OFDM系统峰值功率控制及优化算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多载波技术已经成为当代通信技术发展的重要一环,它在提高通信系统传输速率、改善频带利用效率和抗多径干扰能力等方面发挥了重要的作用。在多载波调制技术中,正交频分复用技术(Orthogonal Frequency Division Multiplexing, OFDM)更是因其优越的数字化技术、良好的抗频率选择性衰落性能以及高信息传输速率,成为未来移动通信的主流技术,并已经成功地应用于无线本地环路(Wireless Local Loop,WLL)、数字音频广播(Digital Audio Broadcasting, DAB)、无线局域网(Wireless Local Area Network, WLAN)等系统中。另外,OFDM技术还易于结合空时编码、分集、干扰抑制以及智能天线等技术,最大程度地提高物理层信息传输的可靠性。
     虽然OFDM技术有很多优点,但它的一个最主要的瓶颈问题就是其高峰均功率比(Peak-to-Average Power Ratio, PAPR)问题。由于PAPR较高,使得信号经过非线性信道后,会出现严重的信号畸变,导致系统性能的衰退。同时,由于高峰值功率的存在,使得发送端对高功率放大器的线性度要求也相应提高,不但增加系统成本,还会导致低的功放效率。因此,本论文意在研究OFDM系统的峰均功率比特性,并结合其特性重点研究高PAPR的抑制方法和优化算法,达到有效控制OFDM系统峰值功率的目的。
     本文首先介绍了正交频分复用调制的基本原理和峰均功率比的定义,并给出PAPR的统计特性和度量方法,研究了与PAPR值有关的参量,并提出通过利用、控制和改善这些参量,可以达到对峰值功率控制的目的。同时论文列举了几种常用的峰值功率控制算法及其优、缺点,并着重研究了克服这些算法不足之处的优化处理算法。论文研究内容包括:改进的相位加扰算法、基于信道编码的峰值功率控制算法和改进的预畸变算法等。
     相位加扰算法是通过破坏子载波相位的一致性,使OFDM信号出现高PAPR的概率显著降低。但由于相位加扰算法的巨大计算复杂度,使得这种算法的应用受到限制。本文提出一种相位控制编码算法(Phase Control Coding,PCC),该算法可以明显降低传统相位加扰算法的计算复杂度。PCC算法是在传统部分传输序列(Partial Transmit Sequence, PTS)算法的基础上,通过将输入信号的数据部分进行2N→2l映射,再进行IFFT运算得到的。其余n-l个状态用来表示相位旋转因子索引,即相位控制码序列,经IFFT运算后再与数据符号相加。再在备选信号中选择PAPR最低的一路进行传输。另外,本文还提出了一种基于m序列映射的优化分割方案,通过理论证明,该种分割方法对功率峰值的改善性能仅次于随机分割方式,比交织分割和相邻分割方式性能优越。
     编码法是一种较新的无失真减小PAPR的方法,论文分析了Davis法构造Golay互补序列(Golay Complementary Sequences, GCS)的具体方法,及其能够有效抑制PAPR的理论依据。为提高Golay互补序列法的信息速率,本文研究了Golay码与编码调制相结合的改进GCS算法(Improved GCS, IGCS)原理和构造方法,并分析了结合编码调制时,OFDM系统的PAPR性能。虽然少量增加了系统的PAPR,但IGCS算法比GCS算法有更高的信息速率。
     当子载波数较大时,畸变法抑制PAPR是一种简单、易于实现的方法,但会产生限幅噪声和非线性失真。本文在Ochiai限幅滤波算法的基础上,提出一种基于MMSE准则的限幅失真重构迭代算法(Clipping Distortion Reconstruction Iteration, CDRI)。并利用LDPC信道编码技术、LLR-BP译码算法和MMSE迭代接收技术,实现对系统PAPR的有效抑制,同时有效减小系统的限幅噪声和非线性失真。
     最后,本文还研究了STFC-OFDM系统的载波干涉功率控制优化算法,通过理论分析和仿真证明,该算法在不同的分群方式下,具有不同的PAPR抑制能力,同时还会改善系统BER性能。
Multicarrier technology has been one of the remarkable parts in the territory of today's communication research. It can have an impact upon several aspects such as enhancing transmission rate, improving frequency efficiency, overcoming the muilt-path interference and so on. This revitalization of the technique, also known as orthogonal frequency division multiplexing (OFDM), is mainly due to the advancing capabilities of digital signal processors, capability of resisting fading and high transmission rate. OFDM technology has been used in Wireless Local Loop (WLL), Digital Audio Broadcasting (DAB), Wireless Local Area Network (WLAN) etc.. OFDM technology is also easy to combine with space-time code, diversity technique, interference restrain and smart antenna for the greatest extent to enhance physical layer transmission reliability.
     OFDM technique has many benefits, however, high peak-to-average power ratio (PAPR) has become the vital shortcoming for use. The high PAPR signals will be distorted seriously and decline the system performance when passing through nonlinear channels. On the other hand, because of the high PAPR, the severe linearization for HPA is needed. It will increase the cost of hardware system, or decline the HPA's efficiency. The main purpose of this dissertation is to study the methods and optimum algorithms to reduce the PAPRs of OFDM system and MIMO-OFDM system, and to obtain better PAPR performance and control OFDM system's peak power as a consequence.
     At first, the base principles of OFDM modem and its PAPR definition have been introduced in this dissertation. At the same time, the statistical characters, measure means and relative parameters of PAPR have been studied carefully. It can be realized to reduce PAPR by using, controlling and modifying these parameters. Continuously, universal PAPR reducing methods have been introduced and their advantages and disadvantages inclusive. And the researches on optimum algorithms for overcoming these disadvantages have become the essential problem in this dissertation. The main research aspects contain improved phase disturbance algorithm, channel coding algorithm and improved pre-aberrance methods.
     Phase disturbance algorithm can make the PAPR value reduced by destroying the phase coherence; it can reduce the probability of high PAPR. Due to its complexity to compute, the use of phase disturbance algorithm has been restricted. So phase control coding (PCC) is proposed to either reduce PAPR or lessen the compute complexity. PCC method bases on classical partial transmit sequence (PTS) algorithm and then makes 2N→2(?) mapping for OFDM symbols, and do IFFT operation at last. Phase rotating index is represented by the other n-l states, it also calls phase control code. After IFFT, the result data are added to original data symbols. From the final results, the group having the lowest PAPR value will be sent. In addition, an new group partition method has been proposed, which bases on the m-sequence mapping technique. By theoretical demonstration, the new group partition method is excellent than interweave and adjacent partition methods, but is not a patch on the random partition method.
     Coding algorithm is a novel method to reduce PAPR and it can't bring distortion in the system. In the dissertation, I analyzed the constitution process of Davis's Golay complementary sequences (GCS), and approached the theory foundations of reducing PAPR. To increase the information rate of GCS construction, an improved GCS (IGCS) algorithm is proposed which is constituted by combining Golay code and coding modem. Successively, the PAPR performance with new algorithm has been analyzed. By simulation, IGCS method is able to reach higher information rate than GCS method at the cost of increase PAPR value.
     Clipping methods are usually used in the condition of large numbers of subcarriers. These methods can be realized easily, but they can bring clipping noise as well as nonlinear distortion. Based on discussing Ochiai clipping and filter algorithm and MMSE receiver construction, I proposed clipping distortion reconstruction iteration algorithm (CDRI). CDRI algorithm utilizes LDPC coding technique, LLR-BP decoding algorithm and MMSE iteration reception to not only reduce PAPR values but also lessen the clipping noise and nonlinear distortion.
     At the end of this dissertation, the proposed algorithm has different PAPR capability with various kinds of partition methods, and at the same time, new algorithm will amend BER performance.
引文
[1]J. Chuang, N. Sollenberger. Beyond 3G:Wideband wireless data access based on OFDM and dynamic packet assignment. IEEE Communications Magazine,2004,38(7):78-87P
    [2]谢显中.基于TDD的第四代移动通信技术[M].北京:电子工业出版社,2005.07
    [3]S.M.Alamouti. A simple transmit diversity technique for wireless communications. IEEE journal on select areas in communication,1998, 16(8):1451-1458P
    [4]Van Zelst, A. Schenk, T.C.W.. Implementation of a MIMO OFDM-based wireless LAN system. IEEE transactions on signal processing,2004, 20(1):483-494P
    [5]尹长川,罗涛,乐光新等.多载波宽带无线通信技术[M].北京:北京邮电大学出版社,2004.07
    [6]Myeongchoel Shin, Hakju Lee, Chungyong Lee. Enhanced channel estimation technique for MIMO-OFDM systems.2004,53(1):261-265P
    [7]N. Seshadri, J.H. Winters. Two signaling schemes for improving the error performance of frequency division duplex transmission system using transmitter antenna diversity. International Journal of Wireless Information Network,1994,1:49-59P
    [8]王文博,郑侃.宽带无线通信OFDM技术(第二版)[M].北京:人民邮电出版社,2007.08
    [9]Hyun Woo Kang, Yong Soo Cho, Dae Hee Youn. On compensating nonlinear distortions of an OFDM system using anefficient adaptive predistorter. IEEE Transactions on Communications,1999,47(4): 522-526P
    [10]Dapos, Andrea A.N., Lottici V., et al. Nonlinear predistortion of OFDM signals over frequency-selective fading channels. IEEE Transactions on Communications,2001,49(5):837-843P
    [11]Van Den Bos, C. Ksuwenhoven, M.H.L. et al. Effect of smooth nonlinear distortion on OFDM symbol error rate. IEEE Transactions on Communications,2001,49(9):1510-1514P
    [12]Yamanouchi. S, Kunihiro. K, Hida. H. An efficient algorithm for simulating error vector magnitude in nonlinear OFDM amplifiers. Custom Integrated Circuits Conference,2004(10).129-132P
    [13]罗涛,乐光新.多天线无线通信原理与应用[M].北京:北京邮电大学出版社,2005.11
    [14]G.A.Doelz, E.T. Heald, D.L. Martin. Binary data transmission techniques for linear systems. Proceedings of the I.R.E.,1957,45(5):656-661P
    [15]R.W. Chang. Synthesis of band-limited orthogonal signals for multichannel data transmission. Bell Sys. Tech. J.,1966,45(11):1775-1796P
    [16]S.B. Weinstein, P.M. Ebert, Data transmission by frequency division multiplexing using the discrete Fourier transform. IEEE Transactions on Communications,1971,19 (10):628-634P
    [17]Peled A, Ruiz A. Frequency domain data transmission using reduced computational complexity algorithms. IEEE International Conference on Acoustics, Speech, and Signal Processing,1980,1:964-967P
    [18]ETSI. Digital video broadcasting:Framing structure, channel coding and modulation for digital terrestrial television. European telecommunication standard,1997:300-744P
    [19]L.J. Cimini. Analysis arid simulation of a digital mobile channel using orthogonal frequency division multiplexing. IEEE Transactions on Communications,1985,33 (7):665-675P
    [20]L.J. Cimini, J.C. Chuang, N.R. Sollenberger. Advanced cellular Internet service[J]. IEEE Communications Magazine,1998,32(10):150-159
    [21]佟学俭,罗涛.OFDM移动通信技术原理与应用[M].北京:人民邮电出版社,2000.06
    [22]K. Fazel, S. Kaiser. Multi-carrier and spread spectrum systems [M]. John Wiley & Sons Ltd.,2003.11
    [23]汪裕民.OFDM关键技术与应用[M].北京:机械工业出版社,2007.01
    [24]赵树杰.信号检测与估计理论[M].北京:清华大学出版社,2005.11
    [25]Ye Li. Robust Channel Estimation for OFDM transmission in multipath fading channels. IEEE Transactions on Communications,1998,46 (7): 902-915P
    [26]张宗橙.纠错编码原理和应用[M].北京:电子工业出版社,2003.04
    [27]袁东风,张海霞等.宽带移动通信中的先进信道编码技术[M].北京:北京邮电大学出版社,2004.03
    [28]B.C. Kim, I.T. Lu. Doppler diversity for OFDM wireless mobile communication. Proc. IEEE VTC'03,2003:2677-2681P
    [29]M. Russell, G.L. Stbuer. Interchannel interference analysis of OFDM in a mobile environment. Proc. IEEE VTC'95,1995:820-824P
    [30]Stuber G L, Barry J R, et al.. Broadband MIMO-OFDM wireless communications. Proceedings of the IEEE,2004,92(2):271-294P
    [31]David Gesbert, Mansoor Shafi, Da shan Shiu, et al. From Theory to Practice:An overview of MIMO Space-Time coded wireless systems. IEEE Journal on selected areas in communications,2003,21 (4):281-302P
    [32]Sundstrom, L., Faulkner, M., Johansson, M.. Quantization analysis and design of a digital predistortion linearizer for RF power amplifiers [J]. IEEE Transactions on Vehicular Technology,1996,45(4):707-719P
    [33]Wan Jong Kim, Stapleton S.P., Jong Heon Kim, et al.. Digital predistortion linearizes wireless power amplifiers. IEEE Microwave magazine,2005,6(3):54-61P
    [34]Xiaodong Li, Cimini, L.J. Effects of clipping and filtering on the performance of OFDM. IEEE on Vehicular Technology Conference 47th', 1997,3(5):1634-1638P
    [35]Huang X, LuJH, Zheng J L. Reduction in PAPR of OFDM system using a revised companding. The 8th International Conference on Communication Systems,2002,1:62-66P
    [36]Armstrong J. Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering. Electronics Letters,2002,38(5): 246-247P
    [37]Krongold B S, Jones D L. PAR reduction in OFDM via active constellation extension. IEEE Transactions on Broadcasting,2003,49(3):258-268P
    [38]C.Tellambura. Phase optimization criterion for reducing peak-to-average powerratio in OFDM. IEEE Transactions on Signal Processing,1998, 34(2):169-170P
    [39]R.W. Bauml, R.F.H. Fischer, J.B. Huber. Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping. Electronics Letters,1996,32(22):2056-2057P
    [40]S.H. Muller, J.B. Huber. OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences. Electronics Letter,1997,33(5):368-369P
    [41]C.L. Wang, Y. Ouyang. Low-complexity selected mapping schemes for peak-to-average power ratio reduction in OFDM systems. IEEE Transactions on Signal Processing,2005,53(12):4652-4660P
    [42]Ping Y F, Xiang G X. Block coded modulation for the reduction of the peak to average power ratio in OFDM systems. IEEE Transactions on Consumer Electronics,1999,45(4):1025-1029P
    [43]Jones A E, Wilkinson T A, Barton S K. Block coding scheme for reduction of peak to mean envelop power ratio of multicarrier transmission schemes. Electronics Letters,1994,30(25):2098-2099P
    [44]B. R. Saltzberg. Perdormance of an efficient parallel data transmission system. IEEE Transactions on Communalizations.1967,15(6):805-811P
    [45]彭林.第三代移动通信技术[M].北京:电子工业出版社,2003.02
    [46]Hua Y, Gang W. Computation of the continuous-time PAR of an OFDM signal. IEEE International Conference on Acoustics, Speech, and Signal Processing,2003,4:529-531P
    [47]IEEE std 802.11 a-1999, Part 11:IEEE standard for wireless LAN medium access control (MAC) and physical layer(PHY)specifications, High-speed physical layer in the 5GHz band.1999
    [48]Chong Y W, Cheng R S, et al.. Multiuser OFDM with adaptive subcarrier, bit, and power allocation. IEEE Journal on Selected Areas in Communications,1999,17(10):1747-1758P
    [49]张贤达,保铮.通信信号处理[M].北京:国防工业出版社,2000.12
    [50]周利清,苏菲.数字信号处理基础[M].北京:北京邮电大学出版社,2005.09
    [51]Wunder G, Boche Holger. Peak value estimation of bandlimited signals from their samples, noise enhancement, and a local characterization in the neighborhood of an extremum. IEEE Transactions on Signal Processing, 2003,51(3):771-780P
    [52]Sharif M, Gharavi-A M, Khalaj B H. On the peak-to-average power of OFDM signals based on oversampling. IEEE Transactions on Communications,2003,51(1):72-78P
    [53]Walter Tuttlebee著,杨小牛,邹少丞等译.软件无线电技术与实现。 北京:电子工业出版社,2004.06
    [54]B.M.Seong, W.J.Lee, C. B. Joo. Effects of clipping on the performance of OFDM with modified mapping. TENCON'02,2002,10:944-947P
    [55]H. Schmidt, K.D. Kammeyer. Reducing the peak to average power ratio of multicarrier signals by adaptive subcarrier selection. ICUPC'98,1998: 933-937P
    [56]Wunder G, Boche Holger. A baseband model for computing the PAPR in OFDM system.4th International ITG Conference on Source and Channel Coding,2002,273-280P
    [57]Wunder G, Boche H. Upper bounds on the statistical distribution of the crest-factor in OFDM transmission. IEEE Tansactionson Information Theory,2003,49(2):488-494P
    [58]Gordon L. Stbiier著,裴昌幸,聂敏等译.移动通信原理(第二版)[M].北京:电子工业出版社,2004.04
    [59]Sharif M, Gharavi-A M, Khalaj B H. New results on the peak power of OFDM signals based on oversampling. IEEE International Conference on Communications,2002,2:866-871P
    [60]Simon Litsyn. Peak Power Control in Multicarrier Communications[M]. Cambridge University Press,2007.07
    [61]R.W. Chang, R.A.Gibbet. A theoretical study of performance of an orthogonal multiplexing data transmission scheme. IEEE Transactions on Communications Technology,1968,16(8):529-540P
    [62]Tarokh V, Jafarkhani H. On the computation and reduction of the peak-to-average power ratio in multicarrier communications. IEEE Tansactionson Communications,2000,48(1):37-44P
    [63]Litsyn S, Yudin Alexander. Discrete and continuous maximum in multicarrier communication. IEEE Transactions on Information Theory, 2005,51(3):919-928P
    [64]Ochiai H, Imai H. On the distribution of the peak-to-average power ratio in OFDM signals. IEEE Tansactionson Communications,2001,49(2): 282-289P
    [65]Zhou X F, Caffery J Jr. A new distribution bound and reduction scheme for OFDM PAPR, The 5th International Symposium on Wireless Personal Multimedia Communications,2002,1:158-162P
    [66]沈凤麟,叶中付,钱美玉.信号统计分析与处理[M].合肥:中国科学技术大学出版社,2001.03
    [67]Sharif M, Khalaj B H. Peak to mean envelope power ratio of oversampled OFDM signals:an analytical approach. IEEE International Conference on Communications,2001,5:1476-1480P
    [68]Litsyn S, Wunder G. Generalized bounds on the crest-factor distribution of OFDM signals with applications to code design. IEEE Transaction on Information Theory,2006,52(3):992-1006P
    [69]Mingzhu Liu, Xinyuan Yang; Qi Yu. Optimum technique for PAPR reduction in digital multimedia broadcasting system.8th International Conference on Signal Processing,2006,3:2014-2017P
    [70]张琛.多载波通信系统中的峰值平均功率比抑制技术研究.国防科学技术大学博士论文,2006.09
    [71]ETSI. Digital video broadcasting:Framing structure, channel coding and modulation for digital terrestrial television. European Telecommunication Sandard,1997:300-744P
    [72]Cimini L J, Sollenberger N R. Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences. IEEE Communication Letter. 2000,4(1):86-88P
    [73]Jitapunkul S, Wutthipornpong K, et al.. Peak to average power ratio reduction in MC-CDMA using partial transmit sequences. Wireless Telecommunications Symposium,2004,3-8P
    [74]Ruang S., Ahmed K M, et al.. PAPR reduction by combining selected mapping and selected spreading code in MC-CDMA systems.9th International Symposium on Computers and Communications,2004,2: 725-729P
    [75]Han Seung Hee, Jae Hong Lee. An overview of peak-to average power ratio reduction techniques for multicarrier transmission [J]. IEEE Wireless Communications,2005,12(2):56-65P
    [76]Kwon O J, Ha Y H. Multi-carrier PAP reduction method using sub-optimal PTS with threshold. IEEE Transactions on Broadcasting,2003,49(2): 232-236P
    [77]Ruangsurat N., Rajatheva R.M.P.. An investigation of peak-to-average power ratio in MC-CDMA combined with partial transmit sequence. IEEE 53rd Vehicular Technology Conference,2001,1:761-765P
    [78]A.D.S. Jayalath, C. Tellambura. SLM and PTS peak-power reduction of OFDM signals without side information. IEEE Transactions on wireless Communications,2005,4(5):2006-2013P
    [79]Heung Gyoon Ryu, Jae Eun Lee, Jin Soo Park. Dummy sequence insertion (DSI) for PAPR reduction in the OFDM communication system. IEEE Transactions on Consumer Electronics,2004,50(1):89-94P
    [80]S.G. Kang, J.Kim. A novel subblock partition scheme for partial transmit sequence OFDM. IEEE Tansactions on Broadcasting,1999,45(3): 333-338P
    [81]Jayalath A.D.S, Tellambura C.. The use of interleaving to reduce the peak-to-average power ratio of an OFDM signal. IEEE Globecom'2000, 2000,1:82-86P
    [82]Dae Woon Lim, Seok Joong Heo, Jong Seon No, etal.. A new PTS OFDM scheme with low complexity for PAPR reduction. IEEE Transactions on Broadcasting,2006,52(1):77-82P
    [83]刘明珠,杨莘元,于淇.基于PTS级联抵消的峰均比抑制性能仿真.系统仿真学报.2007,19(12):2801-2804页
    [84]C.Tellambura.. Improved phase factor computation for the PAR reduction of an OFDM signal using PTS. IEEE communications Letters,2001,5(4): 135-137P
    [85]雷霞.多载波通信系统中峰值平均功率比抑制技术研究.电子科技大学博士论文,2005.03
    [86]郭梯云,邬国扬,李建东.移动通信(第三版)[M].西安:西安电子科技大学出版社,2006.01
    [87]Davis J A, Jedwab J. Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes. IEEE Transaction on Information Theory,1999,45(7):2397-2417P
    [88]Paterson K.G.. Generalized Reed-Muller codes and power control in OFDM modulation. IEEE Transactions on Information Theory,2000,46(1): 104-120P
    [89]Paterson, K.G. Tarokh, V. On the existence and construction of good codes with low peak-to-average power ratios. IEEE Transactions on Information Theory,2000,46(6):1974-1987P
    [90]Jones A E, Wilkinson T A. Performance of Reed-Muller codes and a maximum-likelihood decoding algorithm for OFDM. IEEE Communications Letters,1999,47(7):949-952P
    [91]Paterson K G, Jones A E. Efficient decoding algorithms for generalized Reed-Muller codes. IEEE Communications Letters,2000,48(8):1272-1285
    [92]Tasadduq I.A., Rao R.K.. Weighted OFDM with block codes for wireless communication. IEEE PACRIM'2001,2:441-444P
    [93]江涛。OFDM无线通信系统中峰均功率比的研究。华中科技大学博士学位论文,2004.06
    [94]van Nee R.. OFDM codes for peak-to-average power reduction and error correction. Global Telecommunications Conference,1996, 1:740-744P
    [95]Frank R L, Zadoff S A. Phase shift pulse codes with good periodic correlation properties. IEEE Tansactionson Information Theory,1962,8: 381-382P
    [96]Branka Vucetic, Jinhong Yuan著,王晓海等译.空时编码技术[M].北京:机械工业出版社,2004.08
    [97]Kai-Uwe Schnidt. On Cosets of the Generalized First-Order Reed-Muller Code with Low PMEPR. IEEE Transactions on Information Theory,2006, 52(7):3220-3232P
    [98]Robing C., Tarokh V.. A construction of OFDM 16-QAM sequences having low peak powers. IEEE Tansactionson Information Theory,2001,47(5): 2091-2094P
    [99]Chong C. V., Venkataramani R.. A new construction of 16-QAM Golay complementary sequences. IEEE Transations on Information Theory, 2003,49(11):2953-2959P
    [100]Olfat M., Liu K.J.R.. Recursive construction of 16-QAM super-Golay codes for OFDM systems. IEEE International Conference on Communications,2003,5:3387-3391P
    [101]Tarokh B, Sadj adpour H R. Construction of OFDM MQAM sequences with low peak-to-average power ratio. IEEE Transactions on Communications,2003,51(1):25-28P
    [102]Sadjadpour H.R. Construction of non-square MQAM sequences with low PMEPR for OFDM systems. IEEE Proc. Communication,2004,51(1): 20-24P
    [103]H. Lee, S.W. Golomb. A new construction of 64-QAM golay complementary sequences.. IEEE Transactions on Information Theory, 2006,52(4):1663-1670P
    [104]Sharif M, Hassibi B. On multicarrier signals where the PMEPR of a random codeword is asymptotically logn. IEEE Transactions on Information Theory,2004,50(5):895-903P
    [105]H. Saedi, M. Sharif, F. Marvasti. Clipping noise cancellation in OFDM systems using oversampled signal reconstruction. IEEE Communications Letters,2002,6(2):73-75P
    [106]Ochiai H., Imai H.. On clipping for peak power reduction of OFDM signals. IEEE Globecom'2000,2:731-735P
    [107]Ochiai H, Imai H. OFDM-CDMA with peak power reduction based on the spreading sequences. IEEE International Conference on Communications,1998,3:1299-1303P
    [108]Ochiai H, Imai Hideki. Performance analysis of deliberately clipped OFDM signals. IEEE Tansactionson Communications,2002,50(1): 89-101P
    [109]Ochiai H. A novel trellis-shaping design with both peak and average power reduction for OFDM systems. IEEE Transactions on Communications,2004,52(11):1916-1926P
    [110]Li X, Cimini L J Jr. Effects of clipping and filtering on the performance of OFDM. IEEE Communications Letters,1998,2(5):131-133P
    [111]Wei S Q, Goeckel D L, Kelly P E. A modern extreme value theory approach to calculating the distribution of peak-to-average power ratio in OFDM systems. IEEE International Conference on Communications,2002, 3:1686-1690P
    [112]Sharif M, Hassibi B. Asymptotic probability bounds on the peak distribution of complex multicarrier signals without Gaussian assumption.36th Asilomar Conference on Signals, Systems and Computers,2002,1:171-175P
    [113]Ahmad R. S. Bahai, Manoneet Singh, Andrea J. et al.. Goldsmith. A new approach for evaluating clipping distortion in multicarrier systems. IEEE Journal on Selected Areas in Communications,2002,20(5): 1037-1045P
    [114]Wunder G, Listsyn S. On the statistical distribution of the crest-factor of codes in OFDM transmission. IEEE Information Theory Workshop,2003, 191-194P
    [115]Kusha R. Panta, Jean Armstrong. Effects of clipping on the error performance of OFDM in frequency selective fading channels. IEEE Transactions on Wireless Communications,2004,3(2):668-671P
    [116]Fei Peng, William E. Ryan. New approaches to clipped OFDM channels: modeling and receiver design. IEEE Globecom'05 proceedings,2005, 1490-1494P
    [117]Huang X, Lu J H, et al.. Reduction of peak-to-average power ratio of OFDM signals with companding transform. Electronics Letters,2001,37(8): 506-507P
    [118]Huang X, Lu J H, et al.. Companding transform for reduction in peak-to-average power ratio of OFDM signals. IEEE Transaction on Wireless Communications,2004,3(6):2030-2039P
    [119]M. Pauli, H.P. Duchenbecker. Minimization of the inter-modulation distortion of a nonlinearly Amplified OFDM Signal. Wireless Personal Communications,1996,4:93-101P
    [120]M. Pauli, H.P. Kuchenbecker. On the reduction of the out-of-band radiation of OFDM-signals. IEEE International Conference on Communications,1998,3:1304-1308P
    [121]Chen H J, Haimovich A M. Iterative estimation and cancellation of clipping noise for OFDM signals. IEEE Communications Letters,2003, 7(7):305-307P
    [122]Hangjun Chen, Alexander Haimovich. An iterative method to restore the performance of clipped and filtered OFDM signals. IEEE International Conference on Communications,2003,5:3438-3442P
    [123]袁东风,张海霞.编码调制技术原理及应用[M].北京:清华大学出版社,2006.02
    [124]张忠培,史志平,王传丹.现代编码理论与应用[M].北京:国防工业出版社,2007.01
    [125]袁东风,张海刚.LDPC码理论与应用[M].北京:人民邮电出版社,2008.04
    [126]N.T. Trang, T.Han, N. Kim. Power efficiency improvement by PAPR reduction and predistorter in MIMO-OFDM system. Proc. ICACT'05, 2005,2,1381-1386P
    [127]A. Aggarwal, T.H. Meng. Minimizing the peak-to-average power ratio of OFDM signals via convex optimization. IEEE Global Telecommunications Conference,2003,4:2385-2389P
    [128]A. Aggarwal, T.H. Meng. A convex interior-point method for optimal OFDM PAR reduction. Proc. IEEE International Conference on communications,2005,3:1985-1990P
    [129]Sidkieta Zabre, Jacques Palicot, Yves Louet, et al.. SOCP approach for OFDM peak-to-average power ratio reduction in the signal adding context. IEEE International Symposium on Signal Processing and Information Technology,2006,834-839P
    [130]陈宝林.最优化理论与算法(第二版)[M].北京:清华大学出版社,2005,10
    [131]Basel Riha Wi, Yves Louet. PAPR reduction scheme with SOCP for MIMO-OFDM systems. I.J. Communications, Network and System Sciences,2008,1:29-35P
    [132]Zhefeng Li, Xianggen Xia. Single-symbol ML decoding for orthogonal and quasi-orthogonal STBC in clipped MIMO-OFDM systems using a clipping noise model with Gaussian approximation. IEEE International on Communications,2008,56(7):1127-1136P
    [133]Z.A. Khan, B.S. Rajan. Single-symbol maximum likelihood decodable linear STBCs. IEEE Transactions on Information Theory,2006,52(5): 2062-2091P
    [134]Ermolova N Y, Vainikainen P. On the relationship between peak factor of a multicarrier signal and aperiodic autocorrelation of the generating sequence. IEEE Communications Letters,2003,7(3):107-108P
    [135]D.C.Chu. Polyphase codes with good periodic correlation properties. IEEE Transactions on Information Theory,1972,18:531-532P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700