离散网络化控制系统的建模与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着通信技术的飞速发展,系统的网络化需求不断提高,传统的点对点的控制策略已经不能满足对控制系统的性能要求,点对点的结构在很多场合逐渐被通信网络所取代,系统中的传感器、控制器、执行器等部件通过通信网络来进行连接的网络化控制系统由此产生。与传统的点对点结构相比,网络化控制系统有很多优势,比如降低布线成本,易于诊断与维护,增加系统的可靠性等,因此在航空、航天、军事、医学、工业及交通等领域得到了广泛的关注。然而反馈回路中网络的引入使得网络化控制系统的分析与设计变得更加复杂,数据通信延时、丢包、多包、抖动、乱序等问题使得系统的性能下降甚至不稳定。因此,对网络化控制系统的研究具有重要的理论意义及实际应用价值。
     本文主要从单包传输与多包传输两方面研究网络化控制系统的建模、控制与故障检测问题,并基于移动机器人设计了网络化控制系统试验平台。主要研究工作如下:
     第1章介绍了网络化控制系统的概念及其产生的过程,描述了网络化控制系统的三种基本结构,接着分析网络化控制系统的若干基本问题,并综述了网络化控制系统的研究现状,最后概述了本论文的主要研究内容。
     第2章考虑离散网络化控制系统中具有单包传输的情况,研究含有任意时变时延以及数据包丢失的离散网络化控制系统的建模、稳定性分析及鲁棒控制问题。针对双边网络同时含有数据包丢失及任意时变网络时延的离散网络化控制系统,建立具有普遍意义的离散系统模型。在此模型的基础上,首先讨论了当不含外界干扰时,系统的稳定性分析及镇定控制器设计问题,设网络时延为可以大于一个采样周期的任意时变时延,推导出系统的镇定条件并给出了控制器的具体求解算法。然后在系统含有外界干扰时,研究系统的鲁棒H∞H∞控制和鲁棒l 2? l∞控制问题,分别推导出使系统渐近稳定并满足H∞性能指标以及性能指标的充分条件,并给出了求解最大时延以及l 2?l∞H∞、l 2? l∞扰动衰减度的算法。为了优化结果,求解扰动衰减度的算法中采用二分法来进行迭代。由于条件中非线性项的存在使得矩阵不等式难于求解,文中采用锥补线性化的方法来求解控制器。
     第3章考虑离散网络化控制系统中具有多包传输的情况,研究含有任意时变时延以及数据包丢失的离散网络化控制系统的建模、稳定性分析及鲁棒控制问题。针对含有多包传输、数据包丢失以及时变网络短时延的离散网络化控制系H∞统,建立具有普遍意义的离散系统模型。首先从无时延及含有时变短时延两方面把同时含有多包传输、数据包丢失的离散网络化控制系统建模成为具有固定事件率约束的异步动态系统(ADS),推导出使系统渐近稳定的充分条件并给出了镇定控制器的具体求解算法。再从系统含有外界干扰以及不含外界干扰两方面把同时含有丢包、多包及时变短时延的离散网络化控制系统建模成为具有任意切换信号的离散线性切换系统,并结合切换Lyapunov函数研究系统的镇定和鲁棒控制问题。H∞
     第4章从单包传输及多包传输两种情况来研究离散网络化控制系统的鲁棒故障检测问题。首先针对含有时变网络短时延及范数有界的未知输入影响的单包传输网络化控制系统,设计鲁棒故障检测滤波器,最终将故障检测滤波器的设计问题转化成一类具有线性矩阵不等式约束和目标函数的凸优化问题,然后考虑同时含有数据包丢失及多包传输的离散网络化控制系统,利用多包传输及数据包丢失的特点将误差系统等效为离散线性切换系统,利用切换系统理论推导出使误差系统在任意切换信号下渐近稳定并具有H∞性能指标γ的充分条件。
     第5章采用上海广茂达伙伴机器人有限公司生产的智能风暴研究版AS-R型机器人作为被控对象,以机器人避障为例构建了网络化控制系统试验平台,为网络化控制系统的算法验证提供试验环境。整体系统分为视觉子系统及控制子系统两部分进行构建,详细给出了控制子系统及视觉子系统的设计过程及网络接口的设计方法。
With the rapid development of communication technology and the networking of control systems, the traditional point-to-point control strategy can not meet the performance requirements of control systems. Point-to-point structure in many occasions has been gradually replaced by communication networks and Networked Control System(NCS) in which sensors, controllers, actuators and other components connected through the communication network thus generated. Compared with the traditional point-to-point structure, NCS has many advantages such as lower wiring costs, easy diagnosis and maintenance, increased system reliability, so NCS has received wide attention in the aviation, aerospace, military, medical, industrial and transportation fields. However, the introduction of network in feedback loops makes the analysis and design of NCS more complex. Network-induced delay, packet loss, multiple-packet transmission, networked jitter, packets disorder and other issues make the system performance degraded or even unstable. Therefore, the research of NCS has important theoretical significance and practical value.
     In this paper, both the single-packet transmission and multi-packet transmission are considered, and the research concentrates on the modeling, control and fault detection of the NCS. Networked control system test platform is designed and implemented based on robots. The main contents are as follows:
     In Chapter 1, the concept of NCS and production process are introduced, and three basic structures of the system are described, then a number of fundamental issues of the system are discussed and the research status at home and abroad in this field is introduced. Finally, we outline the main contents of this paper.
     In Chapter 2, with the discrete NCS in single-packet transmission considered, the problems of modeling, stability analysis, robust H∞control and robust l 2? l∞control of the system with arbitrary time-varying delay and packet loss are discussed. For the NCS with network-induced delay and packet loss, the universal model of the discrete system is established. First, we discuss the stability and control of the discrete NCS without disturbance based on this model. Networked-induced delay is time-varying and it can be set to any of more than one sampling cycle. Then we introduce the external disturbance into the system and discuss the problem of robust control and robust control. Sufficient conditions to asymptotic stabilize the system and meet the requirements of the given robust H∞l 2?l∞H∞performance index and robust l 2?l∞performance index are derived. Algorithms to solve the maximum delay as well as , disturbance attenuation are presented. To optimize results, dichotomy is used in the iterate algorithm to solve the disturbance attenuation. As conditions in the presence of nonlinear term make it difficult to solve the matrix inequalities, cone complementarity linearization method is used to solve the controller. H∞l 2?l∞
     In Chapter 3, with the discrete NCS in multiple-packet transmission considered, modeling, stability analysis and robust H∞control of the system with arbitrary short time-varying delay and packet loss are discussed. For the discrete NCS in multiple-packet transmission, packet loss and arbitrary short time-varying delay, the universal model of the discrete system is established. First, the discrete NCS in multiple-packet transmission and packet loss is modeled as an asynchronous dynamical system(ADS) in both case of with and without arbitrary short time-varying delay. Sufficient conditions to asymptotic stabilize the system are derived and the algrithm to solve the controller is presented. Then the discrete NCS with packet loss, multiple-packet transmission, and arbitrary short time-varying delay is modeled as a discrete linear switched system with arbitrary switching signal in both case of with and without external disturbance. Stability analysis and robust control of the system are discussed combined with switching Lyapunov functions. H∞
     In Chapter 4, the problem of robust fault detection of the discrete NCS is discussed in both case of single-packet and multiple-packet transmission. First, a fault detection filter is designed for the NCS with short time-varying delay and norm bounded unknown input in the case of single-packet transmission. The problem of filter design is finally transformed into a class of the convex optimization problem with linear matrix inequalities constraints and objective function. Then the discrete NCS with both packet loss and multiple-packet transmission is considered and the error system is equivalent to discrete linear switched system by the characteristic of the multiple-packet transmission and packet loss. Sufficient conditions to asymptotically stablize the error system with H∞performance indexγand arbitrary switching signals are derived by the theory of switched systems.
     In Chapter 5, networked control control test platform is built with the AS-R type robot producted by Shanghai Grandar Robotics Co., LTD chosen as the plant to implement robot obstacle avoidance as an example. The platform provides test environment to verify the algorithm of NCS. The overall system is divided into two parts: the vision subsystem and the control subsystem, and the process of system design and network interface design of the two subsystems are given in details.
引文
1 Y. Shi, B. Yu and J. Huang. Mixed H 2/ H∞Control of Networked Control Systems with Random Delays Modeled by Markov Chains. American Control Conference, 2009: 4038 ~4043
    2 Y. Shi, B. Yu. Output Feedback Stabilization of Networked Control Systems with Random Delays Modeled by Markov Chains. IEEE Transactions on Automatic Control. 2009, 54(7):1668~1674
    3孙德辉,史运涛,李志军,杨扬.网络化控制系统-理论、技术及工程应用.国防工业出版社, 2008:1~8
    4 D. Yue, E. G. Tian, Z. D. Wang and J. Lam. Stabilization of Systems with Probabilistic Interval Input Delays and Its Applications to Networked Control Systems. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans. 2009, 39(4):939~945
    5 M. S. Hasan, H. Yu, A. Carrington and T. C. Yang. Co-Simulation of Wireless Networked Control Systems over Mobile Ad Hoc Network Using SIMULINK and OPNET. IET Communications. 2009, 3(8):1297~1310
    6 Y. B. Zhao, G. P. Liu and D. Rees. Design of A Packet-Based Control Framework for Networked Control Systems. IEEE Transactions on Control Systems Technology. 2009, 17(4):859~865
    7 Y. B. Zhao, G. P. Liu and D. Rees. Modeling and Stabilization of Continuous-Time Packet-Based Networked Control Systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 2009, 39(6):1646~1652
    8 H. B. Li, M. Y. Chow and Z. Q. Sun. Optimal Stabilizing Gain Selection for Networked Control Systems with Time Delays and Packet Losses. IEEE Transactions on Control Systems Technology. 2009, 17(5):1154~1162
    9 Y. F. Guo, S. Y. Li. Transmission Probability Condition for Stabilisability of Networked Control Systems. IET Control Theory & Applications. 2010, 4(4):672 ~682
    10 L. Dritsas, A. Tzes. Robust Stability Bounds for Networked Controlled Systems with Unknown, Bounded and Varying Delays. IET Control Theory & Applications. 2009, 3(3):270~280
    11 J. L. Xiong, J. Lam. Stabilization of Networked Control Systems with A LogicZOH. IEEE Transactions on Automatic Control. 2009, 54(2):358~363
    12 Z. H. Mao, B. Jiang and P. Shi. Protocol and Fault Detection Design for Nonlinear Networked Control Systems. IEEE Transactions on Circuits and Systems II: Express Briefs. 2009, 56(3):255~259
    13 A. Jentzen, F. Leber, D. Schneisgen, A. Berger and S. Siegmund. An Improved Maximum Allowable Transfer Interval for Lp-Stability of Networked Control Systems. IEEE Transactions on Automatic Control. 2010, 55(1):179~184
    14 M. Trivellato, N. Benvenuto. State Control in Networked Control Systems under Packet Drops and Limited Transmission Bandwidth. IEEE Transactions on Communications. 2010, 58(2):611~622
    15 G. W. Irwin, J. Chen, A. Mckernan and W.G. Scanlon. Co-Design of Predictive Controllers for Wireless Network Control. IET Control Theory & Applications. 2010, 4(2):186~196
    16 B. Jiang, Z. Mao and P. Shi. H∞-Filter Design for A Class of Networked Control Systems via T-S Fuzzy-Model Approach. IEEE Transactions on Fuzzy Systems. 2010, 18(1): 201 ~208
    17 M. Moayedi, Y. K. Foo and Y. C. Soh. Adaptive Kalman Filtering in Networked Systems with Random Sensor Delays, Multiple Packet Dropouts and Missing Measurements. IEEE Transactions on Signal Processing. 2010, 58(3): 1577~ 1588
    18陈在平等.现场总线及工业控制网络技术.电子工业出版社, 2008:1~8
    19顾红军.网络控制系统建模及性能分析方法的研究.清华大学博士论文. 2001
    20王万良,蒋一波,李祖欣,雷必成等.网络控制与调度方法及其应用.科学出版社, 2009:6~23
    21 Y. A. Hu, J. Li and S. G. Kang. Modeling and Stability Analysis of MIMO Networked Control Systems with Data Packet Dropout and Time Delay. Chinese Control and Decision Conference. 2008:317~322
    22邱占芝,张庆灵,杨春雨.网络控制系统分析与控制.科学出版社. 2009:7~8
    23 X. C. Jia, D. W. Zhang, X. H. Hao and N. N. Zheng. Fuzzy Tracking Control for Nonlinear Networked Control Systems in T–S Fuzzy Model. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 2009, 39(4):1073~1079 H∞
    24 P. Varutti, R. Findeisen. On The Synchronization Problem for The Stabilizationof Networked Control Systems over Nondeterministic Networks. American Control Conference, 2009: 2216~2221
    25 H. Y. Sun, Q. L. Zhang and N. Li. Robust Passive Control for Stochastic Networked Control Systems. Chinese Control and Decision Conference, 2009: 482~487
    26 Q. G. Chen, L. S. Wei and M. Jiang. Stability Analysis of A Class of Nonlinear MIMO Networked Control Systems. Second International Symposium on Knowledge Acquisition and Modeling, 2009, 331~335
    27 Y. G. Ma, L. Yuan. Robust H∞Control of Networked Control System. International Conference on Machine Learning and Cybernetics, 2009, 445~449
    28 A. M. Amani, A. Afshar and M. B. Menhaj. Fault Tolerant Control of Networked Control System in Presence of Actuator Failure Using Predictive Reconfiguration. IEEE International Conference on Control and Automation, 2009, 477~482
    29 Q. X. Zhu, H. L. Liu, H. Yang. H∞Control of Networked Control Systems with Stochastic Time Delay. Control and Decision Conference, 2009:170~174
    30 Y. L. Wang, X. Ling and W. H. Gui. LQG Optimal Control of Networked Control Systems with Limited Communication Channels. Chinese Control and Decision Conference, 2009:1574~1579
    31 Y. G. Ma, W. Y. Chen and G. X. Luo. Compensation of Networked Control Systems with Time-Delay and Data Packet Losses. Chinese Control and Decision Conference, 2009: 5573~5576
    32 W. W. Che, J. L. Wang, G. H. Yang. Observer-Based H∞Control for Networked Control Systems with Multiple Packet Dropouts. IEEE International Conference on Control and Automation, 2009: 914~919
    33 T. Estrada, P. J. Antsaklis. Performance of Model-Based Networked Control Systems with Discrete-Time Plants. 17th Mediterranean Conference on Control and Automation, 2009:628~633
    34 H. J. Gao, T. W. Chen and J. Lam. A New Model for Time-delay Systems with Application to Network Based Control. Proceedings of Chinese Control Conference, Harbin, Heilongjiang, 2006:56~61
    35 W. Zhang, M. S. Branicky, S. M. Phillips. Stability of Networked Control Systems. IEEE Control Systems Magazine. 2001, 21(1):84~99
    36康冰,赵宏伟,任丽莉,闫冬梅.网络控制系统的建模方法综述.吉林大学学报(信息科学版). 2006, 24(1):42~49
    37樊卫华,蔡骅,周川,胡维礼. MIMO网络控制系统的建模与分析.控制理论与应用. 2005, 22(3):487~490
    38 Z. H. Mao, B. Jiang. Fault Estimation and Accommodation for Networked Control Systems with Transfer Delay. Acta Automatica Sinica. 2007, 33(7):738~743
    39 C. L. Yu, H. L. Xu, S. Q. Huang. Sliding Mode Control Based on Delay Estimation Online for Networked Control System with Model Uncertainties and Stochastic Less Delay. IEEE Conference on Cybernetics and Intelligent Systems, 2008:596 ~601
    40 Y. Q. Li, H. J. Fang. Control Methodologies of Large Delays in Networked Control Systems. International Conference on Control and Automation, 2005:1225~1230
    41 Q. X. Zhu, H. L. Liu, J. Jiang, Y. P. Wang and H. Yang. Stabilization of Networked Control Systems with Long Varying Time Delay Based on Two Steps Transformation. Pacific-Asia Workshop on Computational Intelligence and Industrial Application, 2008:180~183
    42 J. W. Hua, T. Liang, H. X. Sun and Z. M. Lei. Time-Delay Compensation Control of Networked Control Systems Using Timestamp Based State Prediction. ISECS International Colloquium on Computing, Communication, Control, and Management, 2008:198~202
    43朱其新,胡寿松.网络控制系统的随机状态反馈控制.南京航空航天大学学报. 2003, 35(6):616~620
    44朱其新,胡寿松.网络控制系统的随机输出反馈控制.应用科学学报. 2004, 22(1):71~75
    45 H. W. Guan, L. X. Gao and M. Xie. Stability of Discrete-Time Linear System with Two Delays and Application to Network Control System. Chinese Control and Decision Conference, 2008:619~624
    46 L. A. Motestruque, P. J. Antsaklis. State and Output Feedback Control in Model-Based Networked Control Systems. Proceeding of IEEE Conference of Decision and Control, 2002:1620~1625
    47 L. A. Motestruque, P. J. Antsaklis. Model-Based Networked Control Systems: Stability. ISIS Technical Report ISIS-2002-001. University of Notre Dame, www.nd.edu/isis, Jan. 2002
    48何早红,张志飞,金杰.离散时滞系统基于LMI的鲁棒H∞观测器设计.湖南科技大学学报(自然科学版). 2004, 19(2): 77~79
    49 Z. S. Zhao, Q. Zong, J. Zhang. Robust Controller for Networked Control Systems Induced Noise and Long Transmission Delay. IEEE International Conference on Networking, Sensing and Control, 2008: 859~863
    50 J. Y. Yu, L. Wang, M. Yu, Y. M. Jia and J. Chen. Packet-Loss Dependent Controller Design for Networked Control Systems via Switched System Approach. IEEE Conference on Decision and Control, 2008:3354~3359
    51赵月明,陈在平,尹迅雷.基于灰色控制的网络控制系统丢包补偿.天津理工大学学报. 2005, 21(4):45~48
    52邬春学,余镇危. NCS中数据传输丢包与控制方法.网络与接口. 2005:39~41
    53樊卫华,蔡骅,吴晓蓓,胡维礼.具有延时和数据包丢失的网络控制系统的稳定性.南京理工大学学报. 2004, 28(5):465~468
    54 W. A. Zhang, L. Yu. Output Feedback Stabilization of Networked Control Systems with Packet Dropouts. IEEE Transactions on Automatic Control. 2007, 52(9):1705~1710
    55 M. Yu, L. Wang, T. G. Chu and G. M. Xie. Stabilization of Networked Control Systems with Data Packet Dropout and Network Delays via Switching System Approach. IEEE Conference on Decision and Control, 2004:3539~3544
    56 H. C. Yan, M. Q. H. Meng, H. Zhang and X. H. Huang. Robust Stabilization and Control for Networked Control Systems with Data Packet Dropout and Delays. IEEE International Conference on Information and Automation. 2008:1584~1589 H∞
    57 J. Wu, T. W. Chen. Design of Networked Control Systems with Packet Dropouts. IEEE Transactions on Automatic Control. 2007, 52(7):1314~1319
    58 S. Hu, W. Y. Yan. Stability Robustness of Networked Control Systems with Respect to Packet Loss. Automatica. 2007:1243~1248
    59 L. Schenato. Optimal Estimation in Networked Control Systems Subject to Random Delay and Packet Drop. IEEE Transactions on Automatic Control. 2008, 53(5): 1311~1317
    60 S. Hu, W. Y. Yan. Stability of Networked Control Systems Subject to a Multiple-Packet Transmission Policy. IEEE Conference on Cybernetics and Intelligent Systems, 2006: 1~6
    61 S. Hu, W. Y. Yan. Stability of Networked Control Systems under a Multiple-Packet Transmission Policy. IEEE Transactions on Automatic Control.2008, 53(7): 1706 ~1711
    62 Z. H. Huo, H. J. Fang, Y. Zheng and C. Xu. Fault-Tolerant Control Research on Networked Control Systems with Multiple-Packet Transmission. Chinese Control and Decision Conference, 2009:544~548
    63党向东,张庆灵.多包传输动态输出反馈网络控制系统指数稳定性.沈阳理工大学学报. 2008,27(4):1~5
    64党向东,张庆灵.多包传输网络控制系统的稳定性.渤海大学学报(自然科学版). 2008,29(4):380~384
    65 Y. Q. Li, H. J. Fang. Modeling and Analysis of Networked Control Systems with Network-Induced Delay and Multiple-Packet Transmission. International Conference on Control, Automation, Robotics and Vision, 2008:494~498
    66 Z. G. Sun, L. Xiao and D. S. Zhu, Analysis of Networked Control Systems with Multiple-Packet Transmission. Proceedings of the 5th World Congress on Intelligent Control and Automation, 2004:1357~1360
    67 M. Yu, W. D. Xiao. Stabilization of Network Controlled System with Multiple-Packet Transmission. IEEE International Conference on Systems, Man and Cybernetics, 2009:5024~5029
    68 J. N. Li, Q. L. Zhang, Y. L. Wang and M. Cai. H∞Control of Networked Control Systems with Packet Disordering. IET Control Theory & Applications. 2009, 3(11): 1463~1475
    69 C. Diao, B. Wang. Dynamic Control Algorithm with Data Packet Disordering in Networked Control Systems. International Workshop on Intelligent Systems and Applications, 2009:1~4
    70 Y. L. Wang, G. H. Yang. H∞Control of Networked Control Systems with Delay and Packet Disordering via Predictive Method. American Control Conference, 2007:1021~1026
    71 Y. L. Wang, G. H. Yang. H∞Control of Networked Control Systems with Time Delay and Packet Disordering. IET Control Theory and Applications. 2007, 1(5):1344~1354
    72 A. Savkin, T. Cheng. Detectability and Output Feedback Stabilizability of Nonlinear Networked Control Systems. IEEE Transactions on Automatic Control. 2007, 52(4):730~735
    73王艳,胡维礼,樊卫华.非线性时延网络控制系统的模糊建模与控制.控制工程. 2006, 13(3):233~236
    74 D. Z. E, F. Pan, D. L. Chen and D. Y. Xue. Fuzzy Neural Network Control for Nonlinear Networked Control System. Chinese Control and Decision Conference, 2009:1569~1573
    75李金娜,张庆灵,韩世迁.具有饱和非线性约束的网络控制系统鲁棒优化控制.东北大学学报(自然科学版). 2008, 29(5):617~620 H∞
    76池小波,樊兴,贾新春.一类非线性网络控制系统的随机控制.山西大学学报(自然科学版). 2009, 32(3):375~378 H∞
    77 X. C Jia, D. W. Zhang, X. H. Hao and N. N. Zheng. Fuzzy Tracking Control for Nonlinear Networked Control Systems in T–S Fuzzy Model. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 2009, 39(4):1073~1079
    78何坚强,张焕春.基于遗传算法的网络控制系统调度优化研究.工业仪表与自动化装置. 2004, (4):37~39
    79 G. C. Walsh, H. Ye. Scheduling of Networked Control Systems. IEEE Control System Magazine. 2001, 21(1):57~65
    80王艳,陈庆伟,樊卫华,胡维礼.网络控制系统控制与调度协同设计的研究进展.兵工学报. 2007, 28(1):101~106
    81 L. S. Wei, M. Jiang, Y. Song and M. R. Fei. Scheduling Methodology and Stability of MIMO Networked Control Systems. Chinese Control and Decision Conference, 2009:533~537
    82 M. Gaid, A. Cela and Y. hamam. Optimal Integrated Control and Scheduling of Networked Control Systems with Communication Constraints: Application to A Car Suspension System. IEEE Transactions on Control Systems Technology. 2006, 14(4):776~787
    83 Y. C. Tian, D. Levy. Compensation for Control Packet Dropout in Networked Control Systems. Information Sciences. 2008, 5(1):1263~1278
    84 N. Vatanski, J. P. Georges, C. Aubrun, E. Rondeau and S. L. J?ms?-Jounela. Networked Control with Delay Measurement and Estimation. Control Engineering Practice, 2009, 17(2):231~244
    85 J. G. Li, J. Q. Yuan and J. G. Li. Observer-Based H∞Control for Networked Nonlinear Systems with Random Packet Losses. ISA Transactions. 2010, 49(1):39~46
    86 J. Huang, Y. J. Wang, S. H. Yang and Q. Xu. Robust Stability Conditions forRemote SISO DMC Controller in Networked Control Systems. Journal of Process Control. 2009, 19(5):743~750
    87 W. A. Zhang, L. Yu. A Robust Control Approach to Stabilization of Networked Control Systems with Short Time-varying Delays. Acta Automatica Sinica, 2010, 36(1):87~91
    88 C. Lin, Z. D. Wang, F. W. Yang. Observer-Based Networked Control for Continuous-Time Systems with Random Sensor Delays. Automatica, 2009, 45(2):578~584
    89 W. A. Zhang, L. Yu. Modeling and Control of Networked Control Systems with Both Network-Induced Delay and Packet-Dropout. Automatica, 2008:3206~3210
    90 C. H. Wang, Y. F. Wang. Design Networked Control System via Time-Varying Delay Compensation Approach. Proceedings of the 5th World Congress on Intelligent Control, Hangzhou, 2004:1371~1375
    91 M. S. Mahmoud. Robust Control and Filtering for Time-Delay Systems. CRC Press. 2000:399~400
    92 Y. S. Lee, W. H. Kwon. Delay-Dependent Robust Stabilization of Uncertain Discrete-Time State-Delayed Systems. 15th Triennial World Congress, Barcelona, 2002
    93 L. E. Ghaoui, F. Oustry and M. AitRami. A Cone Complementarity Linearization Algorithm for Static Output-Feedback and Related Problems. IEEE Transactions on Automatic Control. 1997, 42(8):1171~1176
    94 M. Wu, Y. He, J. H. She and G. P. Liu. Delay-Dependent Criteria for Robust Stability of Time-Varying Delay Systems. Automatica. 2004, 40(8):1435~1439
    95 D. L. Wen, Y. Gao. Networked Control Systems in Multiple-packet Transmission. Chinese Control and Decision Conference, 2008:423~426
    96 D. L. Wen, G. H. Yang. State Feedback Control of Continuous-Time Networked Control Systems in Multiple-Packet Transmission. Chinese Control and Decision Conference, 2009:582~587
    97孙海燕,侯朝桢.具有数据包丢失及多包传输的网络控制系统稳定性.控制与决策. 2005,20(5):511~515
    98 X. L. Zhu, G. H. Yang. Stability Analysis and State Feedback Control of Networked Control Systems with Multi-Packet Transmission. American Control Conference, 2008:3133~3138
    99陈惠英,王万良,李祖欣,王培良.不确定多包传输网络控制系统的分析与设计.武汉理工大学学报(交通科学与工程版). 2008,32(6):1145~1148
    100樊卫华.网络控制系统的建模与控制.南京理工大学博士论文. 2004
    101 A. Hassibi, S. P. Boyd and J. P. How. Control of Asynchronous Dynamical Systems with Rate Constraints on Events. Proceedings of the 38th Conference on Decision & Control, 1999: 1345~1351
    102张立宪.离散线性切换系统的分析、综合与应用.哈尔滨工业大学博士论文. 2006
    103 Z. D. Sun, S. S. Ge. Switched Linear Systems - Control and Design. Berlin: Springer. 2004
    104 M. S. Branicky. Multiple Lyapunov Functions and Other Analysis Tools for Switched and Hybrid Systems. IEEE Transactions on Automatic Control. 1998,43(4): 475~782
    105 H. R. Wang, C. H. Wang, H. J. Gao and L. G. Wu. An LMI Approach to Robust Fault Detection and Isolation Filter Design for Markovian Jump Systems with Mode-Dependent Time-Delays. Proceedings of American Control Conference, 2006:5686~5691
    106周东华,叶银忠.现代故障诊断与容错控制.清华大学出版社, 2000
    107吕明.网络控制系统的故障检测与诊断.南京理工大学博士论文. 2007
    108 R. Isermann. Model-Based Fault-Detection and Diagnosis - Status and Applications. Annual Reviews in Control. 2005, 29(1):71~85
    109 J. F. Magni, P. Mouyon. On Residual Generation by Observer and Parity Spaces Approaches. IEEE Transactions on Automatic Control. 1994, 39(2):441~447
    110 E. A. Garcia, P. Frank. On the Relationship between Observer and Parameter Identification Based Approaches to Fault Diagnosis. Proceedings of IFAC World Congress, San Francisco, USA, 1996:25~29
    111 J. Gertler. Diagnosis Parametric Faults: From Parameter Estimation to Parity Relations. Proceedings of the American Control Conference, Seattle, USA, 1995:1615~1620
    112叶昊,王桂增,方崇智.基于脉冲响应函数的正交小波变换系数的故障检测方法.控制理论与应用. 1999, 16(1):6~10
    113叶昊,王桂增,方崇智.小波分析在故障检测中的应用.自动化学报. 1997, 23(6):736~741
    114王海生,叶昊,王桂增.基于小波分析的输油管道泄漏检测.信息与控制. 2002, 31(05):456~460
    115闻新,张洪钺,周露.基于多种测量残差的控制系统故障诊断方法.控制与决策. 1998, 13(1):75~78
    116伍学奎,陈进,周铁尘等.基于多指标融合的故障诊断理论与方法.振动工程学报. 1999, 12(1):55~63
    117 K. Kumamaru, et al. Robust Fault Detection Using Index of Kullback Discrimination Information. Proceeding of IFAC World Congress, 1996:205~210
    118 P. M. Frank. Analytical and Qualitative Model-Based Fault Diagnosis-A Survey and Some New Results. European Journal of Control. 1996, 2(1):6~28
    119 H. Wang. Fault Detection and Diagnosis for Unknown Nonlinear Systems: A Generalized Framework via Neural Networks. Proceedings of the IEEE International Conference on Intelligent Processing Systems, 1997:1506~1510
    120 R. J. Patton, J. Chen. Robustness in Quantitative Model-Based Fault Diagnosis. IEE Colloquium on Intelligent Fault Diagnosis-Part 2:Model-Based Techniques. 1992: 1~17
    121 R. J. Patton. Robustness in Model-Based Fault Diagnosis: The 1995 Situation. International Federation of Automatic Control, 1997:103~123
    122 Y. Zheng, H. Fang, H. O. Wang. Takagi–Sugeno Fuzzy-Model-Based Fault Detection for Networked Control Systems with Markov Delays. IEEE Transactions on Systems, Man and Cybernetics. 2006, 36(4):924~929
    123 J. Nilsson, et al. Stochastic Analysis and Control of Real-Time Systems with Random Time Delays. Automatica. 1998, 34(1):57~64
    124谢林柏,纪志成,方华京.具有异步时延的网络化控制系统故障检测.系统仿真学报. 2005, 17(11):2717~2721
    125 Y. Bao, Q. Q. Dai, Y. L. Cui et al. Fault Detection Based on Robust States Observer on Networked Control Systems. Proceedings of International Conference on Control and Automation, 2005:1237~1241 H∞
    126吕明,吴晓蓓,陈庆伟,胡维礼.多包传输网络控制系统的鲁棒故障检测.控制与决策. 2008, 23(2):221~224 H∞
    127 H. W. Xia, G. C. Ma, C. H. Wang et al. Robust Fault Detection of Networked Control Systems: An Improved LMI Approach. IEEE Conference on Industrial Electronics and Applications, 2007:1448~1452
    128 Y. Q. Wang, H. Ye, X. S. Ding. Fault Detection of Networked Control Systems Based on Optimal Robust Fault Detection Filter. Acta Automatica Sinica. 2008,34(12):1534~1539
    129 M. Y. Zhong, S. X. Ding, J. Lam et al. An LMI Approach to Design Robust Fault Detection Filter for Uncertain LTI Systems. Automatica. 2003:543~550
    130夏红伟.网络化控制系统若干问题研究.哈尔滨工业大学博士论文. 2008
    131刘云霞,丁强,钟麦英.网络控制系统故障诊断滤波器设计的LMI方法.山东大学学报(工学版). 2005, 35(3): 63~67
    132俞立.鲁棒控制-线性矩阵不等式处理方法.清华大学出版社, 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700