Ad hoc网络分层协议及其跨层设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ad hoc网络是一种具有特殊结构的无线通信系统,它的通信不依赖于任何固定设施,而是依靠节点之间的相互协作以多跳方式完成,具有自组织、分布性、动态性等特点,因而能够在复杂多变的环境中实现快速部署和数据通信。移动自组织网络作为移动通信新崛起的一个重要分支,近几年发展迅速,应用于军事战术通信系统、紧急服务和灾难恢复等诸多领域,它的出现引起了世界许多国家的军事部门、工业界和学术界的极大关注。
     然而,与其他传统通信网络相比,由于Ad hoc网络所具有的无中心和自组织性、动态的网络拓扑、多跳路由、无线传输等特性,需要为移动自组网设计专门的协议栈。论文分别对与移动自组织网络有关的数据链路层、网络层、传输层协议以及跨层设计等问题展开了深入分析和探讨,主要研究贡献归纳如下:
     第一章主要介绍了Ad hoc网的发展历史、特性以及关键技术和热点问题、研究背景和意义、论文主要贡献和创新点、论文结构和内容安排。
     第二章在详细介绍了IEEE 802.11和IEEE 802.11e的基础上,提出了一种满足流量均衡且保证高优先级业务QoS的EDCA改进机制——自适应EDCA(Adaptive EDCA)。该机制仍然采用竞争窗口(Contetion Window)来控制传送概率,而传送概率的乘积因子(Multiple Factor)的计算采用了令牌漏桶算法(Token Bucket algorithm)来均衡流量,且沿用IEEE 802.11e具有QoS保证的基于竞争的EDCA协议。
     由于Ad hoc网络所处的无线环境受到带宽(Bandwidth)、时延(Delay)、抖动(Jitter)、帧丢失率(Loss)等因素的限制,可能高等级业务所处的无线环境并不适合业务传送,造成网络拥塞,使得总吞吐量下降,且高等级业务长期占用无线资源造成不公平问题。针对上述问题,我们进一步提出了具有业务区分功能的EDCA改进机制——改进EDCA机制(Improved EDCA)。该算法在计算竞争窗口时,引入了信道阻力的概念来度量冲突概率,考虑了业务传送的无线信道环境。
     Ad hoc网络中使用的主动队列管理算法在设置参数时,存在算法和具体的网络有关,参数设置对网络的稳定性和动态性能影响较大的问题,我们提出的采用单神经元动态调整PID参数的ANNPID算法,解决了PID算法参数设置的难题。
     第三章简述了当前用于Ad hoc网络的路由协议,主要包括主动式(proactive)、反应式(reactive)和混合式三种。我们提出了一种混合型的路由协议IAODV,具有Multipath和PA两种特性。它具有PA特征的源路由特性,允许节点侦听并记录路由消息。这种方法增加了路由包的大小,但是减少了传送次数。路由发现过程建立路由表,并维护路
     由以防链路失效。由于多径特性的使用,减少了泛洪次数,能够有效的降低路由开销。第四章介绍了传输层基本的拥塞控制机制:慢启动、拥塞避免、快速重传和快速恢复。针对无线链路特点,根据其实现机制的不同,把TCP的改进方案分为:端到端的解决方案、分段的TCP连接方案和链路层解决方案。本章在介绍三种改进方案的基础上对端到端方案中常用的几种TCP改进算法进行了仿真实验,验证了SACK算法的优越性。
     第五章介绍了Ad hoc网络中经常使用的跨层设计方法,并给出了Ad hoc网络跨层设计的一般方法。之后,又介绍了凸优化理论在Ad hoc网络中的应用,并给出了凸优化理论应用的一般方法。
     接下来针对具体的多媒体业务提出相应的跨层设计算法。对于VoIP这类时延约束的业务而言,时延成为我们重点考虑的问题。我们提出了一种使用中间节点显示拥塞指示(ECN)的方法,联合传输层和数据链路层的TCP自适应机制(Adaptive TCP)。采用数据帧时延(FD)作为分组时延过大引起的数据包丢失率的判断标准,即使整体的数据包丢失率比较高,只要FD满足我们的要求,TCP发送窗口仍然保证不变。我们认为数据包丢失率较大是由无线链路误码引起的,而非网络拥塞。
     基于凸规划算法在无线网络的资源分配方面的研究成果,则可以通过对网络中相关层次中参数的统一配置,来最优化网络的性能。我们使用跨层设计的方法,对如何通过联合的信源编码、功率控制以及端到端时延分配而最大化视频接收质量的问题进行了数学建模,随后基于凸优化理论得到了分布式的联合分配算法,通过理论分析证明了我们提出的算法可以收敛到全局最优解。
     第六章是本论文的结论部分,对全文的工作进行了总结,并阐明了与本文相关的进一步研究工作。
Ad hoc networks are wireless communication systems with special structure; they don't depend on any fixed facilities, but depend on mutually cooperation of the nodes with several hops. They have the characteristics of self organization, distribution, dynamic state etc., so they can be deployed in complicate environment and perform data communication. Mobile Ad hoc network is an important branch of mobile communication. It is used in the military tactics, urgent service, disasters recover etc. It arouses high attention of many military sections, industrial fields and academic circles.
     However, comparing to other traditional communication networks, Ad hoc networks have the characteristics of self organization, dynamic topology, routing in several hops, transmission in the wireless condition etc. So a special protocol stack is required to be designed for it. In this thesis, the data link layer, network layer, transportation layer and cross-layer design of Ad hoc networks are analysised and researched respectively. The main contributions are introduced as follows:
     Chapter 1 introduces the history, characteristics, key technology and hot problems of Ad hoc networks. Research background, contribution and structure of this thesis are also presented in this chapter.
     Chapter 2 introduces the IEEE 802.11 and IEEE 802.11e and proposes an AEDCA (Adaptive EDCA) with traffic balance and QoS guarantee. This mechanism still adopts contention window (CW) to control deliver probability, and involves Token Bucket Algorithm (TBA) computing the multiple factor (MF) to balance the traffic, and follows the QoS mechanism used in IEEE 802.11e EDCA.
     Ad hoc network is subjected to bandwidth, delay, jitter, frame loss, etc. As a result, high class service is not suitable for transmission sometimes. This situation makes network congestion and low throughput, and unfair problem raised by high class service not sharing the bandwidth resource. An improved EDCA (IEDCA) mechanism with services differentiations is proposed. Channel resistance coefficient is introduced to compute the collision probability in this algorithm, considering the wireless characteristics.
     The parameters setting of active queue management (AQM) in Ad hoc networks is correspondence to the network, and has important impact on the stability and dynamic state function. We proposed an ANNPID algorithm to solve the problem of parameters setting of PID algorithm.
     Chapter 3 introduces the Ad hoc network routing protocols, including proactive routing, reactive routing and hybrid routing. We proposed a hybrid IAODV routing protocol with multipath and PA characteristics. It has the source routing feature of PA characteristics, allowing nodes listening and recording the route information. This method increased the size of data packet, but decreased the transmission times. The route table is established in route discovery process, and maintains the route to prevent expiration. The overhead of route discovery process is reduced by using multipath.
     Chapter 4 introduces basic congestion control mechanism in the transportation layer: slow start, congestion avoidance, fast retransmission and fast recovery. Aiming at the characteristic of the wireless link, three methods of improvement of TCP can be implemented: end-to-end solution, wired-wireless-combined TCP solution, TCP with data link improvement solution. Based on the introduction of the three main improve methods, the simulation of the main end-to-end TCP algorithms is done. The result proves the best performance of SACK algorithm.
     Chapter 5 introduces the cross-layer design in Ad hoc network and its common design method. The convex optimizing theory in Ad hoc network and its common application is then introduced.
     We proposed a cross-layer design in multimedia service. Delay is critical problem for delay-constrained service such as VoIP. Explicit congestion notice (ECN) is used to propose a joint transportation and data link layer adaptive TCP mechanism. Adaptive TCP involves frame delay (FD) as the criterion to judge the packet loss. TCP transmitting window is fixed as long as the FD satisfy our criterion, even though packet loss is high. We suppose that the packet loss is caused by wireless bit error not network congestion.
     Based on the convex optimizing theory used in wireless resource allocation, we are able to optimize the network performance through adjust parameter cross layer. We utilize cross-layer design and joint source code, power control, end-to-end delay allocation to set up a math mode to maximize the quality of video. Then our algorithm is proved can converge to the best value through theory discussion.
     Chapter 6 is the conclusion. We summarize the whole thesis, and discuss our further research.
引文
[1] IEEE-SA. IEEE 802.16 [DB/OL]. http://standards.ieee.org/getieee802/802.16.html, 2009.
    [2] IEEE-SA. IEEE 802.11 [DB/OL]. http://standards.ieee.org/getieee802/802.11.html, 2008.
    [3] Aiello G.R. and Rogerson G.D.. Ultra-wideband wireless systems. IEEE Microwave Magazine [J], 2003, 4(2): 36-47.
    [4] IEEE-SA. IEEE 802.15 [DB/OL]. http://standards.ieee.org/announcements/802151app.html, 2002.
    [5] Corson S. and Macker J.. IETF RFC 2501 [DB/OL]. http://www.ietf.org/rfc/rfc2501.txt, Jan. 1999.
    [6] Abramson N. Development of the ALOHANET [J]. IEEE Trans. On inform. theory, 1985, 31(2): 119-123
    [7] IEEE-SA. IEEE 802.15 [DB/OL]. http://standards.ieee.org/getieee802/802.15.html, 2005.
    [8] Jiang M., Li J. and Tay Y.C.. Cluster based routing protocol (CBRP) [DB/OL]. http://tools.ietf.org/html/draft-ietf-manet-cbrp-spec-01, Aug. 1999.
    [9] ETSI. HiperLAN [DB/OL]. http://www.etsi.org/website/technologies/hiperlan.aspx, 2009.
    [10]] Deering S. and Hinden R.. IETF RFC 2460 [DB/OL], http://www.ietf.org/rfc/rfc2460.txt, Dec. 1998.
    [11] Gong Y.R., He D., He C. et al. A HOS-based blind signal extraction method for chaotic MIMO systems [J]. J. Shanghai Jiaotong Univ., 2008, 13(1): 21-25.
    [12] Che X.L. and He C.. Dirty paper coding and linear receiver design for multiuser MIMO broadcast channels [J]. J. Shanghai Jiaotong Univ., 2008, 13(1): 30-34s.
    [13] Liu F., Jiang L.G. and He C.. Lattice reduction aided MMSE Tomlinson-Harashima precoding based on VBLAST algorithm for MIMO systems [J]. J. Shanghai Jiaotong Univ., 2008, 13(1): 12-15.
    [14]韩静,吕旌阳,吴伟陵等. MIMO-OFDM系统中高性能同步算法[J].北京邮电大学学报,2008, 31(1): 112-115.
    [15]王皓,单杭冠,王宗欣. MINO系统次优接收机下分集与复用的优化[J].复旦学报(自然科学版), 2008, 47(1): 50-55.
    [16]赵宸,郭滨,王珂.基于瞬时混合结构的盲多用户检测[J].通信学报, 2008, 29(2): 135-140.
    [17]徐侃如,刘威,杨宗凯等.无线传感器网络中一种基于分簇的能量高效虚拟MIMO传输策略[J].小型微型计算机系统. 2008,29(2): 193-198.
    [18]金宁,李锡华,史济刚.OFDM系统DCT/IDCT插值信道估计算法[J].浙江大学学报(理学版), 2008,35(2): 178-184.
    [19]张成文,张中兆,孟维晓.基于相关信道的多用户MIMO-OFDM下行链路资源分配[J].北京邮电大学学报, 2008, 31(1): 75-78.
    [20]唐志华,卫国,朱有团等.基于效用公平的多用户下行OFDM系统机会调度[J].数据采集与处理, 2008, 23(1): 40-44.
    [21]王德刚,孙即祥,魏急波.一种数据辅助的OFDM残余频偏跟踪方法[J].数据采集与处理, 2008, 23(1): 8-12.
    [22]李智伟,冯春燕,张天魁等.用于OFDMA系统多小区干扰协调的功率分配算法[J].北京邮电大学学报, 2008, 31(1): 71-74.
    [23] Wu J.J., Liang Q.L., Xiang H.G.. Analysis of weighted non-coherent receiver for UWB-OOK signal in multipath channels. J. Electronics (China), 2008, 25(1):32-38.
    [24]王辉宇,张钦宇,张乃通. I-UWB码间干扰的抑制方法研究[J].哈尔滨工业大学学报,2008, 40(1): 28-30.
    [25]夏斌,谢楠. TH-PPM UWB信噪比的估计方法[J].吉林大学学报(信息科学版), 2008, 26(1): 44-47.
    [26]尹振东,吴芝路,任广辉等.基于一类SVM贝叶斯算法的DS-UWB系统多用户检测研究[J].重庆邮电大学学报(自然科学版), 2008, 20(1):7-10.
    [27]郝丹丹,邹仕洪,程时端.一种用于无线网络中实时业务的跨层调度算法[J].软件学报,2008,19(1):156-166.
    [28]李方敏,徐文君,高超.一种适用于无线传感器网络的功率控制MAC协议[J].软件学报,2007,28(5):1080-1091.
    [29]周新运,皇甫伟,孙利民.无线局域网EDCA机制MAC接入延时分析[J].软件学报,2008,19(8):2127-2139.
    [30]贾会玲.异构无线网络中的接入选择与准入控制研究[D].浙江大学博士学位论文, 2007年4月.
    [31]徐明霞. Ad hoc网络中的时分多址接入及跨层设计研究[D].浙江大学博士论文,2007年4月.
    [32]覃振权.无线自组网路由和MAC关键技术的研究[D].中国科学技术大学博士论文,2007年6月.
    [33] Jain S. and Das S.R.. Exploiting path diversity in the link layer in wireless ad hoc networks [A]. WoWMoM 2005 [C]. IEEE, 2005:22-30.
    [34] Jung E.S. and Vaidya N.H.. A Power Control MAC Protocol for Ad Hoc Networks [J]. Wireless Networks, 2005, 11(1-2):55-66.
    [35]潘习. Ad hoc网络MAC协议的关键问题研究.通讯和计算机, 2005, 2(8):63-68.
    [36] Royer E.M., Lee S.J. and Perkins C.E.. The effects of MAC protocols on ad hoc network communication [A]. WCNC 2000 [C]. IEEE, 2000:543-548.
    [37]肖永康.无线Ad Hoc网络中MAC协议和TCP的性能研究.清华大学博士论文. 2004年9月.
    [38]吴中博,樊小泊,陈红.基于能量水平的多Sink节点传感器网络路由算法[J].计算机研究与发展, 2008,45(1):41-46
    [39] Ingelrest F. and Simplot-Ryl D.. Maximizing the Probability of Delivery of Multipoint Relay Broadcast Protocol in Wireless Ad Hoc Networks with a Realistic Physical Layer [A]. LNCS 2006 [C], Springer, 2006:143-154.
    [40] Frey H., Ingelrest F., Simplot-Ryl D.. Localized Minimum Spanning Tree Based Multicast Routing with Energy-Efficient Guaranteed Delivery in Ad Hoc and Sensor Networks [A]. WOWMOM 2008 [C], Newport beach, CA, USA: IEEE, 2008.
    [41] Wu J. and Yang S.H.. SmallWorld Model-Based Polylogarithmic Routing Using Mobile Nodes [J]. J. computer sci. & tech., 2008, 23(3): 327-342.
    [42]阎新芳.无线Ad hoc网络分层路由问题研究.天津大学博士论文, 2005年6月.
    [43]黄景博.移动Ad hoc网络的节能路由技术研究.中国科学技术大学博士论文, 2007年5月.
    [44] Li L.Y. and Li C.L.. A Hierarchical QoS Multicast Routing Protocol for Mobile Ad hoc Networks [J]. Chinese journal of electronics, 2006, 15(4):573-577.
    [45] Xu G.W., Li F., Shi X.J. et al. A Layered Zone Routing Algorithm in Ad Hoc Network Based on Matrix of Adjacency Connection [J]. J. Donghua Univ. (Eng. Ed.), 2007, 24(1):43-45.
    [46] Cai W.Y., Jin X.Y., Zhang Y. et al. A load-balanced minimum energy routing algorithm for Wireless Ad Hoc Sensor Networks [J]. J. Zhejiang Univ., 2006, 7(4): 502-506.
    [47] Li Y.P., Wang X., Xue X.Y. et al. a loop-based approach in clustering and routing mobile Ad hoc networks [J], Journal of electronics, Sep. 2006, 23(5):651-655.
    [48]孙利民,李波,周新运.无线传感器网络的拥塞控制技术.计算机研究与发展, 2008, 45(1):63-72
    [49] Tan L.S., Zhang W. and Cao Y.. On Parameter Tuning for FAST TCP [J]. IEEE Communication Letters. 2007, 11(5):458-460
    [50]方维维,钱德沛,刘轶.无线传感器网络传输控制协议[J].软件学报, 2008, 19(6):1439-1451.
    [51]徐昌彪,鲜永菊,唐朝伟等.一种传输控制协议中的主动拥塞控制机制[J].软件学报, 2008, 19(6):1533-1545.
    [52]徐伟强,吴铁军,汪亚明等.强动态Ad Hoc网的拥塞控制:价格协作和滚动优化[J].软件学报, 2009,19(9):2389-2402.
    [53] Karenos K., Kalogeraki V. and Krishnamurthy S.V.. Cluster-based congestion control for supporting multiple classes of traffic in sensor networks [A]. Proceedings of the 2nd IEEE workshop on Embedded Networked Sensors [C], IEEE, 2005:107-114 .
    [54] IBOM U.O. TCP performance over MANET [A]. ICOIN 2008 [C], Busan, South Korea: ICOIN, 2008:1-5.
    [55] Wang C.G., Sohraby K. and Li B.. SenTCP: A Hop-by-Hop Congestion Control Protocol for Wireless Sensor Networks [A]. INFOCOM 2005 [C], IEEE, 2005.
    [56]龙承念,杨会龙,李欣,关新平. EHSTCP:改进的高速TCP算法[J].计算机学报, 2008, 31(3):440-449.
    [57]徐伟强,吴铁军,汪亚明等.用于Ad hoc网络的自适应多速率多播拥塞控制策略[J].软件学报, 2003, 19(3):769-778.
    [58] Liu C.H., Leung K.K. and Gkelias A.. A Novel Cross-Layer QoS Routing Algorithm for Wireless Mesh Networks [A]. ICOIN 2008 [C], IEEE, 2008:1-5.
    [59] Zhang Q. and Zhang Y.Q.. Cross-Layer Design for QoS Support in Multihop Wireless Networks [J]. Proceedings of the IEEE, 2008, 96(1): 64-76.
    [60] Sagduyu Y.E. and Ephremides A.. Cross-Layer Optimization of MAC and Network Coding in Wireless Queueing Tandem Networks [J]. IEEE Transactions on Information Theory, 2008, 54(2):554-571.
    [61] Wang X., Yu Y.Q., Giannakis G.B.. Design and Analysis of Cross-Layer Tree Algorithms for Wireless Random Access [J]. IEEE Transactions on Wireless Communications, 2008, 7(3): 909-919.
    [62]杨彦彬,冯久超.基于VPN技术的组网方案探讨[J].计算机科学, 2008,35(9):110-113.
    [63]郑少仁, Ad hoc网络技术[M],北京人民邮电出版社, 2005.
    [64] Yang X.. A simple and effective priority scheme for IEEE 802.11 [J]. IEEE Communications Letters, 2003, 7(2): 70 -72.
    [65] Chhaya H. S. and Gupta S.. Performance modeling of asynchronous data transfer methods of IEEE 802.11 MAC protocol [J]. Wireless Networks, 1997, 3(3): 217–234.
    [66] Weinmiller J., Woesner H., Ebert J.P. et al. Analyzing the RTS/CTS Mechanism in the DFWMAC Media Access Protocol for Wireless LANs [A]. In Proc. of IFIP TC6 Workshop Personal Wireless Communications (Wireless Local Access) [C], 1995: 117-130.
    [67] Natkaniec M., Pach A.R.. An analysis of the influence of the threshold parameter on the IEEE 802.11 network performance [A]. WCNC 2000 [C], IEEE, 2000:819 -823.
    [68] Bruno R., Conti M., Gregori E.. IEEE 802.11 Optimal Performances: RTS/CTS Mechanism Vs.Basic Access [A]. PIMRC 2002 [C], 2002:1747-1751.
    [69] IEEE Std, 802.11-1999, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications [DB/OL], http://standards.ieee.org/reading/ieee/updates/errata/802.11a-errata.pdf, 1999.
    [70] Krishna P.V. and Iyengar N.Ch.S.N.. Sequencing technique: an enchancement to 802.11 medium access control to improve the performance of wireless networks [J]. Int. J. Communication Networks and Distributed Systems, 2008, 1(1):52-70.
    [71] Carlson E., Prehofer C., Bettstetter C. et al, A Distributed End-to-End Reservation Protocol for IEEE 802.11-Based Wireless Mesh Networks [J], IEEE Journal on Selected Areas in Communications, 2006, 24(11):2018-2027.
    [72] Banchs A., Perez X.. Providing throughput guarantees in IEEE 802.11 wireless LAN [A]. WCNC 2002 [C], IEEE, 2002:130-138.
    [73] Yan J.R., Zhang S.Y., Long H. et al. An Analytical Model for EDCA Mechanism [J]. Journal of Electronics & Information Technology, 2008, 30(4):979-983.
    [74] Mangold S., Choi S., May P. et al. IEEE 802.11e Wireless LAN for Quality of Service [A]. Proceedings of European Wireless [C], Florence, Italy, 2002:32-39.
    [75] Zhou X.Y., Wei H.F., Sun L.M. et al, MAC access delay analysis of EDCA mechanism of wireless LANs [J], Journal of Software, 2008, 19(8):2127?2139.
    [76] Sunghyun C., Javier D.P., Sai S.N. et al, IEEE 802.11 e contention-based channel access (EDCF) performance evaluation [A], ICC 2003 [C], IEEE, 2003:1151-1156.
    [77] Zhao B. and Hua Y.B.. A distributed medium access control scheme for a large network of wireless routers [J]. IEEE Transactions on Wireless Communications, 2008,7(5):1614-1622.
    [78] Wu H.T., Wang X., Liu Y.X. et al. SoftMAC: Layer 2.5 MAC for VoIP Support in Multi-hop Wireless Networks [A]. Sensor and Ad Hoc Communications and Networks 2005 [C], 2005:441-451.
    [79] Wu H.t., Liu Y.X. Zhang Q. et al. SoftMAC: Layer 2.5 Collaborative MAC for Multimedia Support in Multihop Wireless Networks. IEEE Transactions on Mobile Computing [J], 2007, 6(1):12–25.
    [80] Zang Y.P., Stibor L., Walke B. et al. A Novel MAC Protocol for Throughput Sensitive Applications in Vehicular Environments [A]. Vehicular Technology Conference 2007 [J], 2007:2580-2584.
    [81] Liu Y.G., Ye W., Feng S.L.. A Multipath Routing Algorithm for Ad hoc Networks Based on Channel Resistance [J]. JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2009, 31(2):476-479.
    [82] Romdhani L., Qiang N., Turletti T.. Adaptive EDCF: Enhanced Service Differentiation for IEEE 802.11 Wireless Ad-hoc Networks [A]. Wireless Communications and Networking 2003 [C], IEEE, 2003:16-20.
    [83] Ni Q. AEDCF [DB/OL], http://www-sop.inria.fr/planete/qni/Research/AEDCF, 2002.
    [84]李建东.信息网络理论基础[M],西安:西安电子科技大学出版社, 2001:136-152.
    [85] Royer E.M., Toh C.K.. A review of current routing protocols for ad hoc mobile wireless networks [J]. IEEE Personal Communications, 1999, 6(2):46-55.
    [86] Johansson P., Larsson T., Hedman N. et al., Scenario-based performance analysis of routing protocols for mobile ad-hoc networks [A], MobiCom 1999 [C]. ACM, 1999:195-206.
    [87] Perkins C.E. and Bhagwat P.. Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers [A]. SIGCOMM 1994 [C]. London, UK: ACM, 1994:234-244.
    [88] Murthy S. and Garcia-Luna-Aceves J.J.. An efficient routing protocol for wireless networks [J]. ACM/Baltzer Mobile Networks Appl., Special issue on Routing in Mobile Communication Networks, 1996, 1(2):183-197.
    [89] Johnson D.B. and Maltz D.A.. Dynamic source routing in ad hoc wireless networks [M]. Kluwer Publishing company, 1996:153-181.
    [90] Perkins C., Belding-Royer E., Das S.. Ad hoc on demand distance vector (AODV) routing [DB/OL]. http://www.ietf.org/internet-drafts/draft-ietf-manet-aodv-07.txt, July 2003.
    [91] Dube R., Rais C.D., Wang K.Y. et al.. Signal stability-based adaptive routing (SSA) for ad hoc mobile networks [J]. IEEE Personal Commun., 1997, 4(1):36-45.
    [92] Park V.D. and Corson M.S.. Temporally-ordered routing algorithms (TORA) version 1 functional specification [DB.OL]. http://www.ietf.org/internet-drafts/draft-ietf-manet-tora-spec-03.txt, Nov. 2000.
    [93] Li J.D.. Overview on scalability of routing protocols for mobile ad hoc networks [A]. Summary of research work (Jan.20 2002-Jan.19 2003) [C], Cornell University, 2003:42-62.
    [94] Woo S.C.M. and Singh S., Scalable routing protocol routing protocol for ad hoc networks [J]. Wireless Networks, 2001, 7(5):513-529.
    [95] Li J.Y., Jannotti J., Couto D.S.J.D. et al.. A scalable location service for geographic ad hoc routing [A]. Proceedings of the sixth annual international conference on Mobile computing and networking [C]. Boston, MA, USA:ACM, 2000:120-130.
    [96] Santivanez C.A., Ramanathan R., Stavrakakis L. et al.. Making link-state routing scale for ad hoc networks [A]. MobiHOC 2001 [C], Long Beach, CA, USA:ACM, 2001:22-32.
    [97] Iwata A., Chiang C.C., Pei G.Y. et al.. Scalable routing strategies for ad hoc wireless networks [J]. IEEE J. Select. Areas Commun, 1999, 17(8):1369-1379.
    [98] Pei G., Gerla M., Chen T.W. et al.. Fisheye state routing protocol (FSR) for ad hoc networks [DB/OL]. http://www.ietf.org/internet-drafts/draft-ietf-manet-fsr-00.txt, Nov. 2000.
    [99] Kherani A., El-Khoury R., El-Azouzi R. et al. Stability-Throughput Tradeoff and Routing in Multi-Hop Wireless Ad-Hoc Networks [J]. Computer Networks, 2008, 52(7):1365-1389.
    [100] Clausen T. and Jacquet P.. Optimized Link State Routing Protocol (OLSR) [DB/OL]. http://www.ietf.org/rfc/rfc3626.txt, Oct. 2003.
    [101] Motegi S. and Horiuchi H.. Proposal on AODV-Based Multipath Routing Protocol for Mobile Ad Hoc Networks [A]. ISSN 2004 [C]. Proc. First International Workshop on Networked Sensing System, 2004.
    [102] Jain S. and Das S.R.. Exploiting Path Diversity in the Link Layer in Wireless Ad Hoc Networks [J]. Ad hoc network, 2008, 6(5):805-825.
    [103] Huang X., Fang Y.. Multiconstrained QoS Multipath Routing in Wireless Sensor Networks [J]. Wireless Networks, 2008, 14(4):465-478.
    [104] Xu R., Li W.H., Gao P.. Muhipath Routing Protocols in Mobile Ad Hoc Networks [J].Application Research of Computers. 2008, 25(2):591-593.
    [105] Gwalani S., Belding-Roye E.M., Perkins C.E.. AODV-PA: AODV with Path Accumulation [A]. Proc. Next Generation Internet Symp 2003 [C]. IEEE, 2003:527-531.
    [106] Mtibaa A., Kamoun F.. MMDV: Multipath and MPR based AODV Routing Protocol [A]. In Proc. Med-Hoc-Net 2006 [C]. Lipari, Italy, 2006:137-144.
    [107] Koltsidas G., Karapantazis S., Theodoridis G., et al.. A Detailed Study of Dynamic MANET On-Demand Multipath Routing for Mobile Ad hoc Networks [A]. Proc. Int. Conf. Wireless and Optical Communications Networks 2007 [C]. IEEE, 2007:1-5.
    [108] Allman M., Paxson V., Stevens W.. TCP Congestion Control[S]. IETF RFC 2581, April 1999.
    [109] Jacobson V. Congestion Avoidance and Control [J]. Computer Communication Review. 1988, 18(4):314-329.
    [110] Jacobson V. Modified TCP Congestion Avoidance Algorithm [DB/OL]. ftp://ftp.isi.edu/end2end/end2end-interest-1990, April 30, 1990.
    [111] Braden B. Requirements for Internet Hosts-Communication Layers [S]. IETF RFC 1122, Oct. 1989.
    [112] Balakrishnan H., Padmanabhan V.N., Seshan S. et al. A comparison of mechanisms for improving TCP performance wireless links [J]. IEEE/ACM transactions on networking, 1997, 5(6):756-769.
    [113] Hollot C.V.. On designing improved controlled for AQM routers supporting TCP flows in proceedings [A]. INFOCOM 2001 [C]. IEEE, 2001:1726-1734.
    [114] Srisankar K.. Analysis and design of an adaptive virtual queue (AVQ) algorithm for active queue management [A]. SIGCOMM 2001 [C]. ACM, 2001:123-134.
    [115] Sanjeewa A.. REM: Active queue management [A]. Network 2001 [C]. IEEE, 2001:48-53.
    [116] Sun J.S.. PD-Controller: A new active queue management scheme [A]. GLOBECOM 2002 [C]. IEEE, 2002.
    [117]闫平凡,张长水.人工神经网络与模拟进化计算[M].清华大学出版社. 2000.
    [118] Park E. C.. Analysis of the virtual rate control algorithm in TCP networks [J]. Computer Networks. 2004, 40(1):17-41.
    [119] Misra V.. Fluid-based Analysis of a Network of AQM Routers Supporting TCP Flows with an Application to RED [A]. SIGCOMM 2000 [C], Stockholm, Sweden: ACM, 2000.
    [120] Altman E, Jimenenz T. Novel delayed ACK technique for improving TCP performance in multi-hop wireless network [A]. Proceeding of the Personal Wireless Communication [C], LNCS 2775, Spring-Verla, 2003:237-253.
    [121] Chen K. Xue Y. Nahrstedt K.. On setting TCP’s congestion window limit in mobile and ad hoc networks. Proceeding of the International Conference on Communication [A]. IEEE, 2003:1080-1084.
    [122] Chandran K, Raghunathan S. Venkatesan S. et al. A feedback based scheme for improving TCP performance in Ad-Hoc wireless networks [A]. Proceeding of the International Conference on Distributed Computing System [C]. IEEE Computer Society, 1998:472-479.
    [123] Wang F. Zhang Y.. Improving TCP performance over mobile ad-hoc networks with out-of-ordor detection and response [A]. Proceeding of the 3rd ACM International symposium on Mobile Ad Hoc Networking and Computing [C]. ACM, 2002:217-225.
    [124] Kim D. Toh C. Choi Y. TCP-Bus: Improving TCP performance in wireless ad hoc networks [A]. Proceeding of the IEEE International Conference on Communication [C]. IEEE, 2000:1707-1713.
    [125] Bhandarkar S. Sadry N. Reddy A.L.N. et al. TCP-DCR: A novel protocol for tolerating wireless channel errors [J]. IEEE Transation on Mobile Computing, 2005, 4(5):517-529.
    [126] Fu Z.H., Zerfos P., Luo H.Y. et al. The impact of multihop wireless channel on TCP throughput and loss [A]. Proc. of IEEE INFOCOM 2003 [C], IEEE, 2003.
    [127] Bianchi G. Performance Analysis of the IEEE802.11 Distribute Coordination Function [J]. IEEE JSAC, 2000, 18(3):535-547.
    [128]岳鹏,文爱军,赵瑞琴等. IEEE 802.11 MAC协议帧服务时延分析和在拥塞控制[J].西安科技大学学报, 2008, 35(3):409-415.
    [129] Lin X.Z., Zhou J.J., Mu C.D.. Collective Real-Time QoS in Wireless Sensor Networks [A]. 2nd IEEE International Conference on Wireless Communications, Networking and Mobile Computing [C], Wuhan, 2006.
    [130] Lu S., Bharghavan V. and Srikant R.. Fair scheduling in wireless packet networks [A]. IEEE/ACM Transactions on Networking [C], 1999, 7(4):473-489.
    [131] Ramanathan P. and Agrawal P.. Adapting packet fair queuing algorithms to wireless networks [A]. Proceedings of the 4th annual ACM/IEEE international on mobile computing and networking [C]. ACM/IEEE, 1998:1-9.
    [132] Hawa M. and Petr W.D.. Quality of service scheduling in cable and broadband wireless access system [A]. The 10th IEEE International Workshop on Quality of Service [C]. IEEE, 2002:247-255.
    [133] Lin X., Shroff N.B. and Srikant R.. A tutorial on cross-layer optimization in wireless networks [J]. IEEE journal on selected areas in communication, 2006, 24(8):1452-1463.
    [134] Xiao L., Johansson M. and Boyd S.P.. Simultaneous routing and resource allocation via dual decomposition [J]. IEEE Transaction on Communication, 2004, 52(7):1136-1144.
    [135] Bjorklund P.V. and Yuan P.D.. Resource optimization of spatial TDMA in ad hoc radio networks: a column generation approach [A]. INFOCOM 2003 [C], IEEE, 2003.
    [136] Stuhlmuller K., Farber N., Link M. et al. Analysis of video transmission over lossy channel [J]. IEEE Journal on Selected Areas in communications, 2000, 18(6):1012-1032.
    [137] Setton E., Yoo T., Zhu X. et al. Cross-layer design of ad hoc networks for real-time video streaming [J]. IEEE Wireless Communications, 2005, 12(4):59-65.
    [138] Loreanz D.H. and Orda A.. Optimal partion of QoS requirements on unicast paths and multicast trees [J]. IEEE/ACM Transactions on Networking, 2002, 10(1):102-114.
    [139] Saad M., Leon-garcia A., Yu W.. Rate allocation under network end-to-end quality-of-service requirements [A]. Proceedings of IEEE GLOBECOM [C], IEEE, 2006.
    [140] Cheng P., Zhang Z.Y., Chen H.H. et al. A framework of cross-layer design for multiple video streams in wireless mesh networks [J]. Computer Communications, 2008, 31(8):1529-1539.
    [141] Zhu X.Q., Singh J.P., Griod B.. Joint routing and rate allocation for multiple video streams in Ad-hoc wireless networks [J]. Journal of Zhejiang University Science A, 2006, 7(5):727-736.
    [142] Boyd S.P. and Vandenberghe L.. Convex Optimization [M]. Cambridge University Press, 2004.
    [143] Kincaid D. and Cheney W.. Numerical Analysis: Mathematics of Scientific Computing [M]. The third edition. Thomson learning, 2005.
    [144] Stuhlmuller K., Farber N., Link M. et al. Analysis of video transmission over lossy channels [J]. IEEE journal on selected areas in communications, 2000, 18(6):1012-1032.
    [145] Kim T.S. and Kim S.L.. Random power control in wireless ad hoc networks [J]. IEEE transactions on wireless communication letters, 2005, 9(12):1046-1048.
    [146] Julian D. and Chiang M., O’Neill D. et al. QoS and fairness constained convex optimization of resource allocation for wireless cellular and hoc networks [A]. Proceeding of IEEE INFOCOM [C]. New York:IEEE, 2002:477-486.
    [147] Chiang M., Low S.H., Calderbank A.R. et al. Layering as optimization decomposition: a mathematical theory of network architecture [J]. Proceedings of IEEE, 2007, 95(1):255-312.
    [148] Chiang M.. Balancing transport and physical layers in wireless multihop networks: jointly optimal congestion control and power control [J]. IEEE journal on selected areas in communications, 2005, 23(1):104-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700