凹凸棒石粘土湿法脱除氮氧化物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过建立模拟烟气脱硝实验装置,对凹凸棒石粘土浆液脱除NO_x工艺进行了研究。在模拟烟气流量0.3L/min、初始NO浓度300×10~(-6)、O_2浓度8%、凹凸棒石粘土加入量20%、pH值9.5及温度20℃的最佳工艺条件下,NO_x脱除效率可达43.5%。
     分别在无氧条件下和有氧条件下,分析了了脱硝反应前后气、液相的组成。结果表明,NO和O_2由气相进入液相后吸附在凹凸棒石粘土上,吸附态的氧将吸附态的NO氧化为易溶于水的NO_2,随后与NaOH反应生成盐,使NO得以脱除。
     用稀土对凹凸棒石粘土进行了改性实验研究。通过热重-差热分析、扫描电镜、红外光谱和X射线衍射等检测手段,对改性后的凹凸棒石粘土结构进行了表征分析。实验结果表明,负载铈的最佳煅烧温度为500℃,稀土铈氧化物的加入使得凹凸棒石载体表面结构较松散且具有更多的活性氧空位,改善了催化剂的活性和稳定性。通过对脱硝的工艺研究,在铈最佳负载量为5%的条件下,改性凹凸棒石粘土吸收剂NO_x脱除效率为59.57%。
Experiment from establishing the simulated flue gas removal system, investigated thefactors during the purification process. The results show that the optimal formulas of theabsorbent solution are as follows: Under the optimal experimental conditions, which thesimulated nitrogen oxides waste gases flow rate is 0.3L/min and the nitrogen oxideconcentration is about 300×10~(-6)(oxygen 8%), Attapulgite clay 20%, pH value 9.5 (NaOHabout 1%), temperature 20℃. The waste gas removal efficiency has 43.5%.
     Experiments were used to test the constituents of the simulated nitrogen oxides waste gasesand liquid phases after absorbtion, under the aerobic and anaerobic conditions respectively.The result shows that nitrogen oxide and oxygen from gas phase shift into liquid, and theoxygen can adsorb on the attapulgite clay, which have strong oxidation capability. It can letnitrogen oxide oxidate into nitrogen dioxide to remove nitrogen oxide.
     Works had also been made on the rare earth modification of the attapulgite. Using modernmonitoring such as TG-DTA found the optimal temperature of modification was 500℃.And using SEM, FT-IR and XRD analyzed the structure of the rare earth modifiedattapulgite. From the results of the experiment, the doping rare earth in catalyst providedmore active oxygen sets, and also improved the catalytic activity and stability of catalyst.The optimal doping factor of the rare earth modification in attapulgite is m (Rare earth): m(Attapulgite clay) 5%, which the removal efficiency of nitrogen oxides is 59.57%.
引文
[1] Armor J N. Catalytic removal of nitrogen oxides where are the opportunities. Catalysis Today, 1995, 26: 99~105
    [2] 钟秦.燃烧烟气脱硫脱硝技术及工程实例.北京:化学工业出版中心,2002
    [3] 孙克勤,钟秦.火电厂烟气脱硝技术及工程应用.北京:化学工业出版中心,2007
    [4] 刘贵云.新建火电厂污染治理工作削减SO_2和NO_x排放总量.国家环保总局污控司,2005(8)
    [5] 岩本正和,水野哲孝.NO_x去除技术的最新进步.触媒,1990,32:462~469
    [6] Bradford M, Grover R, Paul P. Controlling NO_x emissions part 1. Chemical Engineering Progress, 2002, 98 (3): 42~46
    [7] Bradford M, Grover R, Paul P. Controlling NO_x emissions part 2. Chemical Engineering Progress, 2002, 98 (4): 38~42
    [8] 童志权,陈焕钦.NO_x废气的污染与控制.北京:化学工业出版社,1989
    [9] Peter H, Kevin S, Benson B. Simultaneous removal of NO_x and SO_2 in packed scrubbers or spray towers. Environmental Progress, 1993, 12: 110~113
    [10] Jethani K R, Suchak N J, Joshi J B. Selection of reactive solvent for pollution abatement of NO_x. Gas Separation & Purification, 1990, 4: 8~11
    [11] Bolme D W. The Humphreys and Glasgow/Bolme. Nitric Acid Process. CEP 1979, 3: 95
    [12] 罗立新,刘敏,李绍箕.NO催化氧化的初步研究.环境工程,1997,15:30~33
    [13] Myers E B, Overcamp T J. Oxidative techniques for the control of oxides of nitrogen. Air & Waste Management Association's 90 the Annual Meeting & Exhibition, 1997
    [14] Thomas D, Vanderschuren J. Modeling of NO absorption into nitric acid-solutions containing hydrogen peroxide. Industry EngineeringChemicalResearch, 1997, 36: 3315~3322
    [15] Jordan M H, Cooper C D. The economic feasibility of using hydrogen peroxide for the enhanced oxidation and removal of nitrogen oxides from coal-fired power plant gases. Journal of Air & Waste ManagementAssociation, 1998, 48: 236~246
    [16] Mizuno A, Shimizu K, Matsuoka S, et al. Reactive absorption of NO using discharge plasma. Industry Applications Society Annual Meeting, 1994, 3: 1550~1555
    [17] 王连军,黄中华,孙秀云,等.改性凹凸棒土处理染化废水研究.南京理工大学学报,1998,22(3):240~243
    [18] Alvarez A E, Garcia S A. Palygorskite as a feasible amendment to stabilize heavy metal polluted soils. Environmental Pollution, 2003, 125:337~344
    [19] Garcya S A, Alastuey A, Querol X. Heavy metal adsorption by different minerals: application to the remediation of polluted soils. The Science of the Total Environment, 1999, 242: 179~188
    [20] 惠天凯,裘祖楠,汪学才.改性凹凸棒土对水溶液中苯的吸附研究。上海环境科学,2000,19(7):317~319
    [21] 彭书传,魏凤玉,周元祥,等.有机凹凸棒粘土吸附水中苯酚的试验.城市环境与城市生态,1999,12(2):14~16
    [22] 裘祖楠,沈祖勤,张谊,等.用凹凸棒石处理高浓含油废水的研究.上海环境科学,1995, 14(2):22~26
    [23] 周平.利用天然凹凸棒石处理造纸黑液。中国非金属矿工业导刊,2000,(2):14~16
    [24] Araujo M M D, Ruiz C A J, Melo F A M, et al. Preparation and characterization of lanthanum palygorskite clays as acid catalyses. Journal of Alloys and Compounds, 2002, 344: 352~355
    [25] Joy B, Ghosh S, Padmaja P, et al. A facile 1, 2 proton migration ofchalcone epoxide using acid activated palygorskites. Catalysis Communications, 2005, 6: 573~577
    [26] Araujo M M D, Ruiz C A J, Melo F A M, et al. Preparation and characterization of terbium palygorskite clay as acid catalyst. Micro porous and Mesoporous Materials, 2000, 38: 345~349
    [27] 尹琳,陆现彩,艾飞.Ti—凹凸棒石催化剂对染料废水的臭氧氧化降解的影响。硅酸盐学报,2003,31(1):66~69
    [28] Katz A, Brough R A, Kirkpatrick J R, et al. Cement solidification of simulated off-gas condensates from verification of low-level nuclear waste solutions. Waste Management, 2001, 21: 543~553
    [29] Qian G, Sun D D, Tay H J. New aluminum-rich alkali slag matrix with clay minerals for immobilizing simulated radioactive Sr and Cs waste. Journal of Nuclear materials, 2001, 299: 199~204
    [30] 李玉香,钱光人,易发成,等.新型放射性废物固化胶凝材料的研究.西南工学院学报,1999,14(2):25~30
    [31] 张国生,陈天虎,范文元.凹凸棒石复合分子筛净化气体的研究.环境工程,1999,12(4):24~28
    [32] 邹建国,钟秦.凹凸棒石催化氧化脱除柴油机尾气中的NO_x.中国环境科学,2005,25(5):513~534
    [33] 陈武,季寿元.高等学校教材矿物学导论.北京:地质出版社,1985
    [34] 王行信,周书欣.砂岩储层粘土矿物与油层保护.北京:地质出版社,1992
    [35] 陈天虎.苏皖凹凸棒石粘土纳米尺度矿物学及地球化学.合肥工业大学博士学位论文,2003
    [36] 周杰,刘宁,李云,等.凹凸棒石粘土的显微结构特征.硅酸盐通报,1999,6:50~54
    [37] 钱运华,金叶玲,吴洁,等.凹凸棒石粘土填充橡胶研究.非金属矿,2000,23(6):25~26
    [38] 邹建国.凹凸棒石粘土吸收剂湿法净化柴油机废气的研究.南京理工大学博士学位论文,2005
    [39] 钟秦,黄俊,王婷茹,等.喷射鼓泡烟气脱硫(Ⅰ)—化学吸收工艺的研究.南京理工大学学报,1997,21(5):419~422
    [40] 朱晓帆,刘若冰,蒋文举,等.喷射鼓泡反应器在软锰矿烟气脱硫中的应用.环境工程,2003,21(1):47~49
    [41] 吴忠标.大气污染控制技术.北京:化学工业出版社,2002
    [42] 胡发社,罗淑湘,杨飞华,等.新型无机抗菌剂载体—天然纳米坡缕石显微表面结构研究.中国非金属矿工业导刊,2001,(5):12-15
    [43] 荣峻峰,景振华,洪晓宇.粘土矿物用于乙烯聚合催化剂的研究(Ⅰ)—以凹凸棒石粘土为载体的乙烯聚合催化剂.石油化工,2003,32(12):1032~1036
    [44] 陈天虎.凹凸棒石粘土吸附废水中污染物机理探讨.高校地质学报,2000,2(6):265~270
    [45] 郑自立.凹凸棒土的开发研究.武汉工业大学学报,1990,(4):69~73
    [46] 汪开明,周华为.凹凸棒石催化氧化剂处理染料中间体废水的研究.安徽化工,2000,106(4):37~40
    [47] 顾永祥.氢氧化钠水溶液吸收氧化氮传质—反应过程.高校化学工程学报,1990,4(2):157~167
    [48] Tanaka, Mari Y. Improvement in oxygen storage capacity. SAE Technical Paper 960794
    [49] Hori C E, Permana H, Simon N K Y, et al. Thermal stability of oxygen storage properties in a mixed CeO_2-ZrO_2 System. Applied Catalysis, 1998, 16:105~117
    [50] 吴越,王佛松,汪景春,等.稀土催化研究进展(Ⅱ).石油化工,1985,14(7):427~433
    [51] 王尚弟,孙俊全.催化剂工程导论.北京:化学工业出版社,2003
    [52] 王兆印,黄金池,曾庆华.粘土泥浆的结构特征及其对明渠流的影响.水利学报,1990,(2):44~50
    [53] 郑自立,宋锦新,易发成,等.中国坡缕.北京:地质出版社,1997
    [54] Frost L R, Ding Z. Controlled rate thermal analysis and differential scanning calorimetric of sepiolites and palygorskites. Thermochimica Acta, 2003, 397:119~128
    [55] 易发成,田煦,郑自立,等.坡缕石的热学性质研究.非金属矿,1997,(5):29~32
    [56] 宋功保,刘福生,曹永革,等.坡缕石的红外光谱研究.岩石学报,1999,15(3):469~474
    [57] Lin S S, Chang D J, Wang C H, et al. Catalytic wet air oxidation of phenol by CeO_2 catalysteffect ofreactioncondition. Water Research, 2003, 37:793~800

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700