改性坡缕石的制备及其对重金属离子吸附性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着复合材料科学的不断发展,人们对经改性处理的无机复合材料的需求大幅增加。由于坡缕石粘土储量丰富、价格低廉、物理化学性质稳定等优点,将其经过不同方法和改性剂制备,得到的复合材料可以满足不同领域的要求。坡缕石表面可以引入不同的有机官能团,这些官能团能够和金属很好的螯合,提高了改性坡缕石对金属的吸附能力,使坡缕石得到了更广泛的应用。本文在坡缕石性质、改性方法及应用的基础上,主要做了以下工作:
     1、提纯的坡缕石经季铵盐活化后与硅烷偶联剂γ-胺丙基三甲氧基硅烷(APS)反应,得到表面被氨基修饰的坡缕石,再通过二硫化碳和氨基的反应引入了螯合能力强的硫代氨基官能团,得到改性坡缕石吸附剂。文章中详细研究了改性坡缕石对Cu(II)的吸附行为,考察了溶液pH值、吸附时间、溶液浓度以及温度对吸附量的影响,同时还对坡缕石原土和改性坡缕石对Cu(II)的吸附机理进行探讨。
     2、坡缕石粘土经聚乙烯醇(PVA)处理得到PVA/PGS复合吸附剂,并利用FT-IR、SEM、TG和XRD对其进行了表征。通过考察溶液酸度、吸附时间、初始浓度和温度对吸附量的影响,表明在100 mg/L的初始浓度溶液中,pH约为6时,PVA/PGS的最大吸附量达43.2 mg/g(PGS的最大吸附量是27.5 mg/g)。吸附过程经动力学方程及等温吸附方程拟合,结果显示吸附过程符合准二级动力学模型、Langmuir方程,同时计算了吸附过程的熵变、焓变和吉布斯自由能变,结果表明该吸附过程是自发进行的放热过程。
     3、以聚乙烯醇改性坡缕石,通过接枝共聚的方法引入聚丙烯腈,将腈基官能团在碱性环境的盐酸羟铵溶液中转化为偕胺肟基。本文中还讨论了酸度、时间、初始浓度和温度因素对吸附量的影响和吸附机理。当pH值约为6,偕胺肟基坡缕石对Cu(II)的吸附量达最大。动力学实验表明,吸附时间为70min时达到吸附平衡。动力学拟合结果显示,吸附过程符合准二级动力学模型,粒子扩散过程是吸附速控步过程,但不是唯一的速决步过程。Langmuir吸附模型较高的线性拟合常数说明吸附过程是单层吸附。
     4、表面经硅烷偶联剂(APS)修饰的坡缕石与甲基丙烯酸甲酯发生麦克尔加成反应后,再与乙二胺发生胺解反应,得到聚酰胺-胺键合坡缕石吸附剂。重点研究其对铅离子的吸附能力,实验结果表明:当pH值约为6,金属离子浓度为100 mg/L时,聚酰胺-胺键合坡缕石对Pb(II)的吸附量达63.54 mg/g (坡缕石原土的吸附量为31.5 mg/g)。动力学实验表明,吸附过程符合准二级动力学模型;等温吸附模型拟合结果显示,Langmuir吸附模型有较高的线性拟合常数说明吸附过程是单层吸附。
With the development of functionalized and composite materials, the requirement of modified inorganic materials was increased rapidly. As palygorskite clay is abundant, low cost, in addition, possess stable physical and chemical properties, the clay modified with various methods and different modifier meet the requirements of different areas. Palygorskite surface can introduce different organic functional groups, these functional groups can chelate metal ions and improve the adsorption capacity of metal ions, so that palygorskite has been more widely used. Based on the review of the properties and the applications of palygorskite, the dissertation included following contents:
     1. Functional palygorskite was prepared from purified palygorskite and characterized by the method of IR and element analysis. The exchange between ammonium salt containning hydroxyl and Ca2+, Mg2+ of palygorskite layer increased the number of -OH, NH2-(CH2)3-Si(OMe)3 was connected to the surface of palygorskite by dehydration with -OH. After dehydration, functional groups with the chelating ability were introduced by the reaction between Carbon disulfide and Amino group.the adsorption ability of modified palygorskite for Cu(II) was investigated. The influences of the pH, contact time, concentration of Cu(II) and temperature on the adsorption were discussed. In addition, the article discussed the adsorption mechanism of palygorskite and modified palygorskite for Cu(II).
     2. Palygorskite (PGS) was modified with aqueous poly(vinyl alcohol) (PVA) to obtain hybrid adsorbent of PVA/PGS. It was characterized by the methods of TG, SEM and FT-IR. The adsorptions of Cu(II) ions from aqueous solution with PGS and PVA/PGS were studied. The effects of acidity, contact time, initial concentration of Cu(II) ions and temperature were investigated. At pH 6 and with initial Cu(II) concentration of 100 mg/L, PVA/PGS can achieve a maximum adsorption capacity of up to 43.2 mg/g (in comparison with 27.5mg/g for PGS). The adsorption process is correlated with the pseudo-first and second-order kinetic model and Intraparticle diffusion model. The isotherms were simulated by Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models. The thermodynamic parameters, such as the change of free energy, enthalpy and entropy were also calculated.
     3. Amidoxime palygorskite was prepared by graft copolymerization. PVA has strong adhesive capacity to the oxide surface with the -OH groups. After palygorskite was modified with poly(vinyl alcohol)(PVA), the composite material was introduced the polymer containning cyano functional group, The cyano functional group was reduced to amidoxime in the hydroxyl ammonium hydrochloride solution. In addition, the article discussed the adsorption mechanism of palygorskite and modified palygorskite for Cu(II). When the pH value of about 6, adsorption capacity of amidoxime palygorskite for Cu (II) can reach the largest. Kinetic experiments show that the adsorption reach equilibrium when the adsorption time is 70min, the adsorption process is correlated with the pseudo- second-order kinetic model. The higher linear regression constants of langmuir adsorption model show that Adsorption process is monolayer adsorption.
     4. Palygorskite was modified with silane couple agent, Amino group and methyl acrylate occurs Michael reaction, after that, ethylenediamine can occur aminolysis reaction with Ester. the adsorption results of adsorbent for Pb(II) as follows: adsorption capacity of palygorskite functionalized by dendrimer-like polyamidoamine for Pb (II) can reach 63.54mg/g (in comparison with 31.5mg/g for PGS), When the pH value is about 6 and the metal ion concentration is 100 mg/L. The adsorption process is correlated with the pseudo-first and second-order kinetic model and Intraparticle diffusion model. The isotherms were simulated by Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models.
引文
[1]彭书传,黄川徽,陈天虎,杨远盛,汪家权,坡缕石对Zn2+的吸附性能及吸附工艺条件优化研究[J],岩石矿物学杂志,2004,23(3): 282-286.
    [2]郝艳玲,范福海,利用矿物材料治理重金属污染[J],工业安全与环保, 2005, 31(1): 38-39.
    [3]杨秀红,胡振琪,张迎春,利用工业矿物治理重金属污染土壤的探讨[J],金属矿山,2003,321(3): 52-55.
    [4]杨赞中,胡发社,任京成,赵伟,粘土矿物在环境保护中的应用研究进展[J],中国非金属矿工业导刊,2000,14: 23-26.
    [5]汤艳杰,贾建业,谢先德,粘土矿物的环境意义[J],地学前缘,2002,9(2): 337-344.
    [6]杭小帅,周健民,王火焰,沈培友,粘土矿物修复重金属污染土壤[J],环境工程学报,2007,1(9): 113-120.
    [7]álvarez-Ayuso E., García-Sánchez A.,Palygorskite as a feasible amendment to stabilize heavy metal polluted soils [J], Environmental Pollution, 2003, 125(3): 337-344.
    [8]李芳蓉,何玉凤,王荣民,李芳莹,高艳蓬,黄原酸化膨润土对Cu2+的吸附性能[J],环境化学,2008, 27(6): 746-750.
    [9]许冀泉,方邺森,李立文,江苏六合小盘山凹凸棒石粘土的发现及其意义[J],科学通报,1980,25(11):513-515.
    [10]仰榴青,国产凹凸棒土的研究[J],江苏理工大学学报,1995,16(1):55-60.
    [11]张国宇,王鹏,凹凸棒石粘土及在水处理中的应用[J],工业水处理,2003,23(4):1-5.
    [12]杨利营,盛京,凹凸棒粘土的研究开发与应用[J],江苏化工,2001,29(6):33-37.
    [13]陈天虎,凹凸棒石粘土吸附废水中污染物机理探讨[J],高校地质学报,2000,6(2):265-270.
    [14]赵善宇,王立久,程正勇,凹凸棒石提纯技术及性能研究[J],广东建材,2005,6: 61-63.
    [15]金叶玲,陈静,钱运华,胡涛,纯化凹凸棒石的理化表征与纯化机理[J],煤炭学报,2005,30(5):642-646.
    [16]陈天虎,彭书传,黄川徽,史晓莉,冯有亮,从苏皖凹凸棒石制备纯凹凸棒石[J],硅酸盐学报,2004,32(8): 965-969.
    [17]王连军,黄中华,孙秀云,凹凸棒土的改性研究[J],上海环境科学,2009,18(7): 315-320.
    [18]代伟伟,刘义新,改性坡缕石粘土的全孔分布研究[J],岩石矿物学杂志,2005,24(6):526-530.
    [19] Liu P, Guo J.S., Polyacrylamide grafted attapulgite (PAM-ATP) via surface-initiated atom transfer radical polymerization (SI-ATRP) for removal of Hg(II) ion and dyes [J], Colloids Surf.A:Physicochem. Eng. Asp., 2006, 282-283: 498–503.
    [20]姚超,李锦春,丁永红,纳米凹凸棒石表面硅烷偶联剂改性研究[J],非金属矿,2007,30(6): 1-3.
    [21]王晓鹏,于波,张俊平,凹凸棒黏土接枝聚丙烯腈的制备及其对Pb2+的吸附性能[J],非金属矿,2008,31(6):52-54.
    [22] Chen Y., Zhao Y.J., Zhou S.Y., Chu X.Z., Yang L.L., Xing W.H., Preparation and characterization of polyacrylamide / palygorskite [J], Appl. Clay Sci., 2009, 46(2): 148-152.
    [23]刘程,李江画,刘博,表面活性剂应用手册[M],北京,化学工业出版社,1994.
    [24] Zhu L.Z, Chen B.L.,Sorption behavior of p-nitrophenol on the interface between anion-cation orga nobentonite and water [J], Environ. Sci. Technol., 2000, 34: 2997-3002.
    [25]赵娣芳,周杰,刘宁,凹凸棒石改性机理研究进展[J],硅酸盐通报,2005,3:67-69.
    [26]彭书传,魏凤玉,周元祥,有机凹凸棒粘土吸附水中苯酚的试验[J],城市环境与城市生态,1999,12(2): 14-16.
    [27]包军杰,余贵芬,牛牧晨,邻硝基苯酚在有机改性凹凸棒土上的吸附行为[J],环境化学,2007,26(3): 339-342.
    [28]惠天凯,裘祖楠,汪学才,改性凹凸棒土对水中苯的吸附研究[J],上海环境科学,2007,19(7): 317-332.
    [29] Oyanedel-Craver V. A., Fuller M., Smith J.A., Simultaneous sorption of benzene and heavy metals onto two organoclays [J],J. Colloid Interface Sci., 2007, 309(2): 485-492.
    [30] Yan L.G., Shan X.Q., Wen B., Zhang S.Z., Effect of lead on the sorption of phenol onto montmorillonites and organo-montmorillonites [J], J. Colloid Interface Sci., 2007, 308(1): 11-19.
    [31]王彦华,雷家珩,袁启华,烷基铵盐改性坡缕石的结构与表面性质[J],非金属矿,1999,22(2): 8-17.
    [32] Huang J.H., Wang X.G.,Jin Q.Z.,Liu Y.F.,wang Y., Removal of phenol from aqueous solution by adsorption onto OTMAC-modified attapulgite [J], J. Environ. Manage., 2007, 84: 229-236.
    [33] Lee J.J., Choi J.Y., Park J.W., Simultaneous sorption of lead and chlorobenzene by organobentonite [J], Chemosphere, 2002, 49(10): 1309-1315.
    [34]杨艳,凹凸棒的表面改性及其聚合物符合絮凝剂、助凝剂的合成及应用研究[D],兰州,兰州大学,2007.
    [35] Liu P., Guo J.S., Polyacrylamide grafted attapulgite (PAM-ATP) via surface-initiated atom transfer radical polymerization (SI-ATRP) for removal of Hg(II) ion and dyes [J], Colloids Surf.A:Physicochem. Eng. Asp, 2006, 282–283: 498–503.
    [36]王丽华,聚丙烯/凹凸棒土纳米复合材料的制备、表征及性能研究[D],天津,天津大学,2004.
    [37]杜菲,纳米改性酚醛树脂/改性坡缕石二元摩擦材料应用基础研究[D],贵州,贵州大学,2008.
    [38]胡春,王怡中,凹凸棒负载TiO2对偶氮染料和防止废水光催化脱污[J],环境科学学报,2001,21(1): 123-125.
    [39] Boki K., Mori H. , Kawasaki N., Bleaching Rapeseed and Soybean Oils with Synthetic Adsorbents and Attapulgites [J], J. Am. Oil. Chem. Sci., 1994, 71(6): 595-601.
    [40] Wang Y.S., Zeng L., Ren X.F., Song H., Wang A.Q., Removal of Methyl Violet from aqueous solutions using poly(acrylic acid-co-acrylamide)/attapulgite composite [J], J. Environ. Sci., 2010, 22(1): 7-14.
    [41] Lei Z.Q., Wen S.X., Preparation and decoloration property of polystyrene-grafted palygorskite nanoparticles [J], Materials Letters, 2007, 61(19-20): 4076-4078.
    [42] Chang Y., Lv X.Q., Zha F., Wang Y.G., Lei Z.Q., Sorption of p-nitrophenol by anion–cation modified palygorskite [J], 2009, 168(2-3): 826-831.
    [43]李龙凤,改性凹凸棒粘土对水溶液中铜离子吸附性能的研究[J],淮北煤炭师范学院学报(自然科学版),2008,29(4): 33-36.
    [44]彭书传,黄川徽,陈天虎,徐晓春,汪家权,盐酸活化凹凸棒石吸附Cr3+工艺条件的优化研究[J], 2003,合肥工业大学学报(自然科学版), 26(3): 332-335.
    [45] Potgieter J.H., Potgieter-vermaak S.S., Kalibantonga P.D., heavy metals removal from solution by palygorskite clay [J], Miner. Eng., 2006, 19(5): 463-470.
    [46] Frost R.L., Xi Y., He H., Synthesis, characterization of palygorskite supported zero-valent iron and its application for methylene blue adsorption [J], J. Colloid Interface Sci., 2010,341(1): 153-161.
    [47] Frini-Srasra N., Srasra E., Acid treatment of south Tunisian palygorskite: Removal of Cd(II) from aqueous and phosphoric acid solutions [J], Desalination, 2010, 250(1): 26-34.
    [48] Chen H., Wang A.Q., Kinetic and isothermal studies of lead ion adsorption onto palygorskite clay [J], J. Colloid Interface Sci., 2007, 307: 309-316.
    [49] Wang W.J.,Chen H., Wang A.Q.,Adsorption characteristics of Cd(II) from aqueous solution onto activated palygorskite [J],Sep. Purif. Technol., 2007, 55: 157-164.
    [50] Chen H., Zhao Y.G, Wang A.Q.,Removal of Cu(II) from aqueous solution by adsorption onto acid-activated palygorskite,[J], J. Hazard. Mater., 2007, 149: 346-354.
    [51] Liu P., Wang T.M.,Adsorption properties of hyperbranched aliphatic polyester grafted attapulgite towards heavy metal ions [J], J. Hazard. Mater., 2007, 149: 75-79.
    [52] Zhang J., Wang J.L., Wu Y.Q., Wang Y.P, Wang Y.P.,Preparation and properties of organic palygorskite SBR/organic palygorskite compound and asphalt modified with the compound [J], Construction and Building Materials, 2008, 22(8): 1820-1830.
    [53]李铁,杨眉,洪汉烈,沈上越,姚柏文,天然橡胶/凹凸棒石纳米复合材料的制备与性能研究[J],化工新型材料,2009,37(8): 81-84.
    [54]雷自强,罗居杰,杨志旺,白雁斌,马恒昌,一种以坡缕石为阻燃剂制备的阻燃聚丙烯复合材料[P],中国专利:CN1654529,2005-08-17.
    [55]杨利营,盛京,凹凸棒粘土的研究开发与应用[J],江苏化工,2001,29(6): 33-37.
    [56]胡发社,杨飞华,坡缕石的酸活化研究及其应用前景探讨[J],宁波高等专科学校学报,2000,12(2): 42-45.
    [57]陈天虎,李宏伟,汪家权,施晶俊,凹凸棒石-银纳米复合抗菌材料制备方法和表征[J],硅酸盐通报,2005,2:123-126.
    [58]胡发社,程海丽,杨飞华,坡缕石型载银抗菌剂的研制[J],现代化工,2001,21(6): 35-37.
    [59]赵娣芳,周杰,楼必君,刘宁,陈杰,铜改性坡缕石的结构特征与抗菌性能研究[J],矿物学报,2006,26(2): 219-223.
    [60]赵佳兴,凹凸棒石黏土对食用油脱色性能探讨[J],非金属矿,1989,5: 30-32.
    [61]朱振海,郑茂松,孙新友,凹土脱色吸附剂对植物油脱色率及化学组份作用的探讨[J],非金属矿,1998,3: 18-19.
    [62]张茂林,徐伟昌,凹凸棒石黏土对工业油酸脱色性能研究[J],淮北煤师院学报,1999,20(4):58-61.
    [63]易发成,冯启明,李朝毅,刘谏,坡缕石粘土对食用油脱色性能研究[J],矿产综合利用,1996,6: 32-33.
    [64]王青宁,申涛,李澜,朱琬荣,凹凸棒石黏土脱色剂对航空煤油脱色研究[J],非金属矿,2007,30(2): 40-41.
    [65]朱海青,周杰,凹凸棒石粘土的开发利用现状及发展趋势[J],矿产保护与利用,2004,4: 14-17.
    [66]朱景和,李承元,李勤,坡缕石资源的深加工技术和开发应用[J],矿产保护与利用,2002,3: 13-19.
    [67]周述慧,叶巧明,矿物材料在催化领域中的应用[J],应用化工,2007,36(11): 1130-1133.
    [68]荣峻峰,景振华,洪晓宇,粘土矿物用于乙烯聚合催化剂的研究Ⅱ.凹凸棒石粘土微球负载MgCl2/THF/TiCl4制备乙烯聚合催化剂[J],石油化工,2004,33(1): 28-32.
    [69]常玥,刘彦,谭丁萍,坡缕石负载磷钨酸催化合成柠檬酸三丁酯[J],工业催化,2008,16(7): 66-70.
    [70]王勇刚,无毒柠檬酸酯增塑剂的催化合成研究[D],兰州,西北师范大学,2009.
    [71] Lei Z.Q.,Zhang Q.H., Luo J.J., He X.Y.,Baeyer–Villiger oxidation of ketones with hydrogen peroxide catalyzed by Sn-palygorskite [J],Tetrahedron Letters,2005, 46: 3505-3508.
    [72]郑自立,李朝毅,李虎杰,坡缕石的孔结构及其在复合硅酸盐保温材料中作用探讨[J],矿产综合利用,1996,6: 44-48.
    [73]蔺海明,邱黛玉,坡缕石在生态修复及绿色农业中应用研究进展[J],甘肃农业,2007,9: 61-63.
    [74]商平,孔祥军,王洁,魏丽娜,李梦,环境矿物材料在除臭抗菌中的研究进展[J],天津化工,2009,23(4): 1-4.
    [75]孙卫玲,倪晋仁,泥沙吸附重金属研究中的若干关键问题[J],泥沙研究,2002,6: 53-59.
    [76] Langmuir I., The constitution and fundamental properties of solids and liquids [J],J. Am. Chem. Soc., 1916, 38: 2221-2295.
    [77] Freundlich HMF,Uber die adsorption in lasungen [J],J. Phys. Chem.,1906,57: 385-470.
    [78] Ho Y.S., Wase D.A.J., Forster C.F., kinetic studies of competitive heavy metal adsorption by sphagnum moss peat [J], Environ. Technol., 1996, 17: 71-77.
    [79]高占明,纳/微米炭材料吸附去除水中重金属离子的基础研究[D],大连,大连理工大学,2009.
    [1] Argun M.E., Dursun S., Ozdemir C., Karatas M., Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics [J], J. Hazard. Mater., 2007, 141: 77-85.
    [2] Potgieter J.H., Potgieter-Vermaak S.S., Kalibantonga P.D., Heavy metals removal from solution by palygorskite clay [J], Miner. Eng., 2006, 19: 463-470.
    [3] Chen H., Wang A.Q., Kinetic and isothermal studies of lead ion adsorption onto palygorskite clay [J], J. Colloid. Interface Sci., 2007, 307: 309-316.
    [4] Polat H., Molva M., Polat M., Capacity and mechanism of phenol adsorption on lignite [J], Int. J. Miner. Process., 2006, 79: 264-273.
    [5] Mustafa S., Hamid A., Naeem A., Xanthate adsorption studies on chalcopyrite ore [J], Int. J. Miner. Process., 2004, 74: 317-325.
    [6] Hameed B.H., Ahmad A.A., Aziz N., Adsorption of reactive dye on palm-oil industry waste: Equilibrium,kinetic and thermodynamic studies [J], Desalination, 2009, 247: 551-560.
    [7] Celis R., HermosIn M.C., Cornejo J., Heavy Metal Adsorption by Functionalized Clays [J], Environ. Sci. Technol., 2000, 34: 4593-4599.
    [8] Samantaroy S., Mohanty A.K., Misra M., Removal of hexavalent chromium by Kendu fruit gum dust [J], J. Appl. Polym. Sci. Symp., 1997, 66: 1485-1494.
    [9] Orumwense, F.F.O., Removal of lead from water by adsorption on a kaolinitic clay [J], J. Chem. Technol. Biotechnol., 1996, 65:363-369.
    [10] Naseem R., Tahir S.S., Removal of Pb(II) from aqueous/acidic solutions by using bentonite as an adsorbent [J], Water Res., 2001, 35: 3982-3986.
    [11] Zhu L.Z., Zhang Y.J., Sorption of Organobentonites to Some Organic Pollutants in Water [J], Environ. Sci. Technol., 1997, 31: 1407-1410.
    [12] Márquez G. E., Ribeiro M.J.P., Ventura J. M., Labrincha J.A., Removal of nickel from aqueous solutions by clay-based beds [J], Ceram. Int., 2004, 30: 111-119.
    [13] Garcia Sanchez A., Alvarez Ayuso E., Jimenez de Blas O., Sorption of heavy metals from industrial waste water by low-cost mineral silicates [J], Clay Miner., 1999, 34: 469-477.
    [14]álvarez-Ayuso E., García-Sánchez A., Removal of cadmium from aqueous solutions by palygorskite. [J], J. Hazard. Mater., 2007, 147: 594-600.
    [15] Goubert-Renaudin S., Schneider R., Walcarius A., Synthesis of new dithiocarbamate-based organosilanes for grafting on silica [J], 2007, Tetrahedron Lett., 48: 2113-2116.
    [16] Alvarez-Ayuso E., Garc?a?-Sánchez A., Palygorskite as a feasible amendment to stabilize heavy metal polluted soils [J], Environ. Pollut., 2003, 125: 337-344.
    [17] Namasivayam C., Yamuna R.T., Adsorption of chromium (VI) by a low-cost adsorbent: Biogas residual slurry [J], Chemosphere, 1995, 30: 561-578.
    [18] Ho Y.S., John Wase D.A., Forster C.F., Batch nickel removal from aqueous solution by sphagnum moss peat [J], Water Res., 1995, 29: 1327-1332.
    [19]Baskaralingam P., Pulikesi M., Elango D., Ramamurthi V., Sivanesan S., Adsorption of acid dye onto organobentonite [J], J. Hazard. Mater., 2006, 128: 138-144.
    [20] Guibal E., Milot C., Michael Tobin J., Metal-Anion Sorption by Chitosan Beads:Equilibrium and Kinetic Studies [J], Ind. Eng. Chem. Res., 1998, 37: 1454-1463.
    [21] Vázquez G., Sonia Freire M., González-Alvarez J., Antorrena G., Equilibrium and kinetic modelling of the adsorption of Cd2+ ions onto chestnut shell [J], Desalination, 2009, 249: 855-860.
    [22] Almeida C.A.P., Debacher N.A., Downs A.J., Cottet L., Mello C.A.D., Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions [J], J. Hazard. Mater., 2006, 136: 272-280.
    [23] Badruzzaman M., Westerhoff P., Knappe D.R.U., Intraparticle diffusion and adsorption of arsenate onto granular ferric hydroxide (GFH) [J], Water Res., 2004, 38: 4002-4012.
    [24] Weber W.J., Morris J.C., Kinetics of adsorption on carbon from solution [J], J. Sanitary Eng. Div. Proceed. Am. Soc. Civil Eng., 1963, 89: 31-59.
    [25] Ramesh A., Hasegawa H., Sugimoto W., Maki T., Ueda K., Adsorption of gold(III), platinum(IV) and palladium(II) onto glycine modified crosslinked chitosan resin [J], Bioresour. Technol., 2008, 99: 3801-3809.
    [26] Ho Y.S., Chiu W.T., Wang C.C., Regression analysis for the sorption isotherms of basic dyes on sugarcane dust [J], Bioresour. Technol., 2005, 96: 1285-1291. [27 Ghosh D., Bhattacharyya K.G., Adsorption of methylene blue on kaolinite [J], Appl. Clay Sci., 2002, 20: 295-300.
    [28] Ho Y.S., Wase D.A.J., Forster C.F., Kinetic Studies of Competitive Heavy Metal Adsorptionby Sphagnum Moss Peat [J], Environ. Technol., 1996, 17: 71-77.
    [29] Khan S.A., Riaz-ur-Rehman, Khan M.A., Adsorption of chromium (III), chromium (VI) and silver (I) on bentonite [J], Waste Manag., 1995, 15: 271-282.
    [30] Unuabonah E.I., Adebowale K.O., Olu-Owolabi B.I., Kinetic and thermodynamic studies of the adsorption of lead (II) ions onto phosphate-modified kaolinite clay [J], J. Hazard. Mater., 2007, 144: 386-395.
    [31] Aksu Z., Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions onto Chlorella vulgaris [J], Process Biochem., 2002, 38: 89-99.
    [1] Büyüktuncel E., Bektas S., Gen? ?., Denizli A., Poly(vinylalcohol) coated/Cibacron Blue F3GA-attached polypropylene hollow fiber membranes for removal of cadmium ions from aquatic systems [J], React. Funct. Polym., 2001, 47: 1-10.
    [2] Argun M.E., Dursun S., A new approach to modification of natural adsorbent for heavy metal adsorption [J], Bioresour. Technol., 2008,99: 2516-2527.
    [3] Chaari I., Fakhfakh E., Chakroun S., Bouzid J., Boujelben N., Feki M., Rocha F., Jamoussi F., Lead removal from aqueous solutions by a Tunisian smectitic clay [J], J. Hazard. Mater., 2008, 156: 545-551.
    [4]álvarez-Ayuso E., García-Sánchez A., Removal of cadmium from aqueous solutions by palygorskite [J], J. Hazard. Mater., 2007,147: 594-600.
    [5] Potgieter J.H., Potgieter-Vermaak S.S., Kalibantonga P.D., Heavy metals removal from solution by palygorskite clay [J], Miner. Eng., 2006,19: 463-470.
    [6] Chen H., Zhao Y.G., Wang A.Q., Removal of Cu(II) from aqueous solution by adsorption onto acid-activated palygorskite [J], J. Hazard. Mater., 2007, 149: 346-354.
    [7] Wang W.J., Chen H., Wang A.Q., Adsorption characteristics of Cd(II) from aqueous solution onto activated palygorskite [J], Sep. Purif. Technol., 2007, 55: 157-164.
    [8] Shirvani M., Kalbasi M., Shariatmadari H., Nourbakhsh F., Najafi B., Sorption-desorption of cadmium in aqueous palygorskite,sepiolite, and calcite suspensions: isotherm hysteresis [J], Chemosphere, 2006, 65: 2178-2184.
    [9] Liu P., Wang T.M., Adsorption properties of hyperbranched aliphatic polyester grafted palygorskite towards heavy metal ions [J], J. Hazard. Mater., 2007, 149: 75-79.
    [10] Abu-Much R., Meridor U., Frydman A., Gedanken A., Formation of a three-dimensional microstructure of Fe3O4-Poly(vinyl alcohol) composite by evaporating the hydrosol under a magnetic field [J], J. Phys. Chem. B, 2006, 110: 8194-8203.
    [11] Wan Ngah W.S., Kamari A., Koay Y.J., Equilibrium and kinetics studies of adsorption of copper (II) on chitosan and chitosan/PVA beads [J], Int. J. Biol. Macromol., 2004,34: 155-161.
    [12] Kantipuly C., Katragadda S., Chow A., Gesser H.D., Chelating polymers and related supports for separation and preconcentration of trace metals [J], Talanta, 1990, 37: 491-517.
    [13] Deng S., Bai R., Chen J.P., Aminated polyacrylonitrile fibers for lead and copper removal [J],Langmuir, 2003, 19: 5058-5064.
    [14] Suárez Barrios M., Flores González L.V., Vicente Rodríguez M.A., Martin J.M., Acid activation of a palygorskite with HCl: Development of physico-chemical, textural and surface properties [J], Appl. Clay Sci., 1995, 10: 247-258.
    [15] Mishra R., Rao K.J., On the formation of poly(ethyleneoxide)-poly(vinylalcohol) blends [J], Eur. Polym. J., 1999, 35: 1883-1894.
    [16] Chen H., Wang A.Q., Kinetic and isothermal studies of lead ion adsorption onto palygorskite clay [J], J. Colloid Interface Sci., 2007, 307(2): 309-316.
    [17] Hojo N., Shirai H., Hayashi S., Complex formation between poly(vinyl alcohol) and metallic ions in aqueous solution [J], J. Polym. Sci. Symp., 1974, 47: 299-307.
    [18] Eliseev A.A., Lukashin A.V., Vertegel A.A., Heifets L.I., Zhirov A.I., Tretyakov Y.D., Complexes of Cu(II) with polyvinyl alcohol as precursors for the preparation of CuO/SiO2 nanocomposites [J], Mater. Res. Innovations, 2000, 3: 308-312.
    [19] Ho Y.S., John Wase D.A., Forster C.F., Batch nickel removal from aqueous solution by sphagnum moss peat [J], Water Res., 1995, 29: 1327-1332.
    [20] Baskaralingam P., Pulikesi M., Elango D., Ramamurthi V., Sivanesan S., Adsorption of acid dye onto organobentonite [J], J. Hazard. Mater., 2006, 128: 138-144.
    [21] Weber Jr. W.J., Morris J.C., Removal of biologically resistant pollutants from waste waters by adsorption, Advances in Water Pollution Research, Pergamon Press, New York, 1962, pp. 231-266.
    [22] Almeida C.A.P., Debacher N.A., Downs A.J., Cottet L., Mello C.A.D., Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions [J], J. Hazard. Mater., 2006, 136: 272-280.
    [23] Badruzzaman M., Westerhoff P., Knappe D.R.U., Intraparticle diffusion and adsorption of arsenate onto granular ferric hydroxide (GFH) [J], Water Res., 2004, 38: 4002-4012.
    [24] ?zcan A., ?zcan A.S., Adsorption of Acid Red 57 from aqueous solutions onto surfactant-modified sepiolite [J], J. Hazard. Mater., 2005, 125: 252-259.
    [25] Antonio P., Iha K., Suárez-Iha M.E.V., Kinetic modeling of adsorption of di-2-pyridylketone salicyloylhydrazone on silica gel [J], J. Colloid Interface Sci., 2007, 307(1): 24-28.
    [26] Ho Y.S., Chiu W.T., Wang C.C., Regression analysis for the sorption isotherms of basic dyes on sugarcane dust [J], Bioresour. Technol., 2005, 96: 1285-1291.
    [27] Bering B.P., Dubinin M.M., Serpinsky V.V., On thermodynamics of adsorption in micropores [J], J. Colloid Interface Sci., 1972, 38: 185-194.
    [28] Mehmet Ak?ay, Characterization and adsorption properties of tetrabutylammonium montmorillonite (TBAM) clay: Thermodynamic and kinetic calculations [J], J. Colloid Interface Sci., 2006, 296(1): 16-21.
    [29] Kilislioglu A., Bilgin B., Thermodynamic and kinetic investigations of uranium adsorption on amberlite IR-118H resin [J], Appl. adiat. Isot., 2003, 58: 155-160.
    [30] Freitas A.F., Mendes M.F., Coelho G.L.V., ThermodynaRmic study of fatty acids adsorption on different adsorbents [J], J. Chem. Thermodyn., 2007, 39: 1027-1037.
    [31] Ghiaci M., Kalbasi R.J., Abbaspour A., Adsorption isotherms of non-ionic surfactants on Na-bentonite (Iran) and evaluation of thermodynamic parameters [J], Colloids Surf. A: Physicochem. Eng. Asp., 2007, 297: 105-113.
    [32] Gübbük ?.H., Güp R., Ers?z M., Synthesis, characterization, and sorption properties of silica gel-immobilized Schiff base derivative [J], J. Colloid Interface Sci., 2008, 320(1): 376-382.
    [1] Wibowo N., Setyadhi L., Wibowo D., Setiawan J., Ismadji S., Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: Influence of surface chemistry on adsorption [J], J. Hazard. Mater., 2007, 146: 237–242
    [2] Bradl H.B., Adsorption of heavy metal ions on soils and soils constituents, [J], J. Colloid Interface Sci., 2004, 277(1): 1-18.
    [3] López Arbeloa F., Martínez Martínez V., Ba?uelos Prieto J., López Arbeloa I., Adsorption of rhodamine 3B dye on saponite colloidal particles in aqueous suspensions [J], Langmuir, 2002, 18(7): 2658–2664.
    [4]齐治国,史高峰,白利民,微波改性凹凸棒石黏土对废水中苯酚的吸附研究[J],非金属矿,2007,30(4):56-59,
    [5]彭书传,王诗生,陈天虎,等.坡缕石吸附水中阳离子桃红FG染料的热力学研究[J],矿物学报,2005,25(2):113-117.
    [6] Lutfor M.R., Sidik S., Wan M.Z., Ab Rahman M.Z., Ahmad M., Haron J., Preparation and characterization of poly(amidoxime) chelating resin from polyacrylonitrile grafted sago starch [J], Eur. Polym. J., 2000, 36: 2105-2113.
    [7] Zohuriaan-Mehr M.J., Pourjavadi A., Salehi-Rad M., Modified CMC. 2. Novel carboxymethylcellulose-based poly(amidoxime) chelating resin with high metal sorption capacity [J], React. Funct. Polym., 2004, 61: 23–31
    [8] Abdel-Aal S.E., Gad Y.H., Dessouki A.M., Use of rice straw and radiation-modified maize starch/acrylonitrile in the treatment of wastewater [J], J. Hazard. Mater., 2006, 129: 204–215.
    [9] Fan Q., Li Z., Zhao H., Jia Z., Xu J., Wu W., Adsorption of Pb(II) on palygorskite from aqueous solution: Effects of pH, ionic strength and temperature [J], Appl. Clay Sci., 2009, 45(3): 111-116.
    [10] Santa Maria L.C., Amorim M.C.V., Aguiar M.R.M.P., Guimaraes P.I.C., Costa M.A.S., Aguiar A.P., Rezende P.R., Carvalho M.S., Barbosa F.G., Andrade J.M., Riberio R.C.C Chemical modification of cross-linked resin based on acrylonitrile for anchoring metal ions [J], React. Func. Polym., 2001, 49(2): 133-143.
    [11] Chen H., Wang A.Q., kinetic and isothermal studies of lead ion adsorption onto palygorskite clay [J], J. Colloid Interface Sci., 2007, 307(2): 309-316.
    [12] Rao L., Xu J., Zhan R.Y., Structure and properties of polyvinyl alcohol amidoxime chelate fiber [J], J. Appl. Polym. Sci., 1994, 53: 325–329.
    [13] Hojo N., Shirai H., Hayashi S., Complex formation between poly(vinyl alcohol) and metallic ions in aqueous solution [J], J. Polym. Sci. Symp., 1974, 47: 299-307.
    [14] Eliseev A.A., Lukashin A.V., Vertegel A.A., Heifets L.I., Zhirov,A.I., Tretyakov Y.D., Complexes of Cu(II) with polyvinyl alcohol as precursors for the preparation of CuO/SiO2 nanocomposites, Mater. Res. Innovations, 2000, 3: 308-312.
    [15] Ho Y.S., Mckay G., The sorption of lead(II) ions on peat [J], Water Res., 1999, 33: 578-584.
    [16] Lagergren S., About the theory of so-called adsorption of soluble substance [J], K.Sven. Vetenskapsakad. Hand., 1898, 24:1-39.
    [17] Ho Y.S., Mckay G., The kinetics of sorption of divalentmetal ions onto sphagnum moss peat [J], Water Res., 2000, 34: 735-742.
    [18] Almeida C.A.P., Debacher N.A., Downs A.J., Cottet L., Mello C.A.D., Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions [J], J. Hazard. Mater., 2006, 136: 272-280.
    [19] Langumuir I., Adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 1918, 40: 3973-3993.
    [20] Hall K.R., Eagleton L.C., Acrivos A., Vermeulen T., Pore and solid diffusion kinetics in fixed-bed adsorption under constant pattern conditions [J], Ind. Eng. Chem.Fundam., 1966, 5: 212-223.
    [21] Ho Y.S., Chiu W.T., Wang C.C., Regression analysis for the sorption isotherms of basic dyes on sugarcane dust [J], Bioresour. Technol., 2005, 96: 1285-1291.
    [1]李燕中,刘昌俊,栾兆坤,活化赤泥吸附除磷及其机理的研究[J],环境科学学报,2006,26(11): 1775-1779.
    [2]邓聪,邓春玲,杨育喜,污水除磷技术[J],云南环境科学, 2003,22(1): 52-55.
    [3]王芳,娄金生,韩庆昌,吸附法除磷技术研究现状[J],中国科技信息,2006,2: 39-40.
    [4]陈天虎,彭书传,黄川徽,史晓莉,冯有亮,从苏皖凹凸棒石粘土制备纯凹凸棒石[J],硅酸盐学报,2004,32(8): 965-969.
    [5]刘云,董元华,马毅杰,坡缕石粘土的酸化机理及其影响因素[J],2007,26(4): 351-358.
    [6]陈天虎,改性凹凸棒石粘土吸附对比实验研究[J],非金属矿,2000,23(3):11-12.
    [7] Garcia A.S., Alvarez A.A. Junenez O.B., Sorption of heavy met-als from industrial wastewater by low cost mineral silicates (paly-gorskite) [J],Clay Miner.,1999,34(3): 469-478.
    [8]张国生,范文元,梅万芳,凹凸棒石型净水剂处理印染废水的研究[J],合肥工业大学学报(自然科学版),1992,15(1): 86-91.
    [9]王连军,黄中华,孙秀云,凹凸棒土处理染化废水研究[J],南京理工大学学报,1998,22(3): 240-243.
    [10]马毅杰,粘土科学的研究意义及现状[J],土壤,1994,26(6): 281-283.
    [11] Araujo Melo D.M., Ruiz J.A.C., Melo M.A.F., Preparation and characterization of lanthanum palygorskite clays as acid catalysts [J],J. Alloys Compd., 2002,344(1): 352-355.
    [12]王红艳,硝酸改性凹凸棒石粘土及吸附Cu2+的工艺研究[J],工业用水与废水,2005,36(4): 59-61.
    [13]吴前玉,王艳丽,蒋文斌,酸活化凹凸棒石粘土脱色率研究[J],中国非金属矿工业导刊,2006,1: 53-54.
    [14] Qu R.J., Niu Y.Z., Sun C.M., Ji C.N.,Wang C.H., Cheng G.X., Syntheses, characterization, and adsorption properties for metal ions of silica-gel functionalized by ester- and amino-terminated dendrimer-like polyamidoamine polymer [J], Microporous and Mesoporous Materials, 2006, 97: 58-65.
    [15] Suárez Barrios M., Flores González L.V., Vicente Rodríguez M.A., Martin J.M., Acid activation of a palygorskite with HCl: Development of physico-chemical, textural and surface properties [J], Appl. Clay Sci., 1995, 10: 247-258.
    [16] Sales JoséA.A., Airoldi C., Epoxide silylant agent ethylenediamine reaction product anchored on silica gel–thermodynamics of cation–nitrogen interaction at solid/liquid interface [J], J. Non-Cryst. Solids, 2003, 330: 142-149.
    [17] Ho Y.S., John Wase D.A., Forster C.F., Batch nickel removal from aqueous solution by sphagnum moss peat [J], Water Res., 1995, 29: 1327-1332.
    [18] Ho Y.S., Chiu W.T., Wang C.C., Regression analysis for the sorption isotherms of basic dyes on sugarcane dust [J], Bioresour. Technol., 2005, 96: 1285-1291.
    [19] Bering B.P., Dubinin M.M., Serpinsky V.V., On thermodynamics of adsorption in micropores[J], J. Colloid Interface Sci., 1972, 38: 185-194.
    [20] ?zcan A., ?zcan A.S., Tunali S., Akar T., Kiran I., Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of Capsicum annuum [J], J. Hazard. Mater., 2005,124(1-3): 200-208.
    [21] Onyango M.S., Kojima Y., Aoyi O., Bernardo E.C., Matsuda H. Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9 [J], J. Colloid Interface Sci., 2004,279(2): 341-350.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700