线性MIMO系统预编码技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线通信正经历着它自诞生以来发展最快的时期,它的迅速发展归功于先进通信技术的研究与应用。随着无线通信系统实际应用的迅猛普及,无线通信用户数和用户服务需求成指数性增长,但可用于无线通信服务的无线电频谱资源极其有限,使得不断增长的无线服务需求与有限的无线电频谱资源之间的矛盾日益突出。MIMO多天线技术正是在这一背景下发展起来的一种新型无线通信技术,它能够极大地提高通信系统的频谱利用率、满足用户的高速率通信需求,因此得到了国内外广泛的关注和研究,它已经成为下一代移动通信系统中极具发展前景的技术之一。
     本论文侧重于线性MIMO系统预编码技术的研究,方向导数理论和盖理论是本论文研究得以进行的数学理论基础。本论文主要研究内容包括:基于方向导数理论的最优线性MIMO预编码设计的研究、基于盖理论的最优能量分配策略的研究、多用户MIMO系统中用户选择与QOS控制策略的研究。本论文的主要贡献和创新之处列举如下:
     ·基于最小化均方误差准则,提出了一种适用于多种能量约束(lp范数能量约束)的最优线性MIMO系统预编码设计框架,并且从方向导数理论的角度证明了最大化信道容量准则和最小化MSE矩阵行列式准则的等价性。
     ·在联合总能量约束和峰值能量约束下,提出了一个适用于多种设计准则的最优线性MIMO系统预编码设计框架。与近似的lp范数约束问题相比,该设计框架能取得最优的系统性能。此外,在理论上证明了联合能量约束下的能量分配具有分段线性性,从而推导出了一种极其快速的能量分配策略。
     ·基于最大化信道容量准则,提出了一种QoS约束下最大化上行链路信道容量的最优能量分配策略,从盖理论的角度给出了能量分配的最优结构。与现有算法相比,采用搜索变量代换的改进最优能量分配算法的计算复杂度大幅度降低,即使在最坏情况下也仅需原有一半的计算复杂度。
     ·最大化信道容量准则可获得高的传输速率,但有失用户间的公平性原则。基于最大化最小速率准则,提出了一种QoS约束下具有公平性原则的最优能量分配策略,并利用盖理论,证明了能量分配的最优结构,且导出了-个接近具有闭式解的最优能量分配方案。
     ·贪婪用户选择方案的瓶颈在于随着用户数的增加,用户选择算法的计算复杂度急剧增加。基于Householder变换,提出了一种适用于迫零编码和脏纸编码下的快速贪婪用户选择算法。在与现有算法获得相同性能的前提下,该算法只需微乎其微的计算复杂度,从本质上解决了贪婪用户选择算法的瓶颈。
     ·基于Perron-Frobenius定理,在发射能量加权和受限且系统资源已过载情况下,提出了一种适用于接纳更多用户数的最优QOS等比例控制算法,并推导出了具有闭式解的能量分配方案。由于无需迭代过程,所提算法具有合理的计算复杂度和稳定性。
It is all about spectrum. Wireless industry is experiencing its fastest growing since Marconi pioneered the wireless technology one hundred years ago, which is due to the research and application of advanced communications technology. The gradual evolution of mobile communication system follows the quest for high data rates, and the demands on bandwidth and spectral availability seem to be endless. So, wireless designers have to face an uphill task of limited availability of radio frequency spectrum problem in the wireless channel. Multiple-input multiple-output (MIMO) technology has attracted a large amount of attention in wireless communications, because it offers a promising solution to support greater data rate and higher reliability over wireless links without additional bandwidth or transmit power. As a result, MIMO systems have been a current theme of international wireless research.
     To achieve better performance, precoding and decoding design becomes an im-portant challenge in the future wireless MIMO communication systems. The main objective of this thesis is to provide a series of optimal designs for MIMO transceivers including:optimal design for linear MIMO transceivers by using directional derivative, optimal power allocation via Majorization theory with quality of service (QoS) con-straints, and optimal user selection and QoS control for multi-users MIMO systems. Directional derivative and Majorization theory are the underlying mathematical theo-ries on which our methods hinge. The concrete contributions and innovations of the thesis are listed as follows:
     Optimal design for minimizing the combination of symbol estimation errors sub-ject to lp-norm constraint is investigated. Instead of considering each constraint in a separate way, we develop a unifying framework to obtain the optimal solution by employing a directional derivative method. Moreover, based on directional derivative, we show that the minimization of the determinant of mean-square er-ror matrix and the maximization of mutual information are equivalent criteria.
     A unified framework is developed to obtain the optimal precoder designs for several different criteria with the realistic power constraints jointly imposed on both the sum power and the peak power. It is shown that power allocation is piecewise linear in the sum power, and thus finding the entire path of solution for every value of the sum power just requires checking a finite number of points. Our method is computationally efficient and outperforms existing methods in the literature which can only give approximate solutions.
     Optimal power allocation for maximizing the sum capacity of the reverse link of multi-rate CDMA systems with QoS constraints is investigated. It is shown that the structure of the optimal solution can be easily obtained via Majorization theory. Furthermore, based on our new approach, an efficient searching method for power allocation is developed. Our new method requires only approximately a half of the computational cost of existing methods in the worst case and is even much faster in general.
     Max-min fair power allocation brings higher average throughput and better uti-lization of the resources than a work-conserving equal sharing policy. Instead of achieving a common maximum sum-rate objective, an optimal power allo-cation design for maximizing the minimum rate of the reverse-link of CDMA systems with QoS constraints is investigated. We first try to derive the structure of the optimal solution via Majorization theory. Then, we propose a very effi-cient search method to find the max-min fair solution. Compared with existing methods, much lighter computational complexity is required by our method.
     An efficient greedy scheduler for zero-forcing dirty-paper coding (ZF-DPC), which can be incorporated in complex Householder QR factorization of the channel ma-trix, is proposed. The ratio of the complexity of the proposed scheduler to the complexity of the channel matrix factorization required by ZF-DPC is O(M-1), while such ratio for the original greedy scheduler is O(M), where M is the number of transmitters. Therefore, the new scheduler reduces the overhead of scheduling from being the bottleneck of ZF-DPC to being negligible.
     In an attempt to admit new users into CDMA communication systems in the case of overload, an optimal proportional QoS reduction method subject to a weighted sum power constraint is investigated. Based on the Perron-Frobenius Theorem, we successfully derive an optimal closed-form solution. Compared to existing methods, our method greatly reduces the computational complexity, as well as maintains high reliability.
引文
J. Winters. On the capacity of radio communication systems with diversity in a rayleigh fading environment. IEEE Journal on Selected Areas in Communications,5(5):871-878,1987.
    G. J. Foschini and M. J. Gans. On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications,6(3):311-335,1998.
    E. Telatar. Capacity of multi-antenna Gaussian channels. European Transactions on Telecommu-nications,10(6):585-595,1999.
    T. Berger and D. W. Tufts. Optimum pulse amplitude modulation. Part Ⅰ:Transmitter-receiver design and bounds from information theory. IEEE Transactions on Information Theory,13(2): 196-208,1967.
    J. Salz. Optimum mean-square decision-feedback equalization. Bell System of Techncial Journal, 52:1341-1373,1973.
    K. H. Lee and D. P. Petersen. Optimal linear coding for vector channels. IEEE Transactions on Communications,24(12):1283-1290,1976.
    J. Salz. Digital transmission over cross-coupled linear channels. At&T Technical Journal,64(6): 1147-1159,1985.
    U. Erez and S. Brink. A close-to-capacity dirty paper coding scheme. IEEE Transactions on Information Theory,51(10):3417-3432,2005.
    L. H. Brandenburg and A. D. Wyner. Capacity of the Gaussian channel with memory:The multi-variate case. The Bell System Technical Journal,53(5):745-778,1974.
    B. S. Tsybakov. Capacity of a vector Gaussian channel without memory. Problems of Information Transmission,1:26-40,1965.
    B. S. Tsybakov. Capacity of a discrete-time Gaussian channel with a filter. Problems of Informa-tion Transmission,6:253-256,1970.
    T. M. Cover and J. A. Thomas. Elements of Information Theory. New York, NY, USA:Wiley, 1991.
    G. G. Raleigh and J. M. Cioffi. Spatio-temporal coding for wireless communication. IEEE Trans-actions on Communications,46(3):357-366,1998.
    N. Amitay and J. Salz. Linear equalization theory in digital data transmission over dually polarized fading radio channels. At&T Bell Labs Technical Journal,63(10):2215-2259,1984.
    J. Yang and S. Roy. On joint transmitter and receiver optimization formultiple-input-multiple-output (MIMO) transmission systems. IEEE Transactions on Communications,42(12):3221-3231,1994a.
    M. Kavehrad and J. Salz. Cross-polarization cancellation and equalization in digital transmission over dually polarized multipath fading channels. At&T Bell Labs Technical Journal,64(10):2211-2245,1985.
    J. Yang and S. Roy. Joint transmitter-receiver optimization for multi-input multi-output systems with decision feedback. IEEE Transactions on Information Theory,40(5):1334-1347,1994b.
    G. J. Foschini. Layered space-time architecture for wireless communication in a fading environ-ment when using multi-element antennas. Bell Labs Technical Journal,1(2):41-59,1996.
    A. Scaglionc, G. B. Giannakis, and S. Barbarossa. Redundant filterbank prccodcrs and equalizers. Part I:Unification and optimal designs. IEEE Transactions on Signal Processing,47(7):1988-2006,1999.
    H. Sampath, P. Stoica, and A. Paulraj. Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion. IEEE Transactions on Communications,49(12): 2198-2206,2001.
    J. B. Andersen. Array gain and capacity for known random channels with multiple element arrays at both ends. IEEE Journal on Selected Areas in Communications,18(11):2172-2178,2000.
    A. Scaglione, P. Stoica, S. Barbarossa, G. B. Giannakis, and H. Sampath. Optimal designs for space-time linear precoders and decoders. IEEE Transactions on Signal Processing,50(5):1051-1064,2002.
    A. Feiten, R. Mathar, and S. Hanly. Eigenvalue-based optimum-power allocation for Gaussian vector channels. IEEE Transactions on Information Theory,53(6):2304-2309,2007.
    D. P. Palomar. Unified framework for linear MIMO transceivers with shaping constraints. IEEE Communications Letters,8(12):697-699,2004.
    D. P. Palomar, J. M. Cioffi, and M. A. Lagunas. Joint Tx-Rx beamforming design for multicarrier MIMO channels:A unified framework for convex optimization. IEEE Transactions on Signal Processing,51(9):2381-2401,2003.
    E. N. Onggosanusi, A. M. Sayeed, and B. D. Van Veen. Efficient signaling schemes for wideband space-time wireless channels using channel state information. IEEE Transactions on Vehicular Technology,52(1):1-13,2003.
    Y. Ding, T. N. Davidson, Z. Q. Luo, and K. M. Wong. Minimum BER block precoders for zero-forcing equalization. IEEE Transactions on Signal Processing,51 (9):2410-2423,2003.
    A. W. Marshall and I. Olkin. Inequalities:Theory of Majorization and Its Applications. New York:Academic Press,1979.
    D. P. Palomar, M. Bengtsson, and B. Ottersten. Minimum BER linear transceivers for MIMO channels via primal decomposition. IEEE Transactions on Signal Processing,53(8):2866-2882, 2005.
    N. Z. Shor. Minimization Methods for Non-Differentiable Functions. Berlin, Germany:Springer-Verlag,1985.
    L. S. Lasdon. Optimization Theory for Large Systems. New York:Macmillian,1970.
    D. P. Bertsekas. Nonlinear Programming. Belmont, MA, USA:Athena Scientific, second ed., 1999.
    D. P. Palomar, M. A. Lagunas, and J. M. Cioffi. Optimum linear joint transmit-receive processing for MIMO channels with QoS constraints. IEEE Transactions on Signal Processing,52(5):1179-1197,2004.
    M. B. Shenouda and T. N. Davidson. A framework for designing MIMO systems with decision feedback equalization or Tomlinson-Harashima precoding. in Proceedings of 2007 IEEE Interna-tional Conference on Acoustics, Speech, and Signal Processing (ICASSP'07), pages 15-20,2007.
    Y. Jiang, D. P. Palomar, and M. K. Varanasi. A framework for designing MIMO systems with decision feedback equalization or Tomlinson-Harashima precoding. in Proceedings of 41st IEEE Annual Conference on Information Sciences and Systems (CISS'2007), pages 14-16,2007.
    Y. Jiang, J. Li, and W. Hager. Joint transceiver design for MIMO communications using geometric mean decomposition. IEEE Transactions on Signal Processing,53(10):3791-3803,2005a.
    Y. Jiang, W. Hager, and J. Li. The generalized triangular decomposition. Mathematics of Compu-tation,77(262):1037-1056,2008.
    Y. Jiang, J. Li, and W. Hager. Uniform channel decomposition for MIMO communications. IEEE Transactions on Signal Processing,53(11):4283-4294,2005b.
    J. A. C. Bingham. Multicarrier modulation for data transmission:An idea whose time has come. IEEE Communication Magazine,28(5):5-14,1990.
    I. Kalet. The multitone channel. IEEE Transactions on Communications,37(2):119-124,1989.
    R. G. Gallager. Information Theory and Reliable Communication. New York:Wiley,1968.
    W. Hirt and J. L. Massey. Capacity of the discrete-time Gaussian channel with intersymbol inter-ference. IEEE Transactions on Information Theory,34(3):380-388,1988.
    S. M. Alamouti. A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications,16(8):1451-1458,1998.
    V. Tarokh, N. Seshadri, and A. R. Calderbank. Space-time codes for high data rate wireless com-munication:Performance criterion and code construction. IEEE Transactions on Information Theory,44(2):744-765,1998.
    P. Elia, K. R. Kumar, S. A. Pawar, P. V. Kumar, and H.-F. Lu. Explicit construction of space-time block codes achieving the Diversity-multiplexing gain tradeoff. IEEE Transactions on Information Theory,52(9):3869-3884,2006.
    F. Oggier, G. Rekaya, J.-C. Belfiore, and E. Viterbo. Perfect space-time block codes. IEEE Transactions on Information Theory,52(9):3903-3912,2006.
    M. L. Honig, K. Steiglitz, and B. Gopinath. Multichannel signal processing for data commu-nications in the presence of crosstalk. IEEE Transactions on Communications,38(4):551-558, 1990.
    G. Jongren, M. Skoglund, and B. Ottersen. Combining beamforming and orthogonal space-time block coding. IEEE Transactions on Information Theory,48(3):611-627,2002.
    M. Bengtsson and B. Ottersten. Optimal and suboptimal transmit beamforming. in Handbook of Antennas in Wireless Communications, (L.C. Godara, ed.), Boca Raton, FL:CRC Press,2001.
    A. Narula, M. J. Lopez, M. D. Trott, and G. W. Wornell. Efficient use of side information in multiple-antenna data transmission over fading channels. IEEE Journal on Selected Areas in Communications,16(8):1423-1435,1998.
    M. Rey, F. Lamarca, and G. Vazquez. Robust power allocation algorithms for MIMO OFDM systems with imperfect CSI. IEEE Transactions on Signal Processing,53(3):1070-1085,2005.
    S. Vishwanath, N. Jindal, and A. Goldsmith. Duality, achievable rates and sum-rate capacity of Gaussian MIMO broadcast channels. IEEE Transactions on Information Theory,49(10):2658-2668,2003.
    S. A. Vorobyov, A. B. Gershman, and Z.-Q. Luo. Robust adaptive beamforming using worst-case performance optimization:A solution to the signal mismatch problem. IEEE Transactions on Signal Processing,51 (2):313-324,2003.
    S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,2004.
    D. P. Palomar and Y. Jiang. MIMO Transceiver Design via Majorization Theory. Now Publishers, 2007.
    Tom Apostol. Mathematical Analysis. Addison-Wesley,1974.
    P. Whittle. Some general points in the theory of optimal experimental design. J. Roy. Statist. Soc. B,35:123-130,1973.
    张贤达.矩阵分析与应用.清华大学出版社,2004.
    F. Alizadeh and J. P. A. Haeberly. Primal-dual interior point methods for semi-definite program-ming:Convergence rates. SI AM Journal on Optimization,8(3):746-768,1998.
    F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathematical Programming Series B,95:3-51,2003.
    H. G. Eggleston. Convexity. Cambridge University Press,1958.
    S. Boyd and C. Barratt. Linear Controller Design:Limits of Performance. Prentice-Hall,1991.
    I. S. Du. The solution of augmented systems. In Proceedings of the 15th Dundee Conference, Longman Scientic and Technical, pages 40-55,1993.
    D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar. Convex Analysis and Optimization. Belmont, MA, USA:Athena Scientific,2003.
    L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review,1996.
    A. R. Calderbank. The art of signaling:Fifty years of coding theory. IEEE Transactions on Information Theory,44(6):2561-2595,1998.
    S. Boyd, S. J. Kim, L. Vandenberghe, and A. Hassibi. A tutorial on geometric programming. Optimization and Engineering, Springer,2007.
    R. Rockafellar. Convex Analysis. Princeton, NJ:Princeton University Press,1970.
    P. Viswanath and V. Anantharam. Optimal sequences and sum capacity of synchronous CDMA systems. IEEE Transactions on Information Theory,45(6):1984-1991,1999.
    P. Viswanath, V. Anantharam, and D. N. C. Tse. Optimal sequences, power control, and user ca-pacity of synchronous CDMA systems with linear MMSE multiuser receivers. IEEE Transactions on Information Theory,45(6):1968-1983,1999.
    P. Viswanath and V. Anantharam. Optimal sequences for CDMA under colored noise:A schur-saddle function property. IEEE Transactions on Information Theory,48(6):1295-1318,2002.
    D. P. Palomar. Convex primal decomposition for multicarrier linear MIMO transceivers. IEEE Transactions Signal Processing,53(12):4661-4674,2005.
    J. Dai and Z. Ye. Optimal designs for linear MIMO transceivers using directional derivative. IET Communications,3(9):1452-1462,2009.
    H. Sun and Z. Ding. Iterative transceiver design for MIMO ARQ retransmissions with decision feedback detection. IEEE Transactions on Signal Processing,55(6):3405-3416,2007.
    J. Dai and Z. Ye. Optimal design for linear MIMO transceivers with lp-norm power constraint. in Proc. IEEE ICCS 2008, pages 836-840,2008.
    J. Dai, C. Chang, Z. Ye, and Y. S. Hung. An efficient greedy scheduler for zero-forcing dirty-paper coding. IEEE Transactions on Communications,57(7):1939-1943,2009.
    G. H. Golub and C. F. V. Loan. Matrix Computations,3rd ed. Baltimore, MD:John Hopkins Univ. Press,1996.
    J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and Non-linear Equations. Philadelphia, PA:SIAM,1996.
    P. Stoica and Y. Jiang. On MIMO channel capacity:an intuitive disscusion. IEEE Signal Process-ing Magazine,22(5):83-84,2005.
    J. P. Schumacher, L. andKermoal, F. Frederiksen, K. I. Pedersen, A. Algans, and P. E. Mogensen. Mimo channel characterization. [online] available:http://www.ist-metra.org. Deliverable D2 V1.1 of IST-1999-11 729 METRA project, pages 1-57,2001.
    B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals of Statistics, 32(2):407-499,2004.
    S. Rosset and J. Zhu. Piecewise linear regularized solution paths. Annals of Statistics,35(3): 1012-1030,2007.
    T. Hastie, S. Rosset, Tibshirani R., J. Zhu, and N Cristianini. The entire regularization path for the support vector machine. Journal of Machine Learning Research,5:1391-1415,2004.
    EIA/TIA/IS-856. CDMA2000 High Rate Packet Data Systems. Telecommunication Industry Association,2000.
    W. C. Y. Lee. Overview of cellular CDMA. IEEE Transactions on Vehicular Technology,40(2): 291-302,1991.
    Y. H. Lee and Y. Bar-Ness. Transmission power adaptations in multicarrier CDMA communica-tions over Rayleigh-Fading channels. IEEE Transactions on Vehicular Technology,56(6):3486-3494,2007.
    H. M. Yoon, Y.and Kim. An efficient blind multiuser detection for improper DS/CDMA signals. IEEE Transactions on Vehicular Technology,55(2):572-582,2006.
    J. Dai. Proportional QoS adjustment with weighted sum power constraint. Younger Members Exhibition and Conference (YMEC) for 2009, pages 1-5,2009.
    S. Zhao, Z. Xiong, and X. Wang. Optimal resource allocation for wireless video over CDMA networks. IEEE Transactions on Mobile Computing,4(1):56-67,2005.
    J. X. Yao, D. T. C. Wong, and Y. H. Chew. Capacity balancing between the reverse and forward links in multiservice CDMA cellular networks with cross-Layer design. IEEE Transactions on Vehicular Technology,55(4):1397-1411,2006.
    S. Zhao, Z. Xiong, and X. Wang. Rate allocation and admission control for differentiated services in CDMA data networks. IEEE Transactions on Mobile Computing,6(2):179-191,2007.
    S. A. Jafar and A. Goldsmith. Adaptive multirate CDMA for uplink throughput maximization. IEEE Transactions on Wireless Communications,2(2):218-228,2003.
    S. J. Oh and A. C. K. Soong. Qos-constrained information-theoretic sum capacity of reverse link cdma systems. IEEE Transactions on Wireless Communications,5(1):3-7,2006.
    S. J. Oh, A. D. Damnjanovic, and A. C. K. Soong. Information theoretic sum capacity of reverse link cdma systems. in Proceedings of The 57th IEEE Semiannual Vehicular Technology Confer-ence (VTC 2003-Spring), pages 93-97,2003.
    A. Abadpour, A. S. Alfa, and A. C. Soong. Closed form solution for maximizing the sum capacity of reverse-link CDMA system with rate constraints. IEEE Transactions on Wireless Communica-tions,7 (4):1179-1183,2008.
    D. Zhang, S. J. Oh, and N. Bhushan. Optimal resource allocation for data service in CDMA reverse link. IEEE Transactions on Wireless Communications,6(10):3648-3656,2007.
    A. Abadpour, A. S. Alfa, and A. C. Soong. Closed form solution for QoS constrained information-theoretic sum capacity of reverse link CDMA systems. in Proceedings of the second ACM Q2SWinet 2006, Torremolinos, Malaga, Spain,, pages 123-128,2006.
    A. Muqattash, M. Krunz, and S. Tao. Performance enhancement of adaptive orthogonal modu-lation in wireless CDMA systems. IEEE Journal on Selected Areas in Communications,24(3): 565-578,2006.
    S. J. Oh. Resource allocation in wireless networks. Ph. D. dissertation, Univ. of Michigan,2000.
    D. Goodman and N. Mandayam. Power control for wireless data. IEEE Personal Communications Magazine,7:48-54,2000.
    G. H. Hardy, J. E. Littlewood, and G. Polya. Some simple inequalities satisfied by convex func-tions. Messenger Mathematics,58:145-152,1929.
    S. G. Nash and A. Sofer. On the complexity of a practical interior-point method. SIAM Journal on Optimization,8(3):833-849,1998.
    M. H. M. Costa. Writing on dirty paper. IEEE Trans. on Information Theory,29(3):439-441, 1983.
    H. Weingarten, Y. Steinberg, and S. S. Shamai. The capacity region of the Gaussian Multiple-Input Multiple-Output broadcast channel. IEEE Transactions on Information Theory,52(9):3936-3964, 2006.
    P. Viswanath and D. N. Tse. Sum capacity of the vector Gaussian broadcast channel and downlink-uplink duality. IEEE Trans. on Information Theory,49(8):1912-1921,2003.
    G. Caire and S. Shamai. On the achievable throughput of a multiantenna Gaussian broadcast channel. IEEE Transactions on Information Theory,49(7):1691-1706,2003.
    Z. Tu and R. S. Blum. Multiuser diversity for a dirty paper approach. IEEE Communications Letters,7(8):370-372,2003.
    J. Jiang, R. M. Buehrer, and W. H. Tranter. Greedy scheduling performance for a zero-forcing dirty-paper coded system. IEEE Transactions on Communications,54(5):789-793,2006.
    T. Yoo and A. Goldsmith. On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming. IEEE Journal on Selected Areas in Communications,24(3):528-541,2006.
    G. Dimic and N. D. Sidiropoulos. On downlink beamforming with greedy user selection:perfor-mance analysis and a simple new algorithm. IEEE Transactions on Signal Processing,53(10): 3857-3868,2005.
    K. L. Chung and W. M. Yan. The complex Householder transform. IEEE Transactions on Signal Processing,45(9):2374-2376,1997.
    S. Hanly. An algorithm for combined cell-site selection and power control to maximize cellular spread spectrum capacity. IEEE Journal on Selected Areas in Communications,13(7):1332-1340, 1995.
    R. Yates. A framework for uplink power control in cellular radio systems. IEEE Journal on Selected Areas in Communications,13(7):1341-1348,1995.
    D. Catrein, L. Imhof, and R. Mathar. Power control, capacity, and duality of up-and downlink in cellular CDMA radio. IEEE Transactions on Communications,52(10):1777-1785,2004.
    S. Hanly. Congestion measures in DS-CDMA networks. IEEE Transactions on Communications, 47(3):426-437,1999.
    L. Mendo and J. Hernando. On dimension reduction for the power control problem. IEEE Trans-actions on Communications,49(2):243-248,2001.
    J. Papandriopoulos, J. Evans, and S. Dey. Outage-based optimal power control for generalized multiuser fading channels. IEEE Transactions on Communications,54(4):693-703,2006.
    D. Tse and S. Hanly. Linear multiuser receivers:effective interference, effective bandwidth and user capacity. IEEE Transactions on Information Theory,45(2):641-657,1999.
    S. Hanly and D. Tse. Power control and capacity of spread spectrum wireless networks. Automat-ica,35(12):1987-1012,1999.
    H. Boche and S. Stanczak. Convexity of some feasible QoS regions and asymptotic behavior of the minimum total power in CDMA systems. IEEE Transactions on Communications,52(12): 2190-2197,2004.
    H. Boche and S. Stanczak. Log-convexity of the minimum total power in CDMA systems with certain quality-of-service guaranteed. IEEE Transactions on Information Theory,51(1):374-381, 2005.
    L. Imhof and R. Mathar. Capacity regions and optimal power allocation for CDMA cellular radio. IEEE Transactions on Information Theory,51(6):2001-2019,2005a.
    L. Imhof and R. Mathar. The geometry of the capacity region for CDMA systems with general power constraints. IEEE Transactions on Wireless Communications,4(5):2040-2044,2005b.
    N. Bambos, S. Chen, and G. Pottie. Channel access algorithms with active link protection for wireless communciation networks with power control. IEEE Transactions on Networking,8(5): 583-597,2000.
    D. Catrein, A. Feiten, and R. Mathar. Uplink interference based call admission control for W-CDMA mobile communication systems. in Proc. VTC 2005 Spring,2005.
    A. Feiten and R. Mathar. A game theoretic approach to capacity sharing in CDMA radio networks. in Proc. Australian Telecommunications and Applications Conference (ATNAC04),2004.
    A. Feiten and R. Mathar. Optimal power control for multiuser CDMA channels, in Proc. Interna-tional Symposium on Information Theory (ISIT 2005),2005.
    R. Mathar and A. Schmeink. Proportional Qos adjustment for achieving feasible power allocation in CDMA systems. IEEE Transactions on Communications,56(2):254-259,2008.
    C. D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700