凹凸棒石粘土负载铁镍催化裂解生物质焦油
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在国内外专家学者研究的基础上,建立了实验室规模的固定床生物质焦油催化裂解室验系统和整套的气体分析、积炭分析、固体催化剂分析方法。探究了凹凸棒石粘土/白云石比对催化裂解生物质焦油的影响。选用了几种常见催化裂解生物质焦油的天然矿物催化剂负载相同组分的镍催化裂解焦油并与石英砂的热裂解对比,结果表明凹凸棒石粘土负载镍催化剂对焦油具有较好的催化效果。随后考察了不同助剂及助剂负载量对凹凸棒石粘土镍基催化剂催化裂解焦油的影响,发现Fe、Mg、Mn、Ce中,Fe对催化剂具有最佳的修饰效果,大大提高了生物质焦油的去除率和氢产率。最后着重探究了镍负载(铁负载量)对凹凸棒石粘土负载6%铁(镍)的影响,并初步探究了催化剂制备方法对催化裂解生物质焦油的影响以及简单概述了凹凸棒石粘土负载铁镍纳米材料催化裂解生物质焦油的机理。
Based on the previous work, a system with a laboratory-scale fixed-bed reactor to catalytic cracking of biomass tar and a complete method of gases analysis, carbon deposition analysis and solid catalyst characterization are established in this paper. Effect of the ratio between palygorskite clay and dolomite on catalytic cracking of biomass tar is investigated. The same loading of Ni is supported on different natural mineral to catalytic cracking of biomass tar, which is compared with thermal cracking of biomass tar over quartz. The result shows that palygorskite-supported Ni perenst the best catalytic activity. Then effect of different additives and additives loading on catalytic cracking of biomass tar is studied. The result presents that catalyst have the best tar conversion and hydrogen yield when it is modified by Fe during the additives of Fe, Mg, Mn, Ce. The effect of Ni (Fe) loading on catalytic cracking of biomass tar over palygorskite-supported 6% Fe (Ni) catalyst is researched. The effect of catalyst preparation method on catalytic cracking of biomass tar is investigated and the mechanism of catalytic cracking of tar over palygorskite-supported Fe/Ni nanomaterials is analyzed simply.
引文
[1]朱锡锋.生物质热解原理与技术[M].中国科学技术大学出版社, 2006.
    [2]江泽民.对中国能源问题的思考[J].上海交通大学学报, 2008, 3(42): 345-359.
    [3]霍雅勤.中国能源现状及可持续利用对策[J].中国能源, 1999, 2: 42-44.
    [4]杜祥琬.中国能源的问题和可持续发展战略[J].决策咨询通讯, 2007, 1: 1-7.
    [5]王庆一.中国的能源与环境:问题及对策[J].能源与环境, 2005, 3: 4-8.
    [6]乔繁盛.大力开发新能源和可再生能源[J].国土资源情报. 2005, 12.
    [7]中国环境规划院,中国环境科学研究院.能源与环境及公众健康研究[J]. 2003.
    [8]张全国,雷廷宙.农业废弃物气化技术[M].北京:化学工业出版社, 2006.
    [9]袁振宏,吴创之,马隆龙,等.生物质能利用原理与技术[M].北京:化学工业出版社, 2005.
    [10]杨立忠,杨均锡,别义勋.新能源技术[M],中国科学技术出版社, 1994.
    [11] Frabemi L, Khezami L. Pyrolysis products from different biomasses: application to the thermal cracking of tar [J]. Applied Energy, 2001, 69: 293-306.
    [12] Devi L, Ptasinski KJ, Janssen FJJG. A review of the primary measures for tar elimination in biomass gasification processes [J]. Biomass and Bioenergy, 2003, 24: 125-140.
    [13] Chunshan Li,Kenzi Suzuki.Tar property,analysis,reforming mechanism and modle for biomass gasification-An overview [J]. Renewable and Sustainable Energy, 2008, 13: 594-604.
    [14] Milne TA, Abatzoglou N, Evans RJ. Biomass gasifier tars: their nature, formation and conversion, NREL/TP-570-25357, National Renewal Energy Laboratory, 1998.
    [15]石莹.凹凸棒石粘土催化裂解生物质气化焦油[D].合肥工业大学硕士论文, 2009.
    [16]吴创之,阴秀丽,刘平,等.生物质焦油裂解的技术关键[J].新能源, 1998, 20: 1-9.
    [17]吴创之.生物质气化发电技术讲座(3):生物质焦油裂解技术[J]. Renewable Energy, 2003, 3: 54-57.
    [18] Corella J, Orio A, Aznar PL. Biomass gasification with air in fluidized bed: reforming of the gas composition with commercial steam reforming catalysts[J]. Ind Eng Chem Res, 1998, 37(12): 172-241.
    [19] Reed TB, Levie B, Graboski MS. Fundamentals, development and scaleup of the air-oxygen stratified downdraft gasifier[R]. Solar Energy Research Institute, SERI/PR -234-2571.
    [20]王素兰.生物质焦油物理特性与燃气净化装置研究[D].河南农业大学硕士论文, 2000.
    [21]农业部生物质气化技术研究测试培训中心,生物质气化技术及其应用, 1999.
    [22]王铁柱.生物质焦油催化裂解实验研究[D].浙江大学硕士学位论文, 2003.1.
    [23]许明.生物质热解制气体技术试验与应用研究[D].浙江大学硕士论文, 2002.
    [24]张全国,孔书轩,刘圣勇,等.生物质燃气净化技术及其装置研究[J].中国沼气, 2000, 18(1): 43-45.
    [25] Courson C, Makaga K, Petit C, Kiennemann A. Development of Ni catalysts for gas production from biomass gasification: Reactivity in steam and dry-reforming [J]. Catalyst today, 2000, 63: 427-437.
    [26] Ruiqin Zhang , Robert C Brown,Andrew Sudy,Keith Cummer.Catalytic destruction of tar in biomass derived from gas [J]. Energy Conversion and Management , 2003, 45: 995-1014.
    [27] Wang TJ, Chang J, Wu CZ, Fu Y, Chen Y. The steam reforming of naphthalene over a nickel-dolomiate cracking catalyst [J]. Biomass and Bioenergy, 2004, 28: 508-514.
    [28] Asadullaha M, Miyazawab T, Itob S, Kunimorib K, Koyamac S, Tomishigeb K. A comparison of Rh/CeO2/SiO2 catalysts with steam reforming catalysts, dolomite and inert materials as bed materials in low throughput fluidized bed gasification systems [J]. Biomass and Bioenergy, 2004, 26: 269– 279.
    [29] Devi L, Ptasinski KJ, et al. Catalytic decomposition of biomass tars: use of dolomite and untreated olivine [J]. Renewable Energy, 2005, 30: 565-587.
    [30] Devi L, Craje M, et al. Olivine as tar removal catalyst for biomass gasifiers: Catalyst characterization [J]. Applied Catalysis, 2005, 294: 68–79.
    [31] Miyazawa T, Kimura T, Nishikawa J, Kado S, Kunimori K, Tomishige K. Catalytic performance of supported Ni catalysts in partial oxidation and steam reforming of tar derived from the pyrolysis of wood biomass [J]. Catalysis today, 2006, 115: 254-262.
    [32] Nordgreen T, Liliedahl T, Sjostrom K. Metallic iron as a tar breakdowncatalyst related to atmospheric fluidized bed gasification of biomass [J]. Fuel, 2006, 85: 689-694.
    [33] Sato K, Fujimoto K. Development of new nickel based catalyst for tar reforming with superior resistance to sulfur poisoning and coking in biomass gasification [J]. Catalysis Communication, 2007, 8: 1697-1701.
    [34] Lv PM, Yuan ZH, Wu CZ, Ma LL, Chen Y, Tsubaki N. Catalytic performance of supported Ni catalysts in partial oxidation and steam reforming of tar derived from the pyrolysis of wood biomass [J]. Energy Conversion and Management, 2007, 48: 1132-1139.
    [35] Tasaka K, Furusawa T, Atsushi, Tsutsumi. Biomass gasification in fluidized bed reactor with Co catalyst [J]. Chemical Engineering Science, 2007, 62: 5558-5563.
    [36] Uddin MA, Tsuda H, Wu SJ, Sasaoka E. Catalytic decomposition of biomass tars with iron oxide catalysts [J]. Fuel, 2007, 87: 451-459.
    [37] Mahishi MR, Goswamib DY. An experimental study of hydrogen production by gasification of biomass in the presence of a CO2 sorbent [J]. International Journal of Hydrogen Energy, 2007, 32: 2803-2808.
    [38] Tomishige K, Kimura T, Nishikawa J, Miyazawa T, Kunimori K. Promoting effect of the interaction between Ni and CeO2 on steam gasification of biomass [J]. Catalysis Communications, 2007, 8: 1074–1079.
    [39] El-Rub ZA, Bramer EA, Brem G. Experimental comparison of biomass chars with other catalysts for tar reduction [J]. Fuel, 2008, 87: 2243-2252.
    [40] Corella J, Toledo JM, Molina G. Performance of CaO and MgO for the hot gas clean up in gasification of a chlorine-containing (RDF) feedstock [J]. BIoresource Technology, 2008, 10: 1-6.
    [41] Kuhn JN, Zhao ZK, Senefeld-Naber A, Felix LG, Slimane RB, Choi WC, Umit S. Ozkan US. Ni-olivine catalysts prepared by thermal impregnation: Structure, steam reforming activity, and stability [J]. Applied Catalysis A: General, 2008, 341: 43–49.
    [42] Kuhn JN, Zhao ZK, Senefeld-Naber A, Felix LG, Slimane RB, Choi WC, Umit S. Ozkan US. Olivine catalysts for methane- and tar-steam reforming [J]. Applied Catalysis B: Environmental, 2008, 81: 14–26.
    [43] Nishikawa J, Miyazawa T, Nakamura K, Asadullah M, Kunimori K, Tomishige K. Promoting effect of Pt addition to Ni/CeO2/Al2O3 catalyst for steam gasification of biomass [J]. Catalysis Communications, 2008, 9: 195–201.
    [44] Mermelsteina J, Millana M, Brandonb NP. The impact of carbon formation onNi–YSZ anodes from biomass gasification model tars operating in dry conditions [J]. Chemical Engineering Science, 2009, 64: 492– 500.
    [45] Chattopadhyay J, Kim C, Kim R, Pak D. Thermogravimetric study on pyrolysis of biomass with Cu/Al2O3 catalysts [J]. Journal of Industrial and Engineering Chemistry, 2009, 1: 1-5.
    [46] Arena U, Zaccariello L, Mastellone ML. Tar removal during the fluidized bed gasification of plastic waste [J]. Waste Management, 2009, 29: 783–791.
    [47] Dufour A, Girods P, Masson E, Rogaume Y, Zoulalian A. Synthesis gas production by biomass pyrolysis: Effect of reactor temperature on product distribution [J]. International journal of hydrogen energy, 2009, 34: 1726 -1734.
    [48] Nakamura K, Miyazawa T, Sakurai T, Miyao T, Naito S, Begum N, Kunimori K, Tomishige K. Promoting effect of MgO addition to Pt/Ni/CeO2/Al2O3 in the steam gasification of biomass [J]. Applied Catalysis B: Environmental, 2009, 86: 36-44.
    [49] Luo SY, Xiao B, Guo XJ, Hu ZQ, Liu SM, He MY. Hydrogen-rich gas from catalytic steam gasification of biomass in a fixed bed reactor: Influence of particle size on gasification performance [J]. International journal of hydrogen energy, 2009, 34: 1260-1264.
    [50] Skoulou V, Swiderski A, Yang W, Zabaniotou A. Process characteristics and products of olive kernel high temperature steam gasification (HTSG) [J]. Bioresource Technology, 2009, 100: 2444-2451.
    [51] Weerachanchai P, Horio M, Tangsathitkulchai C. Effects of gasifying conditions and bed materials on fluidized bed steam gasification of wood biomass [J]. Bioresource Technology, 2009, 100: 1419-1427.
    [52] Furusawa T, Miura Y, Kori Y, Sato M, Suzuki N. The cycle usage test of Ni/MgO catalyst for the steam reforming of naphthalene/benzene as model tar compounds of biomass gasification [J]. Catalysis Communications, 2009, 10: 552–556.
    [53]于建华,袁红艳,徐绍平,杨小芹,刘淑琴. Ni/Fe坡缕石催化水蒸汽重整杏核热解焦油制氢[J].西安交通大学学报, 2007, 42(8): 1049-1053.
    [54]金明善,素掌怀,徐秀峰,齐世学. CeO2对担载Ni催化剂的CH4与CO2重整反应活性的影响[J].天然气化工, 2002, 2: 19-25.
    [55]素掌怀,徐秀峰,马华宪,安立敦.制备方法对Ni/MgO/Al2O3在甲烷与二氧化炭重整反应中催化性能的影响[J].催化学报, 2000, 21(5): 411-414.
    [56]王海涛,李振花,田树勋,何菲.助剂对甲烷部分氧化制合成气镍基催化剂性能的影响[J].燃料化学学报, 2004, 32(4): 574, 674, 774, 874, 974.
    [57]孙云娟,将剑春.生物质焦油气化产物中焦油地催花裂解研究[J].林产化学与工业, 2006, 27(5): 15-20.
    [58]郭新生,梁益武,方梦祥,骆仲泱.焦油的催化裂解对燃气组成地影响[J].煤气与热力, 2005, 25(8): 5-10.
    [59]杜丽娟,李建芬,肖波,易仁金,许小荣.生物质催化裂解制合成气的研究[J].化学工程师, 2008, 153(6): 3-9.
    [60]王卫平,席靖宇,王志飞,吕功煊,赵普. Ni—Fe催化剂乙醇部分氧化制氢地研究[J].物理化学学报, 2002, 18(5): 426-431.
    [61]周劲松,刘亚军,骆仲泱,岑可法.酸性、碱性催化剂对生物质焦油催化裂解影响分析[J].浙江大学学报, 2005, 39(7): 1047-1051.
    [62]杨修春,韦亚南,李伟捷.焦油裂解用催化剂地研究进展[J].化工进展, 2007, 26(3): 326-330.
    [63]赵国靖,李海涛,豆斌林,沙兴中.高温煤气中焦油组分的催化裂解[J].煤气与热力, 2000, 21(1): 3-6.
    [64]吕俊复,岳光溪.氧化钙条件下焦油主要组分的催化裂解[J].清华大学学报(自然科学版), 1997, 37(2): 6-10.
    [65]骆仲泱,张晓东,周劲松,倪明江,岑可法.生物质热解焦油的热裂解和催化裂解[J].高效化学工程学报, 2003, 18(2): 162-167.
    [66]周劲松,王铁柱,骆仲泱,张晓东,王树荣,岑可法.生物质焦油的催化裂解研究[J].燃料化学学报, 2002, 31(2): 144-148.
    [67]赵俊成,孙立,易维明.在管式炉中生物质热解的原理[J].山东理工大学学报(自然科学版), 2004, 18(2): 33-36.
    [68]王铁军,常杰,吴创之,陈勇.生物质气化焦油催化裂解特性[J].太阳能学报, 2003, 24(3): 376-379.
    [69]李永玲,吴占松.催化裂解条件对处理生物质热解焦油的影响[J].清华大学学报(自然科学版), 2009, 49(2): 253-256.
    [70]刘宇,李颖.利用小型流化床的生物质热裂解影响影响因素分析[J].农业工程学报, 2008, 24(8): 206-209.
    [71]杨小芹,徐绍平,胡冠,刘长厚.不同矿源橄榄石对催化苯水蒸气重整的影响[J].催化学报, 2009, 6(30): 497-502.
    [72]石莹,陈天虎,张先龙,刘海波,李金虎,施培超.凹凸棒石催化裂解生物质焦油[J].太阳能学报, 2009(待刊)。
    [73]宋磊.凹凸棒石催化裂解二甲苯的实验研究[D].合肥工业大学硕士论文, 2009.
    [74] Simell P, Stahlberg P, Kurkela E, Albrecht J, Deutsch S, Sjostrom K.Provisional protocol for the sampling and anlaysis of tar and particulates in the gas from large-scale biomass gasifiers.Version1998 [J]. Biomass and Bioenergy, 18(2000): 19-38.
    [75]邓鹏飞.生物质催化裂解气化研究[D].广东工业大学工学硕士学位论文, 2001.
    [76]金杏妹.工业应用催化剂[M].华东理工大学出版社, 2004.
    [77]贺泓,李俊华,何洪,上官文峰,胡春,等.环境催化——原理及应用[M].北京:科学出版社, 2008.
    [78] Huang CP, et al. Nitrate reduction by metallic iron [J]. Water Research. 1998, 32: 2257-2264.
    [79] Leboda R, Chodorowski S, Shubiszewska-Zieba J, et al. Effect of the carbonaceous matter deposition on the textural and surface properties of complex carbon-mineral adsorbents prepared on the basis of palygorskite [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 178(1-3): 113-128.
    [80]周杰,刘宁,李云等.凹凸棒石黏土的显微结构特征[J].硅酸盐通报, 1999, 18(6): 50-55.
    [81]陈天虎,徐晓春,岳书仓.苏皖凹凸棒石黏土纳米矿物学及地球化学[M].北京:科学出版社, 2004.
    [82] Serna GJ, Vamscoyoc GE. Infrared study of sepiolite and palygorskite surfaces [C]. Developments in Sedimentology, International Clay Conference, 1979, 27: 197-206.
    [83] Wang SB, Lu GQ. Role of CeO2 in Ni/CeO2-Al2O3 catalysts for carbon dioxide reforming of methane [J]. Applied Catalysis: B , 1998, 19(3/ 4): 267.
    [84]陈天虎,王建,庆承松,彭书传,宋垠先,郭燕.热处理对凹凸棒石结构、形貌和表面性质的影响[J].硅酸盐学报, 2006, 34(11): 1406-1410.
    [85]张保才,李勇,蔡伟杰,唐晓兰,徐奕德,申文杰. Ni-Cu/CeO2催化剂上乙醇水蒸气重整反应[J].催化学报, 2006, 27(7): 567-572.
    [86]甄开吉,王国甲,毕颖丽,等.催化作用基础[M].科学出版社, 2005: 172-180.
    [87] Polychronopoulou K , Bakandritsos A, Tzitzios V, Fierro J L G, Efstathiou A M . Absorption-enhanced reforming of phenol by steam over supported Fe catalysts [J]. Journal of Catalysts, 2006, 241: 132-148.
    [88] Tomishige K, Miyazawa T, Kimura T, Kunimori K. Novel catalyst with high resistance to sulfur for hot gas cleaning at low temperature by partial oxidation of tar derived from biomass [J]. Catalysis Communication, 2005, 6: 37-40.
    [89] Bukur DB, Okabe K, Rosynek MP, Li CP, Wang DJ, Rao KRPM, Huffman GP. Activation studies with a precipitated iron catalyst for fischer-tropsch synthesis:Ⅰ.characterization studies [J]. Journal of Catalysis, 1995, 155(2): 353-365.
    [90] Lingaiah N, Sai Prasad PS, Kanta Raoa P, Smart LE, Berry FJ. Studies on magnesia supported mono- and bimetallic Pd-Fe catalysts prepared by microwave irradiation method [J]. Applied Catalysis A: General, 2001, 213: 189-196.
    [91] Pineau A, Kanari N, Gabvabllah I. Kinetics of reduction of iron oxides by H2 PartⅠ: Low temperature reduction of hematite [J]. Thermochimica Acta, 2006, 447: 89-100.
    [92] Cheng HW, Yue BH, Wang XG, Lu XG, Ding WZ. Hydrogen production from simulated hot coke oven gas by catalytic reforming over Ni/Mg(Al)O catalysts [J]. Journal of Natural Gas Chemistry, 2009, 18: 225-231.
    [93] Akande AJ, Idem RO, Dalai A K. Synthesis, characterization and performance evaluation of Ni/Al2O3 catalysts for reforming of crude ethanol for hydrogen production [J]. Applied Catalysis A: General, 2005, 287: 159-175.
    [94] Reshetenko TV, Avdeeva LB, Ushakov VA, Moroz EM, Shmakov AN, Kriventsov VV, Kochubey DI, Pavlyukhin YT, et al. Coprecipitated iron-containing catalysts (Fe-Al2O3, Fe-Co-Al2O3, Fe-Ni-Al2O3) for methane decomposition at moderate temperatures Part II. Evolution of the catalysts in reaction [J]. Applied Catalysis A: General, 2004, 270: 87–99.
    [95] Ruckenstein E, Hu HY. Carbon dioxide reforming of methane over methane/alkaline earth metal oxide catalysts [J]. Applied Catalyst A, 1995, 133(1): 149-161
    [96] Reshetenko TV, Avdeeva LB, Ismagilov ZR, Pushkare VV, Cherepanova SV, Chuvilin AL, Likholobov VA. Catalytic filamentous carbon: Structural and textural properties [J]. Carbon, 2003, 41:1605–1615. [97 Biswas P, Kunzru D. Steam reforming of ethanol for production of hydrogen over Ni/CeO2–ZrO2 catalyst: Effect of support and metal loading [J]. International Journal of Hydrogen Energy, 2007, 32: 969-980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700