高功率固体激光系统的热效应及热管理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于聚变能工程(IFE)固体激光驱动器、定向能武器(DEW)等领域的需求牵引,高功率、大能量的二极管泵浦固体激光器(DPSSL)已经成为国内外的研究热点。待解决的关键问题,是如何有效地提高激光器的输出功率和改善光束质量。提高输出功率和改善激光光束质量面临的最主要障碍是激光系统的热效应。本文深入地研究了重频、大能量激光器件的热管理技术,主要内容包括四个部分:
     1、重频、大能量二极管泵浦Yb:YAG激光系统的物理设计及热管理技术;
     2、设计、研制两种高平均功率普克尔盒:热补偿和重频等离子体普克尔盒;
     3、热容模式下固体激光器的热效应理论研究和输出特性的实验研究;
     4、大口径钕玻璃片状放大器的动态热畸变及热恢复研究。
     一、重复频率、大能量Yb:YAG激光系统的物理设计和热管理技术研究
     进行了准三能级激光振荡器的物理设计。建立了调Q激光脉冲的时-空演化动力学模型,获得了激光光束质量随时间的演变过程的仿真结果。考虑增益介质的受激吸收和发射截面的谱分布,建立了时间—光谱分辨的准三能级激光振荡模型,研究了Yb:YAG增益开关激光器的波长竞争问题。
     研究了基于准三能级Yb离子的脉冲储能型放大器的设计和参数优化问题,在考虑自发辐射放大(ASE)退泵浦效应和狭窄通道内流体的强迫对流换热性能等因素的条件下,研究了基于准三能级Yb离子的脉冲储能型DPSSL的设计和参数优化问题。在国内首次给出了10Hz、100J级的Yb:YAG放大器增益介质的一组优化设计参数:泵浦强度22kW/cm~2,介质口径10cm~2,厚度0.55cm、掺杂3.92×10~(20)cm~(-3)。
     以上两项研究结果为本文设计100J级激光系统及优化热控制方案奠定了理论基础。
     高效的热管理是准三能级激光器实现重频、大能量输出和改善光束质量的一项关键技术。本文以耦合换热物理模型为基础,完成了重复频率大能量DPSSL水冷系统的建模以及温度场、流场的仿真分析。在此基础上设计了用于V形主动镜构型Yb:YAG激光头的水冷系统;针对高强度泵浦的10Hz、100J级Yb:YAG片状放大器,提出了“热平衡”的双面冷却方案。建立了热沉和增益介质的接触热分析有限元模型,完成了10Hz、100J级Yb:YAG放大器在液氮温度下基于宝石热沉的端面传导冷却设计。
     开展了平凹腔和超高斯反射镜腔Yb:YAG激光振荡器的实验研究,测量了不同温度下的激光输出能量。
     二、两种高平均功率普克尔盒的设计与研制
     数值模拟了KDP、DKDP、BBO等几种非线性光学晶体在高平均功率载荷下的热-力学特性以及热畸变。测量了DKDP晶体在平均功率激光辐照下的温度分布。
     设计并研制了大口径DKDP热补偿普克尔盒,定量分析了晶体厚度误差、光轴偏差以及两块晶体的温度差异等因素对普克尔盒性能的影响。进行了热补偿效果的实验验证。
     优化设计并研制了重复频率等离子体普克尔盒。通过数值模拟,完成了重频等离子体普克尔盒的端面传导冷却设计。
     三、热容模式下Nd激光介质的热-力分布特点和激光输出特性研究
     首先针对热容工作模式下激光介质内废热持续积累的特点,从激光介质的实际增益分布得到内热源载荷条件,建立了非稳态热-力学仿真模型,在此基础上开展了激光介质工作条件的热.力学优化研究;建立了热容模式下的光传输理论模型,分析了激光介质动态热畸变,指出了因泵浦光未能完全充满介质端面,从而引起的端面不均匀形变是造成光学畸变的主要原因。
     研制了1kW级氙灯泵浦的V形有源镜构型Nd:YAG热容激光器,实验验证了此构型热容激光器具有定标放大能力。
     四、400mm×400mm口径钕玻璃片状放大器的泵浦致波前畸变和泵浦致热退偏以及热恢复过程研究
     分别讨论了钕玻璃片的温度梯度和热变形对激光波前畸变的贡献;为了缩短××激光装置的运行周期,优化设计了冷却方案。
     论文在以下四方面取得了有创新意义的研究结果:
     1、准三能级激光振荡器的设计和光束质量控制
     将激光速率方程理论和光波的角谱传播理论有机结合起来,对谐振腔内光脉冲的形成、传播过程建模,研究了超高斯镜非稳腔调Q激光脉冲时—空瞬态特性,获得了激光光束质量随时间的演变过程的仿真结果。
     考虑增益介质的受激吸收和发射截面的谱分布,建立了时间—光谱分辨的准三能级激光振荡模型,研究了Yb:YAG增益开关激光器的波长竞争问题。
     上述两项研究对优化准三能级激光振荡器的设计和光束质量控制具有重要指导作用。该研究结果迄今未见国内有相关报道。
     2、10Hz、100J级“水冷型”和“端面传导冷却型”片状放大器
     针对高强度泵浦的10Hz,100J级Yb:YAG放大器,提出了“热平衡”双面冷却方案:在高的热负载区使用强的水冷,在低的热负载区使用弱的He气流冷却。
     在国内首次实现了宝石端面传导冷却型10Hz、100J级Yb:YAG放大器热沉结构的优化设计;并定量评估了宝石-Yb:YAG用液氮端面传导冷却和直接水冷两种方案的冷却效果。该研究结果迄今未见国内有相关报道。
     3、高平均功率“热补偿普克尔盒”和“重复频率等离子体普克尔盒”
     在国内首次分析了热补偿普克尔盒的加工误差和晶体温度差等因素对其性能的影响,完成了大口径(64mm×35mm)DKDP热补偿普克尔盒的设计;创新地提出了单脉冲驱动DKDP电容分压法,实现了重频等离子体普克尔盒在半波电压点的稳定可靠运行。
     4、热容激光器
     研制了V形有源镜构型片状热容激光器,完成了集成演示实验,获得约47J/脉冲(20Hz,1kW级)的输出能量;斜效率达到1.3%,系统总效率达1.2%,实验结果表明:激光输出能量与模块数目基本呈线性关系,从而证明该多模块构型的有源镜激光器适合于高平均功率运行。分别对平凹稳腔和角锥棱镜腔进行了光束质量研究,在使用角锥阵列腔时,远场光束质量约为10倍衍射极限。
With the increase of the demands of inertial fusion driver and military weapon, high power & large energy diode-pumped solid-state laser(DPSSL) has become one of the main objectives of current research and development activities within the laser community.DPSSL has become one of the most promising approaches in the high-power laser engineering.Research of DPSSL has mainly concentrated on scaling of output power,while remaining of a high spatial beam quality.The main problem hindering scaling of diode-pumped solid-state lasers is heat deposition within the laser medium.A detailed investigation of the theoretical design and thermal aspect for the high average power and large energy DPSSL and the thermal management technology is reported in this dissertation,including four parts contents.
     The first part is theoretical design and thermal management for the pulsed energy-storage quasi-three-level Yb-ion DPSSL.We begin with the discussion on the quasi-three-level laser oscillator performance model,which predicts both intensity and spectrum evolutions of the laser output.Followed by the numerical simulation of the spatio-temporal dynamics of the pulse formation in the diode-pumped Q-switched Yb:YAG laser.
     We then study in details the optimal design for the pulsed energy-storage Yb:YAG amplifiers considering the criteria of amplified spontaneous emission(ASE) and the capability of forced convection cooling in a narrow passage.Finally,based on our model,the baseline parameters are presented for a 100J-class diode-pumped Yb:YAG disk amplifiers.
     Efficient thermal management is the key technology for average power Yb lasers. The thesis investigates the temperature distributions and liquid flow of the cooling system utilizing the concept of forced convection to cool the Yb:YAG disk laser.The numerical simulation platform was built based on coupling thermal exchange model and turbulent flow model.Based on this numerical platform,the water cooling system is presented for V-shape Yb:YAG laser.Finally,the numerical calculation model of thermal contact was built and the simulation was carried out by ANSYS finite element program.Then the Sapphire cooling at both faces of high-power cryogenic Yb:YAG disk laser is optimized according to the model.
     The second part is about thermal aspect and design for the high average power Pockels cell.Firstly,the numerical calculation model for thermo-mechanicss of nonlinear crystals such as KDP,DKDP and BBO which used in high average power laser systems was built and the simulation was carried out by ANSYS finite element program.We then investigate in detail the machining or assembly errors and performance of a thermal compensation pockels cell(TCPE).Based on these analyses, the large aperture TCPE based on DKDP has been developed successfully.Finally,we discuss the theoretical design of repetitively plasma-electrodee pockels cell,then we have completed thermal modeling of a scaleable,face-cooled repetitively plasma-electrodee pockels cell.
     The third part is for thermal effects and laser characteristics of solid state heat capacity lasers(SSHCL).
     An unsteady-state thermomechanics model was established in the condition of the practical distribution of gain in the laser medium according to the characteristics of waste heat accumulate persistent in laser medium when working on the mode of heat capacity.Based on this model the thermomechanics optimization was done. Furthermore a theoretical model of the optical transmission was established to study the optical distortions which result from the dynamic thermal effect.The numerical simulation research shows that the main optical distortion is result from the bulging of the end face because it is not pumped fully aperture.The research also included lots of experimental study.A new type of a high-efficiency V-shape active-mirror laser was proposed,which was composed of four modules with two large-aperture Nd:YAG slabs in each module.The experiments verifies that the output energy has a linear scaling law with the module number,which implies that this kind of multi-module large-aperture active-mirror laser would be suitable for high-average-power laser operation.
     The final part is the investigation of pump-induced wavefront distortion and the thermal recovery of the large aperture Nd:glass amplifiers.
     The main innovation points are summarized as following:
     1.Quasi-three-level laser oscillator performance model
     The model to describe the spatio-temporal dynamics of the pulse formation in the diode-pumped Q-switched Yb:YAG laser is established.This model,based on the rate equations of quasi-three-level and the theory of scalar diffraction,predicts the value of the beam-quality factor M~2 during the pulse evolution.The model to describe the spectral dynamic behavior of quasi-three-level laser resonators operated in gain-switched conditions is also established.
     Numerical simulations of our analytical model are useful to optimal design quasi-three-level laser resonators.
     2.Water cooled & conduct cooled Yb:YAG disk for the 10Hz,100J-class amplifier
     The feasibility of cooling 10Hz/100J amplifier with "thermal equilibrium" cooling configuration have been demonstrated:Back pumping and bank cooling with water while the front face is cooled by air.
     The numerical calculation model of thermal contact was built and the simulation was carried out by ANSYS finite element program.Then the Sapphire cooling at both faces of cryogenic Yb:YAG disk for the 10Hz,100J-class amplifier is optimized according to the model.We compare the peak temperature of Yb:YAG for water cooled and conduct cooled scheme.The results show that temperature rise achievable with conduct cooled is quite low to those obtained with water cooled.
     3.Thermal compensation Pockels cell and rep-frequency plasma-electrodee Pockels cell for high average power
     We study in details the machining or assembly errors and the performance of thermal compensation pockels cell(TCPE) for the first time.Based on these basic analysis,the large aperture(64mm×35mm) TCPE based on DKDP has been developed successfully.Experiments have validated the feasibility of TCPE for high average power applications.
     The optimal design of rep-frequency plasma-electrodee pockels cell were proposed and realized for the first time.By optimizing the configuration of the Pockels cell,the DKDP Pockels cell can be operated only by switching pulse thanks to the share voltage capacitance added.
     4.A new type of a high-efficiency V-shape active-mirror laser was proposed, which was composed of four modules with two large-aperture Nd:YAG slabs in each module.The experimental results show that the maximum output energy is about 47J with an overall efficiency of 1.2%and slope efficiency of 1.3%.Also,the experiments verifies that the output energy has a linear scaling law with the module number,which implies that this kind of multi-module large-aperture active-mirror laser would be suitable for high-average-power laser operation.The experiments of the retro-reflector array to improve the quality of SSHCL were carried out in this paper.The experiment results show that the action of retro-reflector array to reduce beam's focal spot size was testified visibly and≤10TDL spatial beam quality can be reached.
引文
1、W.Koechner著,固体激光工程,孙文,江泽文,程国祥译,北京:科学出版社,2002.
    2、李适民,固体器件原理与设计,北京:国防上业出版社,1998.
    3、H.Hugel,New solid-state lasers and their application potentials[J].Optics and Lasers in Engineering,2000,34:213.
    4、J.-C.Chanteloup,G.Bourdet,S.Ferre,A.Fül(o|¨)p,S.Le Moal,H.Yu,C.Dambrine,A.Pichot,G.Le Touze,"First light on the LUCIA laser:towards 100 Joules nanosecond pulses,kW averaged power,based on Ytterbium Diode Pumped Solid State Laser",SPIE 5707,(Jan.2005).
    5、A.Bayramian,R.Beach,C.Bibeau,J-C.Chanteloup,C.Ebbers,M.Emanuel,B.Freitas,S.Fulkerson,K.Kanz,A.Hinz,C.Marshall,S.Mills,H.Nakano,C.Orth,J.Rothenberg,K.Schaffers,L.Seppala,J.Skidmore,L.Smith,S.Sutton,S.Telford,L.Zapata,"Mercury:Next generation laser for high energy density physics SI-014",2000,UCRL-ID-139294
    6、M.Rotter,DANE C B.A10kW solid-state heat-capacity laser system installed at HELSTF white sands missile range[J].Laser Science &Technology,2001(12):1
    7、周寿桓,固体激光器中的热管理,量子电子学报,2005,22(4):497-509
    8、Machan J P,Long W H,Zamel J J,et al.5 kW diode-pumped solid state laser [J].14th Annual on Solid-state and Diode Laser Technology Review,2002,16-19.
    9、Rutherford T S,Tulloch V M.Gustafson E K,et al.Edge-pumped quasi-three-level slab laser:design and power scaling[J].IEEE J.Q.E.,2000, 36(2):205-209.
    10、Giesen A,Hugel H,Voss.A,et al.Scalable concept for diode-pumped high-power solid-state laser[J].Appl.Phys.B,1994,58:365-372.
    11、Johannsen I.Nd:YAG thin disk laser[J].Advanced Solid State Laser,2000.34:137-143.
    12、Second International Workshop on High Energy Class Diode Pumped Solid State Lasers(HEC-DPSSL),Jena,Germany,10-12 June 2005
    13、J.-C.Chanteloup,H.W.Yu,G.Bourdet,"Overview of the Lucia laser program:towards 100 Joules,nanosecond pulses,kW averaged power,based on Ytterbium Diode Pumped Solid State Laser"[C],Proceedings of SPIE Vol.5707,2005:105-116
    14、Haiwu YU,Gilbert BOURDET "Different cooling configurations for a high average power longitudinally diode-pumped Yb:YAG amplifier" Applied Optics,2005,45,24,7161-7169.
    15、Haiwu YU,Gilbert BOURDET,Serge FERRE "Comprehensive modeling of the temperature-related laser performances of the amplifiers of LUCIA"Applied Optics,2005,44,30,6412-6418.
    16、Haiwu YU,Gilbert BOURDET "Thickness optimization of the composite gain medium for the oscillator and amplifier of LUCIA" Applied Optics,2005,44,33,7161-7169
    17、Albrecht G F,Sutton S B,George E V,et al.Solid state heat capacity disk laser[J].Laser and Particle Beams,1998,16(4):605-625
    18、B.Yamamoto,M.Rotter et al,First light from battery powered solid-state heat-capacity laser for missile defense[J].Laser Science & Technology,2003(4):1.
    19、Laser Focus World-Laser Weapons go solid-state,Laser Focus World September,2004
    20、孙维娜等,“二极管抽运高重频大能量激光器”,第十七届全国激光学术会议,2005.10
    21、姚振宇等,“kW级二极管泵浦双薄片激光器”,第十七届全国激光学术会议,2005.10
    22、柳强等,“kW级二极管泵浦Yb:YAG激光器”,第十七届全国激光学术会议,2005.10
    23、徐建秋等,“150W高效率Nd:YAG板条激光器”,第十七届全国激光学术会议,2005.10
    1、Lacovara P,Choi H K,Wang C A,Aggarwal R L,Fan T Y1,Room-temperature diode-pumped yttrium-doped YAG laser,Opt.Lett.,1991,16(14):1089-1091
    2、Fan Y Y,Klunk S,Henein G,Diode-pumped Q-switched ytterbium-doped YAG laser,Opt.Lett.,1993,18(6):423-425
    3、DeLoach L D,Payne S A,Smith L K,Kway W L,and Krupke W F,Laser and spectroscopic properties of Sr5(PO4)3F:Yb,J.Opt.Soc.Am.B,1994,11(2):269-276
    4、J.Wallace,Commercial disk laser reaches 4 kW output,Laser Focus World,2004,September,19-20
    5、Giesen A,Hugel H,and Voss A,1994,Appl.Phys.B.,58 365
    6、Rutherford Y S,Tulloch W M,and Gustafson E K,Edge-pumped quasi-three-level slab lasers:design and power scaling,IEEE J.Quantum.Electron.,2000,36(2):205-219
    7、柳强,巩马理,潘圆圆,李晨,边缘抽运复合Yb:YAG/YAG薄片激光器设计与功率扩展,2004物理学报53(7):2159-2164
    8、柳强,巩马理,李晨,宫武鹏,陆富源,陈刚,角抽运Yb:YAG激光器,物理学报,2005,54(2):721
    9、Orth C D,Payne S A,and Krupke W F,Nuclear Fusion,1996,36,75
    10、Bayramian A,2005,High Average Power Laser Program Workshop,Rochester NY
    11、Chanteloup J C,Yu H W,Bourdet G,Dambrine C,Ferre S,Fül(o|¨)p A,Moal S,Pichot A,Touze G and Zhao Z,2005,Proceedings of SPIE,5707,105
    12、H(o|¨)nninger C,Paschotta R,Graf M,Genoud F M,Zhang G,Moser M,Biswal S,Nees J,Braun A,Mourou G A,Johannsen I,Giesen A,Seeber W,and Keller U,Ultrafast ytterbium-doped bulk lasers and laser amplifiers,Appl.Phys.B,1999,69(1):3-17
    13、Hein J,Podleska S,Siebold M,Hellwing M,Bodefeld R,Sauerbrey R,Ehrt D,and Wintzer W,Diode-pumped chirped pulse amplification to the joule level,Appl.Phys.B,2004,79(4):419-422
    14、徐军,徐晓东,苏良碧,掺镱激光晶体材料,上海:上海科学普及出版社,2005
    15、Olivier Casagrande,Nelly Deguil-Robin,Bruno Le Garrec,and Gilbert L.Bourdet,Time and Spectrum Resolved Model for Quasi-Three-Level Gain-Switched Laser,IEEE.J.Quantum Electron 2007,43(2):206-212
    16、A.E.Siegman,H.Y.Miller.Unstable optical resonator loss calculations using the prony method[J].Applied optics,1970,9(12):2729-2736
    17、Amiel A.Ishaaya,Nir Davidson,Galina Machavariani,Erez Hasman,and Asher A.Friesem.Efficient Selection of High-Order Laguerre-Gaussian Modes in a Q-Switched Nd:YAG Laser[J].IEEE J.of Quantum Electronics,2003,39(1):74-82
    18、RauI I.Hernandez-Aranda,Sabino Chavez-eerda,Julio C.Gutierrez-Vega.Theory of the unstable Bessel resonator[J].J.Opt.Soc.Am.A,2005,22(9):1909-1917
    19、冯国英,叶一东,吕百达.带可变反射率镜无源和有源腔的衍射分析J].四川大学学报(自然科学版),1995,32(3):283-288
    20、王宁,陆雨田,孔勇.用快速傅里叶变换法分析超高斯反射镜腔的光场分布[J].中国激光,2004,31(11):1317-1322
    21、A.Caprara,G.C.Reali.Time-resolved M2 of nanosecond pulses from a Q-switched variable-reflectivity-mirror Nd:YAG laser[J].Optics letter,1992,17(6):414 - 416
    22、G.Anstett,M.Nittmann,A.Borsutzky,R.Wallenstein.Experimental investigation and numerical simulation of the spatio-temporal dynamics of nanosecond pulses in Q-switched Nd:YAG lasers[J].Applied physics B - Laser and Optics,2003,76:833-838
    23、W.Koechner著,固体激光工程,孙文,江泽文,程国祥译,北京:科学出版社,2002.
    24、A.Caprara,G.C.Reali.Time-resolved M2 of nanosecond pulses from a Q-switched variable-reflectivity-mirror Nd:YAG laser[J].Optics letter,1992, 17(6):414 - 416
    25、Fan T Y,1992,IEEE J.Quantum Electronics,28 2692
    26、Bourdet G L,Comparison of pulse amplification performances in longitudinally pumped Ytterbium doped materials,Optics Communications,2001,200(1-6),331-342
    27、H(o|¨)nninger C,Paschotta R,Graf M,Genoud F M,Zhang G,Moser M,Biswal S,Nees J,Braun A,Mourou G A,Johannsen I,Giesen A,Seeber W,and Keller U,Ultrafast ytterbium-doped bulk lasers and laser amplifiers,Appl.Phys.B,1999,69(1):3-17
    28、A.Giesen,U.Brauch,I.Johannsen,M.Karszewski,U.Schiegg,C.Stewen,and A.Voss,"Advanced tunability and high-power TEM00 operation of the Yb:YAG thin disk laser," in Advanced Solid State Lasers,C.R.Pollock and W.R.Bosenberg,eds.,Vol.10 of OSA Trends in Optics and Photonics Series_Optical Society of America,Washington,D.C.,1997,280-284.
    29、C.Bibeau,R.Beach,C.Ebbers,M.Emanuel,and J.Skidmore,"cw and Q-switched performance of a diode end-pumped Yb:YAG laser," in Advanced Solid State Lasers,C.R.Pollock and W.R.Bosenberg,eds.,Vol.10 of OSA Trends in Optics and Photonics Series _Optical Society of America,Washington,D.C.,.1997,276-279
    30、A.Mandl,D.E.Klimek,"Compact diode-pumped Yb:YAG slab laser," in Solid State Lasers X.R.Scheps,ed.,Proc.SPIE,2001,4267,1-8
    31、景峰,钕玻璃激光多程放大技术研究[博士论文].中国工程物理研究院研究生部,1998
    32、贺少勃,激光放大器中自发辐射放大特性研究[硕士论文].国防科技大学研究生院,2002
    33、T.Y.Fan,Optimizing the Efficiency and Stored Energy in Quasi-Three-Level Lasers,IEEE J.Quantum Electron.,1992,28(12):2692-2697
    34、R.Gaume,B.Viana,D.Vivien,J.-P.Roger,and D.Fournier,A simple model for prediction of thermal conductivity in pure and doped insulating crystals,Applied Physics Letters,2003,83(7):1355-1357
    35、F.D.Patel,E.C.Honea,J.S.Speth,A.Payne,R.Hutcheson,R.Equall,"Laser demonstration of Yb3A15012(YbAG) and materials properties of highly doped Yb:YAG",IEEE J.Quantum Electron.,2001,37(1):135-144
    36、贾伟.大口径高效率激光二极管阵列泵浦技术研究[博士论文].国防科技大学研究生院,2005
    37、竹内洋一郎著,郭廷伟,李安定译,热应力,科学出版社,1997
    38、孔祥谦编著,有限单元法在传热学中的应用(第三版),北京:科学出版 社出版,1998
    39、王福军,计算流体动力学分析,北京:清华大学出版社,2004
    40、Tzuk,Yitshak;Tal,Alon;Goldring,Sharon;Glick,Yaakov;Lebiush,Eyal;Kaufman,Guy;Lavi,Raphael,Diamond cooling of high-power diode-pumped solid-state lasers,IEEE J.Quantum Electron.,2004,40(3),262-269
    41、H.P.Chou,Yu-Lin Wang,Victor Hasson and Daniel W.Trainor,"A Compact Nd:YAG DPSSL using Diamond-Cooled Technology" in ⅩⅤInternational Symposium on Gas Flow,Chemical Lasers,and High-Power Lasers,Proc.SPIE,2005,5777,1-8
    42、R.Weber,B.Neuenschwander,M.M.Donald et al..Cooling schemes for longitudinally diode laser pumped Nd:YAG rods[J].IEEE J.Quantum Electron.,1998,34(6):1046-1053
    43、FY96-98 Summary Report Mercury:Next Generation Laser for High Energy Density Physics SI-014,UCRL-ID-139294
    44、ANSYS Theory Reference.Ninth Edition.SAS IP,Inc
    45、应济,粗糙表面间接触热阻的理论和实验研究,浙江大学学报(自然科学版)1997 Vol.31
    46、Shigeki Tokita,Junji Kawanaka,and Yasukazu Izawa,"Sapphire cooling at both faces of high-power cryogenic Yb:YAG disk laser",2nd Intemational Workshop on High Energy Class Diode Pumped Solid State Lasers,Jena,Germany 10-12 June 2005
    47、杨世铭,传热学(第二版),北京:高等教育出版社,1987
    1,3.C.A.Ebbers,"This Switch Takes the Heat",Science & Technology Review,2003,October,14
    2,I.P.Khristov,I.V.Tomov,and S.M.Saltiel,Self-heating effects in electro-optic light modulators,Opt.Quantum Electron.1983,15,289-295.
    3,Weaver L F,Petty C S,Eimerl D.Multikilowatt pockels cell for high average power laser systems[J].J Appl Physics,1990,68(6):2589-2598.
    4,David Eimerl.Thermal aspects of high-average-power electro-optics switch[J].IEEE Journal of QE,1987,23(12):2238-2251
    5、王伟平,吕百达,罗时荣,激光束光强分布对激光加热的影响[J].强激光与粒子束,2001,13(3):313-316
    6、张克从 王希敏,非线性光学晶体材料科学,北京:科学出版社,2005
    7,FY96-98 Summary Report Mercury:Next Generation Laser for High Energy Density Physics SI-01 4,UCRL-ID- 139294
    8,Goldhar J,Henesian M A.Large aperture electro-optical switches with plasma electrodes.IEEE J.Quantum Electronics,1986,QE-22:1137
    9、杨世铭,传热学(第二版),北京:高等教育出版社,1987
    1,Albrecht G F,Sutton S B,George E V,et al.Solid state heat capacity disk laser [J].Laser and Particle Beams,1998,16(4):605-625
    2,M.Rotter,DANE C B.A10kW solid-state heat-capacity laser system installed at HELSTF white sands missile range[J].Laser Science &Technology,2001(12):1
    3,B.Yamamoto,M.Rotter et al,First light from battery powered solid-state heat-capacity laser for missile defense[J].Laser Science & Technology,2003(4):1.
    4,Laser Focus World-Laser Weapons go solid-state,Laser Focus World September,2004
    5,M.Hewish,Solid-state lasers break out of lab[J].Jane's international Defense Review,2003,36(2):20-22
    6、刘列,许晓军,杨建坤等,基于火花隙开关实现的固体热容激光器实验[J].强激光与粒子束,2005,17(6):845-848
    7、唐晓军、张申金、秘国江等,Nd:GGG热容激光器实验研究[J].激光与红外,2006,36(10):800-803
    8、陈鸿鸣,钟鸣,叶大华,灯泵钕玻璃激光器热容与常规方式运行对比研究[J].激光与红外,2006,36(4):257-260
    9、秘国江,唐晓军,杨文是等,固体热容激光工作物质瞬态温度和热应力分布[J].激光与红外,2006,36(1):39-41
    10、 候立群,祖继锋,董钥等,Nd:GGG激光晶体热容工作下的热致效应与冷却特性数值模拟[J].中国激光,2006,33(8):1025-1029
    11、 郭明秀,李劲东,付文强等,千瓦级半导体抽运的固体热容板条激光器,光学学报,2007,17(2):280-286
    12、 朱海永,张戈,黄呈辉等,双端抽运热容激光器温度特性分析,光子学报,2007,36(5):773-776
    13、 贾伟.大口径高效率激光二极管阵列泵浦技术研究[博士论文].国防科技大学研究生院,2005
    14、 王召兵,蔡岸,奚同庚等,Nd:GGG晶体的热物理性能研究[J].无机材料研究,2007,22(1):170-172
    15、 王保松,江海河,贾先德等,掺杂GSGG激光晶体热导率研究[J].人工晶体学报,2006,35(5):912-916
    16、 唐淳.高亮度全固态二级管泵浦固体激光技术研究[博士论文].浙江大 学研究生院,2003
    17,J.A.Abate,L.Lund,D.Brown,Active mirror:a large-aperture medium-repetition rate Nd:glass amplifier[J],Applied Optics,1981,20(2):351-361
    18,Biqing Ye and Zhonglin Ma,Long-pulsewidth pulsed Nd:YAG laser[J],Applied Optics,1988,27(21):4371-4373
    19、 W.Koechner著,固体激光工程,孙文,江泽文,程国祥译,北京:科学出版社,2002.
    20、 胡东霞.高功率固体激光系统波前校正技术优化研究[硕士论文].中国工程物理研究院研究生部,2003
    1,W.H.Lowdermilk,"Status of the National Ignition Facility project",SPIE vol.3047,16-37
    2,Peng H S,Zhang X M,Wei X,F,etal.,"Status of the SG-Ⅲ solid state laser project" SPIE,1992,3492:25-33,
    3,Richard Zacharis,Erlan Bliss,et alc.The national Ignition Facility(NIF)wavefront control system[J].Solid State Lasers for Application to Inertial Confinement Fusion,SPIE,1998,3492:678-692
    4,D.L.Brown,C.T.Mannell.Thermal analysis of the large close packed amplifiers in the National Ignition Facility(NIF)[R].UCRL--JC--120211,1995.
    5,S.Sutton,C.Marshall,et al.Thermal recovery of NIF amplifiers[J].Solid State Lasers for Application to Inertial Confinement Fusion,SPIE,1997,3047:560-570
    6,S.Sutton,A.Erlandson,etc.,"Thermal recovery of the NIF amplifiers",Solid State Lasers for Application to Inertial Confinement Fusion,SPIE,1998,3492:665-675
    7,Ph.Arnoux,G.Le Touze,etc.,"Thermal recovery of LMJ amplifiers",Solid State Lasers for Application to Inertial Confinement Fusion,SPIE,1998,3492:660-664
    8,Shapiro,TOPAZ3D-A 3-D Finite Element Heat Transfer Code,UCID-20484,LLNL,Livermore,CA.,Aug,1985.
    9,B.N.Maker,NIKE3D-A Nonlinear,Implicit 3-D Finite Element Code for Solid and Structural Mechanics,UCRL-MA-105268,Rev.1,LLNL,Livermore,CA.,April 1995.
    10,S.Sutton,Flashlamp Cooling Flow Rate Considerations for NIF-A Preliminary Assessment,LST-ALC96-071.Aug 26,1996.
    11、於海武,郑万国,贺少勃等,“组合式片状放大器热恢复模拟研究”,强激光与粒子束,2000,12(4):411-415
    12、於海武,郑万国,王成程等,“片状放大器热恢复研究”,强激光与粒子束,2000,12(F11):145-148
    13、於海武,郑万国,贺少勃等,“神光Ⅲ原型装置主放大器剩余热畸变模拟研究”,中国激光,2001,28(5):385-390
    14、张华,范滇元,“钕玻璃片状激光放大器自发辐射放大特性的研究”,物理学报,2000,49(6),1048
    15,Physics basis for optical performance of the NIF amplifiers,UCRL-ID- 132680,NIF-0014142
    16、戴锅生,传热学,北京:高等教育出版社,1999
    1、W.Koechner著,固体激光工程,孙文,江泽文,程国祥译,北京:科学出版社,2002.
    2、李适民,固体器件原理与设计,北京:国防上业出版社,1998.
    3,Hugel H.New solid-state lasers and their application potentials[J].Optics and Lasers in Engineering,2000,34:213.
    4,J.-C.Chanteloup,G.Bourdet,S.Ferre,A.F(u|¨)l(o|¨)p,S.Le Moal,H.Yu,C.Dambrine,A.Pichot,G.Le Touze,"First light on the LUCIA laser:towards 100 Joules nanosecond pulses,kW averaged power,based on Ytterbium Diode Pumped Solid State Laser",SPIE 5707,(Jan.2005).
    5,A.Bayramian,R.Beach,C.Bibeau,J-C.Chanteloup,C.Ebbers,M.Emanuel,B.Freitas,S.Fulkerson,K.Kanz,A.Hinz,C.Marshall,S.Mills,H.Nakano,C.Orth,J.Rothenberg,K.Schaffers,L.Seppala,J.Skidmore,L.Smith,S.Sutton,S.Telford,L.Zapata,"Mercury:Next generation laser for high energy density physics SI-014",2000,UCRL-ID-139294
    6,M.Rotter,DANE C B.A10kW solid-state heat-capacity laser system installed at HELSTF white sands missile range[J].Laser Science &Technology,2001(12):1
    7、周寿桓,固体激光器中的热管理,量子电子学报,2005,22(4):497-509
    8,Machan J P,Long W H,Zamel J J,et al.5 kW diode-pumped solid state laser [J].14th Annual on Solid-state and Diode Laser Technology Review,2002,16-19.
    9,Rutherford T S,Tulloch V M.Gustafson E K,et al.Edge-pumped quasi-three-level slab laser:design and power scaling[J].IEEE J.Q.E.,2000,36(2):205-209.
    10、 Giesen A, Hugel H, Voss .A, et al. Scalable concept for diode-pumped high-power solid-state laser [J]. Appl. Phys.B, 1994, 58: 365-372.
    11、 Johannsen I. Nd:YAG thin disk laser [J]. Advanced Solid State Laser,2000. 34:137-143.
    12、 Lavi R, Jackel S, Tzuk Y, et al. Efficient pumping scheme for neodymium-doped materials by direct excitationof the upper lasing level [J].Appl. Opt., 1999, 38(36): 7382-7385.
    13、 Lavi R, Jackel S, Tal A, et al. 885 nm high-power diodes end-pumped Nd:YAG laser [J]. Opt. Commun, 2001,195(5-6): 427-430.
    14、 Bowman S R, Lasers without internal heat generation [J]. IEEE J.Quantum Electron, 1999,35:115-122.
    15、 David Welford, David M. Rines, Bradley J. Dinerman et al. Observation of enhanced themal Tensing due to near-Gaussian pump energy deposition in a laser-diode side-pumped Nd: YAG laser [J]. IEEE J. Q. E. 1992, 28(4):1075-1080.
    16、 Furuta K, Chi Shiui, Flijikawa. 1 kW high-beam-quality Nd:YAG rod laser with cascaded-coupling of bifocusing compensation resonators (C) // CLEO,2002,177-178.
    17、 J.M.Eggelston, T.J.Kane, K.Kuhn, et al. The Slab Geometry Laser-Part I:Theory. IEEE J. Quantum Electron, 1984,20(3):289-300.
    
    18、 T.J.Kane, J.M.Eggelston, R.L.Byer. The Slab Geometry Laser. PartII:Thermal Effects in a Finite Slab. IEEE J. Quantum Electron. 1985,21(8):1195-1209.
    
    19、 G.Albrecht, S.Sutton, H.Robey, and B.Freitas, "Flow, heat transfer and wavefront distortion in a fascooled disk amplifier". UCRL-100420, January 1989.
    
    20、 Vetrovec J. Active mirror amplifier for high-average power (C) // SPIE,2001,4270.
    
    21、 Luis Zenteno. High Power Double-Clad Fiber Lasers. Journal of lightwave technology 1993, 11(9):1435-1445.
    
    22、 J. Lu, M. Prabhu, J. Song, et al, "Optical properties and highly efficient laser oscillation of Nd:YAG ceramics"[J], Appl. Phys. B, 71, 2000 : 469-473.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700