuki Kurita, Kimpei Ichiyanagi, Jun Matsumoto, Manabu D. Yamanaka, Tetsuo Ohata. The relationship between the isotopic content of precipitation and the precipitation amount in tropical regions [J]. Journal of Geochemical Exploration, 2009,102:113-122.
    [42]Rasmus Fensholt, Kjeld Rasmussen. Analysis of trends in the Sahelian'rain-use efficiency' using GIMMS NDVI, RFE and GPCP rainfall data[J].Remote Sensing of Environment.2011,115:438-451.
    [43]刘向培,王汉杰,刘金波.区域气候模式分辨率对夏季降水模拟的影响[J].水科学进展.2011,22(5):615-623.
    [44]吴迪,裴源生.区域气候模式RegCM3在海河流域的初步应用[J].人民长江.2010,41(3):42-47.
    [45]席朝笠,曾新民,李宁.我国华东地区月尺度气候动力预测的研究:(Ⅱ)嵌套模式的回报评估[J].气象科学,2007,27(4):354-364.
    [46]况雪源,刘健,王红丽,提汝媛,王苏民.近千年来中国区域降水模拟与重建资料的对比分析[J].地球科学进展.2009,24(2):159-171.
    [47]温之平,黄荣辉,贺海晏,蓝光东.中高纬大气环流异常和低纬30-60天低频对流活动对南海夏季风爆发的影响[J].大气科学,2006,30(5):952-964.
    [48]闫俊岳,唐志毅,姚华栋,张秀芝,柳艳菊,李江龙.2002年南海季风建立及其雨带变化的天气学研究[J].气象学报.2003,61(5):569-579.
    [49]陈际龙,黄荣辉.亚澳季风各子系统气候学特征的异同研究Ⅱ.夏季风水汽输送[J].大气科学,2007,31(5):765-778.
    [50]郭品文,朱乾根,刘宣.飞亚洲热带地区对流爆发和推进的气候特征[J].南京气象学报,1999,22(3):305-311.
    [51]曾丽丽,陈举,施平.夏季降水过程对南海上层盐度的可能影响[J].热带海洋学报.2007,26(3):11-17.
    [52]孟奎.西北干旱区春季降水与全球海温的相关特征分析[J].安徽农业科学.2011,39(27):16847-16849.
    [53]傅云飞,刘奇,自勇,冯沙,李跃清,刘国胜.基于TRMM卫星探测的夏季青藏高原降水和潜热分析[J].高原山地气象研究.2008,28(1),8-18.
    [54]侯雪伟,朱彬.东亚季风转换对西北太平洋春季臭氧高值的影响研究[C].第28届中国气象学会年会-S8大气与天气气候变化的联系,2011年.
    [55]冯沙,傅云飞.季尺度副热带高压中心内降水分析[C].中国气象学会2008年年会第二届研究生年会分会场论文集,2008年.
    [56]曾丽丽,王东晓,施平.季风降雨对南海上层盐度层结的影响.中国海洋学会2005年学术年会论文汇编.2005年.
    [57]周任君,陈月娟.青藏高原臭氧低值中心的变化与我国气候的关系[J].大气科学.2007,31(3):479-485.
    [58]李伟平,季劲钧,董文杰,刘新.年际时间尺度上全球植被与大气相互作用的诊断分析[J],大气科学,2008,32(1):75-89.
    [59]李庆,陈月娟.青藏高原积雪异常对中国夏季风气候的影响[C].“推进气象科技创新,提高防灾减灾和应对气候变化能力”——江苏省气象学会第七届学术交流会论文集,2011年
    [60]何金海,祁莉,刘丹妮,朱占云.东亚大气环流由冬向夏的转变时间及其特征[J].气象科学,2010,30(5):591-596.
    [61]林爱兰,郑彬,谷德军,李春晖,梁建茵.2006年东亚夏季风活动特征与我国东部雨带分布[J].热带气象学报,2009,25(2):129-140.
    [62]谷黄河,余钟波,杨传国等.卫星雷达测雨在长江流域的精度分析[J].水电能源科学,2010,28(8):3-6.
    [63]田文文,宋星原,廖为民.集对分析在雷达定量测量降雨中的应用研究[J].水电能源科学,2009,26(2):20-23.
    [64]阿迈德·迪狄安·迪阿罗.卫星、雨量计数据联合分析中国降水.北京,北京大学,2003.
    [65]Wilheit, T. J., A. T. C. Chang, and L. S. Chiu. Retrieval of monthly rainfall indices from microwave radiometric measurements using probability distribution functions[J]. Atmos. OceanicTechnol.1991,8:118-136.
    [66]Ferraro, R., and G. Marks.The development of SSM/I rainrateretrieval algorithms using ground-based radar measurements [J]. Atmos. Oceanic Technol.1995,12: 755-770.
    [67]Ferraro, R., F. Weng, N. C. Grody, and A. Basist.An eight-year(1987-1994) time series of rainfall, clouds, water vapor, snow cover, and sea ice derived from SSM/I measurements [J]. Bull.Amer. Meteor. Soc.1996,77:891-905.
    [68]Susskind, J., and J. Pfaendtner. Impact of interactive physical retrievals on NWP. Report on the Joint ECMWF/EUMETSAT Workshop on the Use of Satellite Data in Operational Weather Prediction[J]:1989-1993.
    [69]T. Hollingsworth, Ed., Vol.1, ECMWF,1989,245-270. Susskind, J., P. Piraino, L. Rokke, T. Iredell, and A. Mehta.Characteristics of the TOVS Pathfinder Path A dataset[J]. Bull.Amer. Meteor. Soc.1997,78,1449-1472.
    [70]Arkin, P. A., and B. N. Meisner. The relationship between large-scale convective rainfall and cold cloud over the western hemisphere during 1982-84 [J]. Mon. Wea. Rev.,1987,115:51-74.
    [71]Adler, R. F., A. J. Negri, P. R. Keehn, and I. M. Hakkarinen. Estimation of monthly rainfall over Japan and surrounding waters from a combination of low-orbit microwave and geosynchronous IR data [J]. Appl. Meteor.1993,32:335-356.
    [72]Adler,R.F.,G.J.Huffman,and P.R.Keehn.Global rain estimates from microwave adjusted geosynchronous IR data. Remote Sens. Rev.,1994,11:125-152.
    [73]Robert F. Adler, George J. Huffman. The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present) [J].ADLERETAL,2003,1147-1167.
    [74]Xie, P., and P. A. Arkin,:An inter comparison of gauge observations and satellite estimates of monthly precipitation[J]. J.Appl. Meteor.1995,34,1143-1160.
    [75]Arpe, K.. The hydrological cycle in the ECMWF short-range forecasts[J]. Dyn. Atmos. Oceans,16,33-60.
    [76]Xie, P., and P. A. Arkin,1995:An intercomparison of gauge observations and satellite estimates of monthly precipitation [J]. J.Appl. Meteor.,34,1143-1160.
    [77]Xie, P., and P. A. Arkin,.Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions [J]. J. Climate, 9,840-858.
    [78]Mingyue Chen,Pingping Xie, John E. Janowiak. Global Land Precipitation:A 50-yr Monthly Analysis Based on Gauge Observations[J].CHENETAL.2001,249-266.
    [79]贾仰文,王浩,倪光恒,杨大文,王建华,秦大庸.分布式流域水文模型原理与实践[M].中国水利水电出版社,2005,58.
    [80]陈宁.汉江上游水资源演变规律研究[D].北京,中国水利水电科学研究院,2010.
    [81]Mann H B. Non-parametric test against trend [J]. Econometrica, 1945,13:245-259.
    [82]Kendall M G. Rank Correlation Methods [M], London:Charles Griffin 1975.
    [83]陈祖辉,杨玉阁.凡河流域降水特性及趋势分析.地下水,2011,33(2):134-136.
    [84]许继军,杨大文,雷志栋,李翀,彭静.长江流域降水量和径流量长期变化趋势检验[J].人民黄河,2006,37(9):63-67.
    [85]刘春玲,许有鹏,张强.长江三角洲地区气候变化趋势及突变分析[J].曲阜师范大学学报,2005,31(1):109-114.
    [86]张建锋.黄河源区水文气象要素的周期规律分析[D].北京,中国地质大学,2006.
    [87]匡正,季仲贞,林一骅.华北降水时间序列资料的小波分析[J].气候与环境研究,2000,5(3):312-317.
    [88]魏锋.中国西北地区降水的长期变化特征及其可能影响因子研究[D].南京,南京信息工程大学,2005.
    [89]王素萍.河西地区降水变化及其影响研究[D].兰州,兰州大学,2007.
    [90]陈仁升,康尔泗,张济世.小波变换在河西地区水文和气候周期变化分析中的应用[J].地球科学进展,2001,16(3):339-345.
    [91]陈俊勇.对RTM3和GTOP030地形数据质量的评[J].武汉大学学报(信息科学版,2005,30(11):941-944.
    [92]陈蕊.SRTM高程数据空值区的填补方法及分析[D].云南,昆明理工大学,2008
    [93]王涛,毋河海.SRTM高程数据中空缺单元的内插填补[J].测绘科学,2006,31(3),76-77.
    [94]游松财,孙朝阳.中国区域SRTM90m数字高程数据空值区域的填补方法比较[J].地理科学进展,2005,24(6):88-92.
    [95]凌峰,王乘,张秋文.基于ASTER时间和空间误差分析的SRTM无效区域填充[J].华中科技大学学报(自然科学版),2006,34(12):108-110.
    [96]阚瑗珂,朱利东,张瑞军.基于数据融合的SRTM数据空洞填补方法[J].地理空间信息,2007,5(3):62-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700