电化学砂带磨削加工质量控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代科技的不断发展,单纯地靠机械加工技术往往难以满足产品性能的要求,所以集机械、物理、化学等作用于一体的复合加工技术得到了迅速发展。电化学砂带磨削技术是电化学—机械复合加工技术中的一种,通过合理地选择使用与电化学作用相匹配的砂带磨削加工方式以及合理的优化选择工艺参数,使两者的作用能够很好的匹配,使工件表面加工得以不断交替进行,达到加工质量的要求。
     电解砂带磨削复合加工技术过程是一种复杂的非线性过程,影响加工工艺过程的因素较多而且各因素之间相互关系非常复杂,要获得好的加工质量效果,必须注意多种作用的匹配问题,合理选择和优化工艺参数。即根据不同的工件情况(形状、材料、加工技术要求等)选择最佳的工艺参数来控制加工过程,从而实现对加工质量的控制。
     本文在电化学砂带磨削技术加工的相关理论的基础上,以轴承滚道凸度加工为对象,以降低表面粗糙度和加工合理表面凸度形状为目标,对加工质量的控制做了以下研究:
     1.研究了电化学砂带磨削加工的基本原理与特点,根据加工对象和目标,建立了适用的实验装置,分析了加工过程的特点和提高加工效率的途径;
     2.通过实验,初步研究了电流密度、加工时间、砂带粒度、极间间隙、相对加工线速度等工艺参数对表面质量的影响规律,为工艺参数的优化提供了依据;
     3.采用BP神经网络原理建立加工质量与影响参数之间的近似数学模型,在分析各主要因素和实验数据的基础上,确定了BP神经网络模型的结构,该数学模型能比较准确地根据加工表面质量的要求反映出合理匹配的工艺参量;利用该网络模型可以预测加工的表面质量,也可以根据所要求的表面质量来反求加工过程中的工艺参量。网络模型的建立为电化学砂带磨削加工合理匹配工艺参量、优化加工过程提供了新的方法。
     上述工作对推动电化学砂带磨削加工技术的实际应用具有积极意义。
With the development of modern science and technology, it becomes more and more difficult to simply rely on mechanical technology to meet the performance requirements. So the composite processing technology which sets mechanical, physical, chemical technology role in the integration has been developing rapidly. Electrochemical abrasive belt grinding (ECABG) technology is one of the Electrochemical-Mechanical composite processing technology. It makes a good match to choose reasonable abrasive belt grinding manner and technologic parameters, and processes the workpiece surface alternately, then meets the quality requirements.
    ECABG is a nonlinear process which many factors affect the manufacturing process. It is necessary to choose and optimize the reasonable technologic parameters so as to obtain good quality, that According to the different parts (shape, material, processing technology, etc.) to determine the best technologic parameters to control the machining process and the required processing quality.
    On the basis of relevant ECABG theory, taking bearing raceway crown processing as an object to study the Quality control of processing is put forward as following:
    1. The basic principles and characteristics of ECABG theory have been deeply studied. The appropriate experiment equipment was set up, and the manufacturing process and the ways to improve processing efficiency were analyzed.
    2. The influence of technologic parameters, such as electric current density, processing time, granularity of abrasive belt, gap between cathode and anode, processing lineal speed, has been researched primarily by orthogonal experiments, which provide the foundation for optimization of technologic parameters.
    3. A similar mathematical model between the machining precision and influencing factors is set up with the BP neural network theory, thus avoids the complex interrelationship between technologic parameters and processing quality. On the basis of BP neural network, the technologic parameters and the dimension of the middle and the hidden layer are determined. Taking predicting and controlling the surface roughness as an example, the model trained by the experimental datum turns into the final BP neural network model. The experimental results indicate that this BP neural network model forecast has a high quality accuracy. In addition, The BP neural network model can be used to optimize technologic parameters.
引文
[1] 刘战强,王兆辉,刘逢时.先进切削加工技术综述.工具技术,2003,37(5):3-7.
    [2] 袁哲俊,王先逵.精密和超精密加工技术.北京:机械工业出版社,1999.
    [3] 王先逵,李庆祥,刘成颖.精密加工技术实用手册.北京:机械工业出版社,2001.
    [4] 杨江河,程继学.精密加工实用技术.北京:机械工业出版社,2006.
    [5] 王晓明.脉冲电化学及其复合光整加工机理和表面特性的研究:(博士学位论文).大连:大连理工大学,2002.
    [6] 李克良.电化学机械加工技术及应用.机械设计与制造,1999,(1):48-49.
    [7] 秦哲.机械化学复合砂带磨削花岗石研究:(硕士学位论文).广州:广东工业大学,2001.
    [8] 徐宁.电化学机械复合光整加工及表面特性研究:(硕士学位论文).北京:中国农业大学,2003.
    [9] 马玲.滚子轴承滚道凸度电化学砂带磨削加工技术研究:(硕士学位论文).大连:大连理工大学,2005.
    [10] 中国轴承工业协会.国外轴承要览.轴承工业,2002(4):37-42.
    [11] 赵燕英.论国产铁路机车轴承的技术现状与水平.内燃机车,2001(1):28-30.
    [12] 张雷,王冠兵.汽车轴承的现状和发展方向.轴承,1998(8):6-7.
    [13] 张湘印,宋丽,王大力.轿车轴承现状及发展方向.轴承,1998,(12):25-27.
    [14] 廉志强.圆锥滚子轴承的凸度加工.轴承,2002,(11):19-20.
    [15] Lin S W, Xue Z W. Research on optimization of technological parameters for grinding bearing race, Key Engineering Materials, 2001(202-203):375-380.
    [16] 马纯,张绍群,马勇.套圈滚道高效高精度切入磨削.轴承,1997,(12):17-23.
    [17] 金建军.机车用轴承套圈磨削烧伤酸浸蚀检查.材料工程,1996(4):48.
    [18] 杨佐,陈春晓.轴承套圈超精切削瘤的形成机理.轴承,2000,(10):28-29.
    [19] 陈占福,申光宪,束学道.大型轧机滚动轴承延寿理论与方法研究.中国机械工程,2001(10):1089-1092.
    [20] Gupta P K. On the dynamics of tapered roller bearing, Trans. ASME J. Tribol, 1989(2): 178-190.
    [21] Zhou R S and Hoeprich M R. Torque of taper roller bearings, Trans. ASME J. Tribol, 1991(113):590-597.
    [22] Chiu Y P, Hartnett M J.A numerical solution for the contact problem involving bodies with cylindrical surface considering cylinder effect, Journal of Tribology, 1987(109): 497-486.
    [23] Shiroishi J, Li Y,Liang S, Danyluk S, Kurfess T, Vibration analysis for bearing outer race condition diagnostics, Journal of the Brazilian Society of Mechanical Sciences, 1999(21):484-492.
    [24] 徐浩,汤勇,王大力.圆锥滚子轴承凸度设计.轴承,2003(9):6-8.
    [25] 高泽成.外圈滚道带凸度的圆柱滚子轴承.轴承,1996(10):14-16.
    [26] 廉志强.圆锥滚子轴承的凸度加工.轴承,2002(11):19-20.
    [27] 端义来,孙福刚,郭萍,郝振昆.滚子轴承内滚道凸度磨削工艺.轴承,2000(6):17-18.
    [28] 刘钟辉.滚子轴承外圈滚道凸度的磨削.轴承,1998(10):9-12.
    [29] 王建业,徐家文.电解加工原理及应用.北京:国防工业出版社,2001.
    [30] Sun J J, et al. ECM process for hard passive materials surface finishing. Journal of materials processing technology, 2001(108):356-368.
    [31] Rajurkar K P, et al. New developments in electrochemical machining. Annals of the CIRP, 1999,48(2):567-569.
    [32] Kozak J, et al. Computer simulation of pulse electrochemical machining. Journal of materials processing technology, 1991(28):149-157.
    [33] 孙永红.硬脆材料砂带磨削研究:(硕士学位论文).广州:广东工业大学,2001.
    [34] 余承业等.特种加工技术.北京:国防工业出版社,1995.
    [35] 王卫民,丁明,李云梅.在普通车床上改装的砂带磨削装置.机械设计与制造,1995(4):43.
    [36] 谢国如.基于车床砂带磨削的研究和应用.机械工程与自动化,2004(5):65-68.
    [37] 黄云,黄智.砂带磨削技术产业化进程的战略.机械工程与自动化,2005(2):7-9.
    [38] 王涛,李剑,高航天.磨削技术的现状与发展趋势.机械设计与制造,2003(4):116-118.
    [39] 周志雄,邓朝晖,陈根余.磨削技术的发展及关键技术.中国机械工程,2000(11):45-48.
    [40] 黄云,朱派龙.砂带磨削原理及其应用.重庆大学出版社,1993.
    [41] 何寅.砂带磨削技术在现代化工业中的应用.机械制造,1992(4):17-19.
    [42] 魏源迁.砂带磨削技术及其应用前景.磨床与磨削,1998(4):3-6.
    [43] 朱派龙.国内外砂带磨削新进展.机械工艺师,1993(6):36-44.
    [44] 梁彩风,侯文泰.碳钢低合金钢16年大气暴露腐蚀研究.中国腐蚀与防护学报,2005,25(1):124.
    [45] 肖纪美.应力作用下的金属腐蚀.北京:化学工业出版社,1990.
    [46] 赵修太,杜春安,邱广敏,赵明臣,张兴建.缓慢释放型长效缓蚀剂的研制及应用.中国石油大学学报,2006(1):115-122.
    [47] 焦李成.神经网络系统理论.西安:西安电子科技大学出版社,1990.36.
    [48] Hornik K, Stinchcome M,White H. Multilayer feedback networks are universal approximaters. Neural Networks, 1989(11):359-379.
    [49] 张立明.人工神经网络的模型及其应用.上海:复旦大学出版社,1993.
    [50] Graupe D. Principles of artificial neural networks. NewYork:World Scientific Publishing Co, 1997.17.
    [51] Rajurkar K P, ZhuD, McGeough J A, etal. New development in Electro-chemical machining. CIRP Annals Manufacturing Technology, 1999,48(2):567-579.
    [52] 王希,赵东标,云乃彰.基于神经网络和模糊控制的电解加工间隙控制.华南理工大学学报,2006(2):37-40.
    [53] 钱军,朱荻,刘正埙.人工神经网络在电解加工阴极设计中的应用研究.南京航空航天大学学报,1997,29(5):554-559.
    [54] TakeuchiJ, KosugiY.Neural network representation of finite element method. Neural Networks, 1994,7(2):389-395.
    [55] 温浩,赵国庆.基于MATLAB神经网络工具箱的线性神经网络实现.电子科技,2005(1):26-30.
    [56] 胡守仁.神经网络应用技术.长沙:国防科技大学出版社,1993.
    [57] 朱福喜,汤怡群,傅建明.人工智能原理.武昌:武汉大学出版社,2002.
    [58] 徐秉诤.神经网络原理与应用.广州:华南理工大学出版社.1994.
    [59] 飞思科技产品研发中心.神经网络理论与MATLAB7实现.北京:北京电子工业出版社,2005.
    [60] 孙春华,朱荻,李志永.基于BP神经网络的电解加工精度预测模型.华南理工大学学报,2004(10):24-27.
    [61] 丛爽.面向MATLAB工具箱的神经网络理论及应用.合肥:中国科学技术大学出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700