番茄种质遗传多样性及种子质量调控技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茄科的番茄(Solanum lycopersicum L.)是全世界广泛种植的重要经济作物之一在人们的日常饮食和营养中具有重要作用。针对目前我国番茄育种和种子生产过程中存在的主要问题,如育种中经常使用少数骨干亲本,使番茄品种的遗传基础趋于狭窄;番茄种子质量差,杂交种种子纯度检测技术较为落后、种子活力低下等,本研究利用SSR分子标记对不同类型的番茄自交系进行遗传多样性研究,探索构建番茄杂交种子纯度快速鉴定的分子技术体系和利用种子引发技术提高番茄种子活力的方法,为番茄育种和生产服务。取得的主要研究结果如下:
     1、以105核心种质为试验材料,在正常、盐、干旱胁迫下对番茄种子活力进行鉴定评价。结果表明,在正常条件下发芽势(GP)、发芽率(GR)变幅分别为0~98%、0~98%;在10%PEG干旱胁迫下GP、GR变幅分别为0~98%、0~98%;在100mM NaCl胁迫下GP、GR变幅分别为0%~52%、0~66%。在105份种质资源中,GP、GR在品种间存在较大的差异。在正常、干旱、盐胁迫条件下,绝大部分品种GP分别为80~100%、80~100%、0%,分别占42.86%、47.6%、69.5%;而绝大部分品种GR分别为80~100%、80~100%、<10%,分别占55.23%、60.95%、63.80%。本研究还筛选出在正常条件下、干旱、盐胁迫下高种子活力品种,在正常条件下,高活力种子(GR、 GP>90%)品种有20个,占19%;在10%PEG胁迫下,高活力种子(GR、GP>90%)品种分别有22个,占20.9%;在100mM NaCl胁迫下,高活力种子(GR、GP>50%)品种分别有4个,占3.8%。这些番茄种质资源的利用有利于高活力番茄品种的培育,及为今后基因定位克隆研究奠定基础。
     2、利用35对SSR分子标记对来自中国、日本、韩国和美国的39份无限生长型和有限生长型番茄种质的遗传多样性进行研究。结果表明,35对引物共扩增出150个条带,平均每对引物扩增出4.3个条带,平均多态性信息含量(PIC)为0.31。聚类分析研究表明在遗传相似系数0.80处将39份材料分成4组。来自美国的有限生长型番茄自交系之间最具有遗传相似性,而来自美国的有限生长型自交系Us-16和来自日本的无限生长型自交系Ja-2遗传相似性最低。中国的番茄自交系具有较高的遗传相似性(平均遗传相似系数为0.909)、其次是日本(平均遗传相似系数为0.76)和韩国(平均遗传相似系数为0.80)的番茄自交系。聚类结果与番茄生态型和生长类型分类相一致,研究结果为今后番茄育种提供重要信息。
     3、利用35对SSR分子标记对生产上广泛种植的番茄杂交种“ZZ1”进行种子纯度的分子鉴定研究,结果表明,有16对SSR引物在双亲中表现多态性,其中7对引物能表现明显的共显性。进一步选择扩增条带清晰、结果稳定的3对引物(AI778183、 SSR136、LEat014)对人工配置的不同批次和不同纯度的番茄杂交种“ZZ1”的种子样品进行分子水平上的检测,同时在田间进行种植鉴定,结果发现,两种方法鉴定的结果基本一致,误差在1%以下。该分子检测技术已经申请国家专利,可以作为番茄杂交种种子纯度鉴定的一种快速、简单和可靠性好的方法在种子生产和销售中应用,并可探索其在更多番茄品种上的应用。
     4、引发作为种子播前处理技术,可以提高逆境条件下种子活力。本研究探讨了渗调引发对番茄杂交种子在老化和盐胁迫下种子活力的影响。番茄杂交种“ZZ1”种子分别在自然条件(老化)和-2℃条件下(未老化)贮藏4年,利用10%(w/v)聚乙二醇(PEG)在20±1℃黑暗条件下引发处理2d。老化种子在正常条件下(蒸馏水)25±1℃发芽7d,分析引发对老化种子活力的影响。结果表明,与未引发老化种子相比,引发能显著提高老化种子发芽势(GP)、发芽率(GR)、发芽指数(GI)、,提高幼苗根长(RL)、芽长(SL)、幼苗总鲜重(FW),缩短平均发芽时间(MGT);其种子活力与未老化种子的活力相近。同时,未老化种子在100mM NaCl胁迫条件下25±+1℃发芽7d,分析引发对盐胁迫下种子活力的影响,结果表明与未引发种子相比,引发能显著提高GP、GI、FW,显著降低MGT,但GR、RL、SL两者无显著差异;在田间条件下,引发能显著提高直播番茄成苗率、幼苗RL、SL、FW。进一步研究表明,引发处理能显著降低种子吸胀期脂质过氧化。与未引发处理种子相比,引发能显著降低老化和盐胁迫下种子吸胀期细胞膜相对电导率(REL)、丙二醛含量(MDA)。相关分析表明MDA、REL与种子活力呈显著负相关,表明引发提高胁迫条件下种子活力可能与降低种子脂质过氧化相关。
Tomato(Solanum lycopersicum L.) as one of the important economic crops is widely cultivated all over the world, which plays an important role in people's daily diet and nutrition intake. Several problems are exsited in the current process of tomato breeding and seed production. For example, the genetic basis of tomato varieties are narrow because only a small number of key breeding parents used in breeding, and the level of hybrid seed purity testing and the seed vigor of varieties is low. Therefore, the SSR technology was used to analysis the genetic diversity in inbred lines of different tomato types in this study, the SSR technology was used to build a rapid tomato seed purity testing system, and the seed priming technology was used to improve the seed vigor. The main results obtained are as follows:
     1. Seed vigor of105core collection was identified under normal, salt and drought stress conditions in tomato. The results showed that the amplitude of germination potential (GP) and germination rate (GR) were0to98%and0to98%under normal conditions; the amplitude of GP and GR were0to98%and0to98%under10%PEG drought stress conditions; the amplitude of GP and GR were0to52%and0to66%under100mM NaC1stress conditions. There were significant differences in GP and GR between varieties. The GP of most varieties were80to100%,80to100%and0%, respectively, the percentages were42.86%,47.6%and69.5%of total germplasm under normal, drought and salt stress conditions. However, the GR of most varieties were80to100%,80to100%and<10%, respectively, the percentages were55.23%,60.95%and63.80%of total germplasm under normal, drought and salt stress conditions. The varieties with high seed vigor were also screened in this study. For example,20varieties with high vigor seeds (GR, GP>90%) were screened and the percentage was19%of total germplasm under normal conditions;22varieties with high vigor seeds (GR, GP>90%) were screened and the percentage was20.9%of total germplasm under10%PEG drought stress conditions;4varieties with high vigor seeds (GR, GP>50%) were screened and the percentage was3.8%of total germplasm under100mM NaC1stress conditions. These tomato germplasm will benefit to the cultivation of tomato varieties with high seed vigor and to gene mapping and cloning in future study.
     2. A study was conducted to determine the genetic diversity of39determinate and indeterminate tomato inbred lines collected from China, Japan, S. Korea, and USA. Using35SSR polymorphic markers, a total of150alleles were found with moderate levels of diversity, and a high number of unique alleles existing in these tomato lines. The mean number of alleles per locus was4.3and the average polymorphism information content (PIC) was0.31. Unweighted Pair Group Method with Arithmetic Mean (UPGMA) clustering at genetic similarity value of0.85grouped the inbred lines into four groups, where one USA cultivar formed a separate and more distant cluster. The most similar inbred lines are from USA, both with determinate type, whereas the most different lines are from USA (Us-16) and Japan (Ja-2) with determinate and indeterminate growth habit, respectively. Clustering was consistent with the known information regarding geographical location and growth habit. The genetic distance information reported in this study might be used by breeders when planning future crosses among these inbred lines.
     3.35SSR markers were used to screen the polymorphic and co-dominant markers among tomato hybrids and their parents. The results indicated that16SSR markers showed polymorphic in the parents in which7SSR markers were co-dominant performance. The co-dominant SSR markers (AI778183、SSR136、LEat014) that could amplify clear and stable bands were selected to identify the accuracy of SSR testing in different artificial configuration purity of tomato samples, and the testing of field also was conducted. The similar results were found between the SSR and field testing with error about1%. The SSR testing system of seed purity will be broadly applied in future with the advantages of rapid and accurate identification in tomato.
     4. Priming is a pre-sowing treatment that improves seed vigor under stress conditions. This study investigates the effect of osmopriming on seed vigor under aging and salinity stress of a tomato hybrid. Tomato seeds of the ZZ1hybrid variety, stored for four years under natural (aged) or-20℃(unaged) conditions, were primed in10%(w/v) polyethylene glycol (PEG) solution for2d at20±1℃in the dark. The vigor of primed, aged seeds under normal condition (water) at25±1℃for7d was evaluated. The results showed that the germination potential (GP), germination rate (GR) and germination index (GI) of primed, aged seeds were significantly enhanced, with a substantial increase in the radicle length (RL), shoot length (SL) and total fresh weight (FW) and a reduction of the mean germination time (MGT) compared with unprimed, aged seeds. The vigor of aged seeds was comparable to that of unaged seeds due to the priming treatment. Furthermore, the vigor of primed, unaged seeds was evaluated under the100mM NaCl condition at25±1℃for7d. Similarly, the GP, GI and FW significantly increased in primed seeds compared with unprimed seeds under salinity stress. In contrast, MGT significantly decreased, while GR, RL and SL did not show significant differences. Under the field condition, the priming of tomato seeds significantly improved the stand seedling establishment and the seedlings from primed seeds had greater RL, SL, FW than the un-primed seeds. Among priming treatments, further results showed that osmopriming could reduce seed lipid peroxidation. A decline in the relative electrolyte leakage (REL) and in malondialdehyde (MDA) was detected in primed seeds during the imbibition stage compared with unprimed seeds under aging and salinity stress. Similarly, there were negative correlations between seed vigor and REL and MDA, which suggests that seed priming improves seed vigor under stress conditions associated with a decrease in lipid peroxidation.
引文
[1]Alvarez AE, Van CCM, Smulders MJM. Use of microsatellites to evaluate genetic diversity and species relationships in the genus Lycopesicon. Theor Appl Genet,2001, 103:1283-1292
    [2]Anderson WF, Holbrook CC, Culbreath AK. Screening the core collection for resistance to tomato spotted wilt virus. Peanut Sci,1996,23:57-61
    [3]Angelovici R, Fait A, Zhu X, Szymanski J, Feldmesser E, Fernie AR, Galili G. Deciphering transcriptional and metabolic networks associated with lysine metabolism during Arabidopsis seed development. Plant Physiol,2009,151(4):2058-2072
    [4]Bailly C, Benamar A, Corbineau F Come D. Antioxidant systems in sunflower {Helianthus annuus L.) seeds as affected by priming. Seed Sci Res,2000,10:35-42
    [5]Bailly C. Active oxygen species and antioxidant in seed biology. Seed Sci Res,2004, 14:93-107
    [6]Basigalup H, Barnes DK, Stucker RE. Development of core collection for perennial Medicago plant introductions. Crops Science,1995,35(4):1163-1168
    [7]Basra SMA, Farooq M, Tabassum R. Physiological and biochemical aspects of seed vigor enhancement treatments in fine rice (Oryza sativa L.). Seed Sci Technol,2005, 33:623-628
    [8]Bertram C, Hass R. Cellular responses to reactive oxygen species-induced DNA damage and aging. Biol Chem,2008,389:211-220
    [9]Blair MW, Panaud O, McCouch SR. Inter-simple sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativa L.). Theor Appl Genet,1999,98:780-792
    [10]Bredemeijer GMM, Arens P, Wouters D. The use of semiautomated fluorescent microsatellite analysis for tomato cultivar identification. Theor Appl Genet,1998,97: 584-590
    [11]Brown AHD. Collections:a practical approach to genetic resources management. Genome,1989,31 (5):818-824
    [12]Butler LH, Hay FR, Ellis RH, Smith RD, Murray TB. Priming and re-drying improve the survival of mature seeds of Digitalis purpurea during storage. Ann Bot,2009,103: 1261-1270
    [13]Cantliffe DJ. Sowing primed seed. Am Veg Grower,1983,31:42-43
    [14]Casler MD. Patterns of variation in a collection of perennial ryegrass accessions. Crops Science,1995,35(4):1169-1177.
    [15]Catusse J, Strub JM, Job C, Van Dorsselaer A, Job D. Proteome-wide characterization of sugarbeet seed vigor and its tissue specific expression. Proc Natl Acad Sci,2008, 105(29):10262-10267
    [16]Chang SM, Sung JM. Deteriorative changes in primed sweet corn seeds during storage. Seed Sci Technol,1998,26:613-620
    [17]Chen K, Arora R. Dynamics of the antioxidant system during seed osmopriming, post-priming germination, and seedling establishment in spinach (Spinacia oleracea). Plant Sci,2011,180:212-220
    [18]Chen S, Gollop N, Heuer B. Proteomic analysis of salt-stressed tomato (Solarium lycopersicum) seedlings:effect of genotype and exogenous application of glycinebetaine. J Exp Bot,2009,60(7):2005-2019
    [19]Chiang GC, Barua D, Kramer EM, Amasino RM, Donohue K. Major flowering time gene, flowering locus C, regulates seed germination in Arabidopsis thaliana. Proc Natl Acad Sci,2009,106(28):11661-11666
    [20]Coolbear P, Francis A, Grierson D. The effect of low temperature pre-sowing treatment on the germination performance and membrane integrity of artificially aged tomato seeds. J Exp Bot,1984,35:1609-1617
    [21]Cooper B, Clarke JD, Budworth P, Kreps J, Hutchison D, Park S, Guimil S, Dunn M, Luginbuhl P, Ellero C, Goff S A, Glazebrook J. A network of rice genes associated with stress response and seed development. Proc Natl Acad Sci,2003,100(8):4945-4950
    [22]Davies MJ. The oxidative environment and protein damage. Biochimica et Biophysica Acta,2005,1703:93-109
    [23]Dell'Aquila A, Pignone D, Carella G. Polyethylene glycol 6000 priming effect on germination of aged wheat seed lots. Biologia Plantarum,1984,26:166-173
    [24]Edwards A, Civitello A, Hammond HA, Caskey CT. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am J Hum Genet,1991,49:746-756
    [25]Emile JM, Hetty BV, Gerda JR, Steven PCG, Maarten K. Genetic differences in seed longevity of various Arabidopsis mutants. Physiologia Plantarum,2004,121:448-461
    [26]Farooq M, Barsa SMA, Wahid A. Priming of field-sown rice seed enhances germination, seedling establishment, allometry and yield. Plant Growth Regulation, 2006,49:285-294
    [27]Farooq M, Basra SMA, Ahmad N. Improving the performance of transplanted rice by seed priming. Plant Growth Regulation,2007,51:129-137
    [28]Farooq M, Basra SMA, Wahid A, Ahmad N. Changes in nutrient-homeostasis and reserves metabolism during rice seed priming:consequences for seedling emergence and growth. Agricultural Sciences in China,2010,9:191-198
    [29]Farooq MS, Basra MA, Rehman H, Saleem B A. Seed priming enhances the performance of late sown wheat (Triticum aestivum L.) by improving chilling tolerance. J Agron Crop Sci,2008,194:55-60
    [30]Foolad MR, Lin GY. Absence of a genet ic relat ionship between salt tolerance during seed germination and vegetat ive growth in tomato. Plant Breeding,1997,116: 363-367
    [31]Frary A, Xu Y, Liu J, Mitschell S, Tedeschi E, Tanksley S. Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theor Appl Genet,2005,111: 291-312
    [32]Fu J, Huang B. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environ Exp Bot,2001,45: 105-114
    [33]Gallardo K, Job C, Groot SPC, Puype M, Demo H, Vandekerckhove J, Job D. Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiology, 2001,126:835-848
    [34]Gallardo K, Le Signor C, Vandekerckhove J, Thompson RD, Burstin J. Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol,2003,133(2):664-682
    [35]Gao YP, Young L, Bonham-Smith P, Gusta LV. Characterization and expression of plasma and tonoplast membrane aquaporins in primed seed of Brassica napus during germination under stress conditions. Plant Mol Biol,1999,40:635-644
    [36]Garcia MS, Andreani L, Garcia GM, Geuna F, Ruiz JJ. Evaluation of amplified fragment length polymorphism and simple sequence repeats for tomato germplasm fingerprinting:utility for grouping closely related traditional cultivars. Genome,2006, 49(6):648-656
    [37]Goel A, Goel AK, Sheoran IS. Changes in oxidative stress enzymes during artificial ageing in cotton (Gossypium hirsutum L.) seeds. J Plant Physiol,2003,160:1093-1100
    [38]Guan YJ, Hu J, Wang XJ, Shao CX. Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J Zhejiang Univ Sci B,2009, (10):427-433
    [39]Hamada H, Petrino MG, Kakunaga T, Seidman M, Stollar BD. Characterization of genomic poly(dT-dG) poly(dC-dA) sequences:Structure, organization and conformation. Mol Cell Biol,1984,4:2610-2621
    [40]Harman GE, Mattick LR. Association of lipid oxidation with seed aging and death. Nature,1976,260:323-324
    [41]Hayashi E, Aoyama N, Still DW. Quantitative trait loci associated with lettuce seed germination under different temperature and light environments. Genome,2008,51(11): 928-947
    [42]He C, Poysa V, Yu K. Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theor Appl Genet,2003,106:363-373
    [43]Huang XQ, Borner A, Roder MS, Ganal MW. Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet, 2002,105:699-707
    [44]Hussain M, Farooq M, Basra SMA, Ahmad N. Influence of seed priming techniques on the seedling establishment, yield and quality of hybrid sunflower. Int J Agr Biol.2006, 8:14-18
    [45]Ikeda T, Ohnishi S, Senda M, Miyoshi T, Ishimoto M, Kitamura K, Funatsuki H. A novel major quantitative trait locus controlling seed development at low temperature in soybean (Glycine max). TheorAppl Genet,2009,118(8):1477-1488
    [46]Isleib TG, Beute MK, Rice PW, Hollowell JE. Screening the peanut core collection for resistance to Cylindrocladium black rot and early leaf spot. Proc Am Peanut Res Edu Soc,1995,27:25
    [47]Ismail AI, El-Araby MM, Hegazi AZA, Moustafa SMA. Optimization of priming benefits in tomato (Lycopersicon esculentum M.) and changes in some osmolytes during the hydration phase. Asian Journal of Plant Sciences,2005,4(6):691-701
    [48]ISTA. International rules for seed testing. Zurich:The International Seed Testing Association,2009
    [49]Jones ES, Dupal MP, Kolliker R, Drayton MC, Forster JW. Development and characterisation of simple sequence repeat (SSR) markers for perennial ryegrass (Lolium perenne L.). Theor Appl Genet,2001,102:405-415
    [50]Karthikeyan B, Jaleel CA, Gopi R, Deiveekasundaram M. Alterations in seedling vigour and antioxidant enzyme activities in Catharanthus roseus under seed priming with native diazotrophs. J Zhejiang Univ Sci B,2007, (8):453-457
    [51]Kaur S, Gupta AK, Kaur N. Effect of osmo- and hydropriming of chickpea seeds on seedling growth and carbohydrate metabolism under water deficit stress. Plant Growth Regulation,2002,37:17-22
    [52]Khan HA, Ayub CM, Pervez MA, Bilal RM, Shahid MA, Ziaf K. Effect of seed priming with NaCl on salinity tolerance of hot pepper(Capsicum annuum L.) at seedling stage. Soil & Environ,2009,28(1):81-87
    [53]Kim ST, Wang Y, Kang SY, Kim SG, Rakwal R, Kim YC, Kang KY. Developing rice embryo proteomics reveals essential role for embryonic proteins in regulation of seed germination. J Proteome Res,2009,8(7):3598-605
    [54]Kim YO, Pan S, Jung CH, Kang H. A zinc finger-containing glycine-rich RNA-binding protein, atRZ-la, has a negative impact on seed germination and seedling growth of Arabidopsis thaliana under salt or drought stress conditions. Plant Cell Physiol,2007,48(8):1170-1181
    [55]Kovach W. MVSP-A Multivariate Statistical Package for Windows, ver.3.1. (Kovach Computing Services, Pentraeth, Wales, UK),1999, pp.133
    [56]Krishna A, Jagadadish GV, Deshpande VK, Prasanna KP, Venkataraman R. Effect of seed vigor levels on field performance and relationship between seed vigor tests and field emergence in sunflower hybrids. Karnataka Journal of Agricultural Sciences, 1997,10(1):112-116
    [57]Kuang A, Popova A, McClure G, Musgrave ME. Dynamics of storage reserve deposition during Brassica rapa L. pollen and seed development in microgravity. Int J Plant Sci,2005,166(1):85-96
    [58]Levinson G, Gutman GA. Slipped-strand mispairing:A major mechanism for DNA sequence evolution. Mol Biol Evol,1987,4:203-221
    [59]Li JF, Ma GB, Xu L. SSR markers for identification of purity of melon hybrids. Chinese Journal of Agricultural Biotechnology,2008,5:223-229
    [60]Liu LW, Wang Y, Gong YQ, Zhao TM, Liu G, Li XY, Yu FM. Assessment of genetic purity of tomato (Lycopersicon esculentum L.) hybrid using molecular markers. Scientia Horticulturae,2007a,115(1):7-12
    [61]Liu Q, Hilhorst HWM, Groot SPC, Bing RJ. Amounts of nuclear DNA and internal morphology of gibberellin-and abscisic acid-deficient tomato (Lycopersicon esculentum Mill.) seeds during maturation, imbibition and germination. Ann Bot,1997, 79:161-168
    [62]Liu X, Xing D, Li L, Zhang L. Rapid determination of seed vigor based on the level of superoxide generation during early imbibition. Photochem Photobiol Sci,2007b,7(6): 767-774
    [63]Liu Y, Bino RJ, Van der Burg WJ, Groot SPC, Hilhorst HWM. Effects of osmotic priming on dormancy and storability of tomato (Lycopersicon esculentum Mill.) seeds. Seed Sci Res,1996,6:49-55
    [64]Manjunatha G, Niranjan-Raj S, Prashanth GN, Deepak S, Amruthesh KN, Shetty HS. Nitric oxide is involved in chitosan-induced systemic resistance in pearl millet against downy mildew disease. Pest Manag Sci,2009,65:737-743
    [65]Manjunatha G, Roopa KS, Prashanth GN, Shetty HS. Chitosan enhances disease resistance in pearl millet against downy mildew caused by Sclerospora graminicola and defence-related enzyme activation. Pest Manag Sci,2008,64:1250-1257
    [66]Mauromicale G, Cavallaro V. A comparative study of the effects of different compounds on priming of tomato seed germination under suboptimal temperatures. Seed Sci Technol,1997,25:399-408
    [67]Mauromicale G, Cavallaro V. Effects of seed osmopriming on germination of tomato at different water potential. Seed Sci Technol,1995,23:393-403
    [68]McDonald MB. Seed deterioration:physiology, repair and assessment. Seed Science and Technology,1999,27(1):177-237
    [69]McDonald MB. The history of seed vigor testing. J Seed Technol,1994,17:93-101
    [70]Mei YQ, Song SQ. Response to temperature stress of reactive oxygen species scavenging enzymes in the cross-tolerance of barely. J Zhejiang Univ-Sci B,2010, 11(12):965-972
    [71]Meloni DA, Oliva MA, Martinez CA, Cambraia J. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot,2003,49:69-76
    [72]Miura K, Lin Y, Yano M, Nagamine T. Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.). Theor Appl Genet,2002,104(6-7):981-986
    [73]Murthy UM, Kumar PP, Sun WQ. Mechanisms of seed ageing under different storage conditions for Vigna radiata (L.) Wilczek:lipid peroxidation, sugar hydrolysis, Maillard reactions and their relationship to glass state transition. J Exp Bot,2003, 54(384):1057-1067
    [74]Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA,1979,76:5269-5273
    [75]Oh E, Kang H, Yamaguchi S, Park J, Lee D, Kamiya Y, Choi G. Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis. Plant Cell,2009,21(2):403-419
    [76]Ozbingol N, Corbineau F, Come D. Responses of tomato seeds to osmoconditioning as related to temperature and oxygen. Seed Sci Res,1998,8:377-384
    [77]Parera CA, Cantliffe DJ. Presowing seed priming. Hort Reviews,1994, (16):109-141
    [78]Park SJ, Kwak KJ, Oh TR, Kim YO, Kang H. Cold shock domain proteins affect seed germination and growth of Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiol,2009,50(4):869-878
    [79]Pignocchi C, Minns GE, Nesi N, Koumproglou R, Kitsios G, Benning C, Lloyd CW, Doonan JH, Hills MJ. ENDOSPERM DEFECTIVE1 is a novel microtubule-associated protein essential for seed development in Arabidopsis. Plant Cell,2009,21(1):90-105
    [80]Pourcel L, Routaboul J M, Cheynier V, Lepiniec L, Debeaujon I. Flavonoid oxidation in plants:from biochemical properties to physiological functions. Trends Plant Sci, 2007, (12):29-36
    [81]Powell AA, Yule LJ, Jing H, Groot SPC, Bino RJ, Pritchard HW. The influence of aerated hydration seed treatment on seed longevity as assessed by the viability equations. Journal of Experimental Botany,2000,51:2031-2043
    [82]Prieto-Dapena P, Castano R, Almoguera C, Jordano J. Improved resistance to controlled deterioration in transgenic seeds. Plant Physiol,2006,142(3):1102-1112
    [83]Rajjou L, Debeaujon I. Seed longevity:survival and maintenance of high germination ability of dry seeds. C R Biol,2008,331(10):796-805
    [84]Rajjou L, Lovigny Y, Groot SP, Belghazi M, Job C, Job D. Proteome-wide characterization of seed aging in Arabidopsis:a comparison between artificial and natural aging protocols. Plant Physiol,2008,148(1):620-641
    [85]Rajput SG, Wable KJ, Sharma KM, Kubde PD, Mulay SA. Reproducibility testing of RAPD and SSR markers in tomato. African Journal of Biotechnology,2006,5(2): 108-112
    [86]Rallo P, Dorado G, Martin A. Development of simple sequence repeats (SSRs) in olive tree (Olea europaea L.). Theor Appl Genet,2000,101:984-989
    [87]Rick CM, Zobel W, Fobes JF. Four peroxidase loci in red-fruited tomato species: genetics and geographic distribution. PNAS USA,1974,71(3):835-839
    [88]Rodo AB, Marcos FJ. Onion seed vigor in relation to plant growth and yield. Horticultura Brasileira,2003,21(2):220-226
    [89]Rom M, Bar M, Rom A, Pilowsky M, Gidoni D. Purity control of F1-hybrid tomato cultivars by RAPD markers. Plant Breeding,1995,114(2):188-199
    [90]Roy A, Bandyopadhyay A, Mahapatra AK, Ghosh SH, Singh NK, Bansal KC, Koundal KR, Mohapatra T. Evaluation of genetic diversity in jute [Corchorus species) using STMS, ISSR and RAPD markers. Plant Breeding,2006,125:292-297
    [91]Sattler SE, Gilliland LU, Magallanes-Lundback M, Pollard M, DellaPenna D. Vitamin E is essential for seed longevity, and for preventing lipid peroxidation during germination. Plant Cell,2004, (16):1419-1432
    [92]Schwember AR, Bradford KJ. A genetic locus and gene expression patterns associated with the priming effect on lettuce seed germination at elevated temperatures. Plant Mol Biol,2010,73:105-118
    [93]Scott ES, Laura UG, Maria ML, Mike P, Dean DP. Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell,2004, 16:1419-1432.
    [94]Scott RP, Zeigler RS, Nelson RJ. A procedure for miniscale preparation of Pyricularia grisea DNA. Intl Rice Res Notes,1993,18:47-48
    [95]Selvakumar P, Ravikesavan R, Gopikrishnan A, Thiyagu K, Preetha S, Manikanda BN. Genetic purity analysis of cotton (Gossypium spp.) hybrids using SSR markers. Seed Sci Technol,2010,38(2):358-366
    [96]Senda T, Kubo N, Hiral M, Tominaga T. Development of microsatellite markers and their effectiveness in Lolium temulentum. European Weed Research Society,2004,44: 136-141
    [97]Sheh MT, Corinne M, Vogelaar A, Kerkveld M, Pearce SR, Grandbastien MA. Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor Appl Genet,2005, 110:819-831
    [98]Shi QH, Zhu ZJ, Xu M, Qian QQ, Yu JQ. Effect of excess manganese on the antioxidant system in Cucumis sativus L. under two light intensities. Environ Exp Bot, 2006,58:197-205
    [99]Sivritepe HO, Dourado AM. The effect of priming treatments on the viability and accumulation of chromosomal damage in aged pea seeds. Ann Bot,1995,75:165-171
    [100]Sivritepe HO, Sivritepe N. NaCl priming affects salt tolerance of onion(Allium cepa L.) seedlings. Acta Horticulturae,2007,729:157-161
    [101]Sivritepe N, Sivritepe HO, Eris A. The effects of NaCl priming on salt tolerance in melon seedlings grown under saline conditions. Sci Agr,2003,97:229-237
    [102]Smulders MJM, Bredemeijer G, Rus-Kortekaas W, Arens P, Vosman B. Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet,1997,97:264-272
    [103]Soltani A, Zeinali E, Galeshi S. Genetic variation for and interrelationships among seed vigor traits in wheat from the Caspian Sea coast of Iran. Seed Sci Technol,2001, 29:653-662
    [104]Spagnoletti Zeul PL, Qualset CO. Evaluation of five strategies for obtaining a core subset from a large genetic resource collection of durum wheat. Theory Applied Genetics,1993,87 (3):295-304
    [105]Stevenson DE, Hurst RD. Polyphenolic phytochemicals-just antioxidants or much more? Cel Mol Life Sci,2007,64:2900-2916
    [106]Sun Q, Wang JH, Sun BQ. Advances on seed vigor physiological and genetic mechanisms. Agric Sci China,2007,6(9):1060-1066
    [107]Sun WQ, Koh DCY, Ong CM. Correlation of modified water sorption with the decline of storage stability of osmotically-primed Phaseolus aureus seeds. Seed Sci Res, 1997,7:391-397
    [108]Sung FJ, Chang YH. Biochemical activities associated with priming of sweet corn seeds to improve vigor. Seed Sci Technol,1993,21:97-105
    [109]Tam SM, Mhiri C, Vogelaar A, Kerkveld M, Pearce SR, Grandbastien MA. Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor Appl Genet,2005, 110(5):819-831
    [110]Taylor AG, Klein DE, Whitlow TH. SMP:Solid matrix priming of seeds. Sci Hort, 1988,37:1
    [111]TeKrony DM, Hunter JL. Effect of seed maturation and genotype on seed vigor in maize. Crop Science,1995,35(3):857-862
    [112]Terskikh VV, Zeng Y, Feurtado JA, Giblin M, Abrams SR, Kermode AR. Deterioration of western redcedar (Thuja plicata Donn ex D. Don) seeds:protein oxidation and in vivo NMR monitoring of storage oils. J Exp Bot,2008,59(4): 765-777
    [113]Thornton JM, Powell AA. Prolonged aerated hydration for the improvement of seed quality in Brassica oleracea L. Ann Appl Biol,1995,127:183-189
    [114]Toorop PE, Aelst ACV, Hilhorst HWM. Endosperm cap weakening and endo-β-mannanase activity during priming of tomato (Lycopersicon esculentum cv. Money-maker) seeds are initiated upon crossing a threshold water potential. Seed Sci Res,1998,8:483-489
    [115]Veremis JC, Roberts PA. Identification of resistance to Meloidogyne javanica in Lycopersicon peruvianum complex. Theor Appl Genet,1996,93:894-901
    [116]Wahid A, Sehar S, Perveen M, Gelani S, Basra SMA, Farooq M. Seed pretreatment with hydrogen peroxide improves heat tolerance in maize at germination and seedling growth stages. Seed Sci Technol,2008,36:633-645
    [117]Walters C. Understanding the mechanisms and kinetics of seed aging. Seed Sci Res, 1998,8:223-244
    [118]Wang L, Guan R, Zhangxiong L, Chang R, Qiu L. Genetic diversity of Chinese cultivated soybean revealed by SSR markers. Crop Sci,2006,46:1032-1038
    [119]Wang ZF, Wang JF, Wang FH, Bao YM Wu YY, Zhang HS. Segregation analysis of rice seed germination under cold stress using major gene plus poly gene mixed inheritance model. Seed Sci Technol,2010,38:113-122
    [120]Weir BS. Genetic data analysis-methods for discrete population genetics dData. (Sunderland:Sinauer Associates, Inc),1990
    [121]Williams CE, Clair DA. Phenetic relationships and levels of variability detected by restriction fragment length polymorphism and random ampliWed polymorphic DNA analysis of cultivated and wild accessions of Ly copersicon esculentum. Genome,1993, 36:619-630
    [122]Xin YY, Zhang Z, Xiong YP, Yuan LP. Identification and purity test of super hybrid rice with SSR molecular markers. Rice Sci,2005,12(1):7-12
    [123]Xing Y, Jia W, Zhang J. AtMKKl and AtMPK6 are involved in abscisic acid and sugar signaling in Arabidopsis seed germination. Plant Mol Biol,2009,70(6):725-736
    [124]Xu Y, Beachell H, McCouch S R. A marker-based approach to broadening the genetic base of rice in the USA. Crop Sci,2005,44:1947-1959
    [125]Yano R, Kanno Y, Jikumaru Y, Nakabayashi K, Kamiya Y, Nambara E. CHOTTO1, a putative double APETALA2 repeat transcription factor, is involved in abscisic acid-mediated repression of gibberellin biosynthesis during seed germination in Arabidopsis. Plant Physiol,2009,151(2):641-654
    [126]Yu K, Park SJ, Poysa V. Abundance and variation of microsatellite DNA sequences in beans(Phaseolus and Vigna). Genome,1999,42:27-34
    [127]Zhang HY, Yu DN, Wang RP, Li MF, Li QZ. An analysis of genetic diversity of the germplasm resources of L. esculentum and the application with RAPD. J. Plant Genet Res,2003,4:151-156
    [128]艾呈祥,余贤美,刘庆忠,郑服从.利用SSR标记鉴定西瓜杂交种纯度的研究.西北植物学报,2006,(10):40-44
    [129]陈火英,刘杨.番茄分子标记研究进展.上海交通大学学报(农业科学版),2003,21(4):356-360
    [130]陈建华,栾明宝,许英,王晓飞,孙志民,邹白征,熊和平.苎麻种质资源核心种质构建.中国麻业科学,2011,33(2):59-64
    [131]杜永臣,严准,王孝宣,李树德,朱德蔚.番茄育种研究主要进展.园艺学报,1999,26(3):161-169
    [132]傅家瑞.花生种子活力的生理生化基础.花生科技,1990,(3):1-4
    [133]高蓝,傅建熙,王建华,王荣.RAPD法检测番茄种子纯度的研究.西北植物学报,2001,21(3):562-565
    [134]高蓝,李浩明.利用RAPD标记分析番茄杂种遗传纯度.分子植物育种,2006,4(3):385-391
    [135]关荣霞,刘燕,刘章雄,常汝镇,邱丽娟.利用SSR方法鉴定大豆品种纯度.分子植物育种,2003,(3):75-78
    [136]胡景涛,黄文章,严明建.几种杂交水稻种子纯度鉴定的方法及其应用前景.安徽农业科学,2009,37(4):1493-1495,1536
    [137]胡兴雨,黄犀,陈忠明,王伟民,张红生.利用SSR标记检测两系杂交稻两优培九种子的纯度.江苏农业科学,2006,(2):11-14
    [138]贾继增.分子标记种质资源鉴定和分子标记育种.中国农业科学,1996,29(4):1-10
    [139]金凤媚,薛俊,郏艳红,刘仲齐.番茄遗传资源的聚类分析研究.华北农学报,2006,21(6):49-54
    [140]黎毛毛,万建林,黄永兰,曹桂兰,陈红萍,韩龙植.水稻微核心种质氮素利用率相关性状的鉴定评价及其相关分析.植物遗传资源学报,2011,12(3):352-361
    [141]李保印,张启翔.我国园艺作物核心种质研究进展.果树学报,2007,24(2):204-209
    [142]李丽,郑晓鹰,Klocke E.利用RAPD分子标记对番茄杂交种纯度的鉴定研究.广西植物,2003,23(2):149-154
    [143]李丽,郑晓鹰.AFLP分子标记应用于白菜品种鉴定.分子植物育种,2006,4(5):685-689
    [144]李巧英.SSR标记技术在种子纯度鉴定中的研究进展.中国种业,2009,(11):22-23
    [145]李召华,朱克永,陈祖武,詹庆才.SSR分子标记技术在杂交水稻种子纯度鉴定中的应用.杂交水稻,2006,21(4):11-14
    [146]刘杨,陈火英,魏毓棠.番茄SSR遗传连锁图谱的构建及每序花数性状的QTL定位.南京农业大学学报,2005,28(4):30-34
    [147]刘章雄,杨春燕,徐冉,卢为国,乔勇,张礼凤,常汝镇,邱丽娟.大豆微核心种质在黄淮地区的区域适应性分析.作物学报,2011,37(3):443-45 1
    [148]栾雨时,安利佳,黄百年,张文俊,何孟元.用SSR探针进行番茄品种的DNA指纹分析.园艺学报,1999,26(1):51-53
    [149]马双武.苗期标记性状在我国作物育种及种子纯度鉴定上的研究应用进展.植物遗传资源学报,2011,12(2):297-300
    [150]钱前,陈洪,孙宗修,朱立煌.真假杂交水稻Ⅱ优63的RAPD鉴定.中国水稻科学,1996,10(4):241-242
    [151]曲亮,陈卫江,李莓,王同华.SSR标记技术在甘蓝型油菜杂交种纯度鉴定中的应用.湖南农业大学学报(自然科学版),2009,35(3):229-232
    [152]任小平,廖伯寿,张晓杰,雷永,黄家权,晏立英,陈玉宁,姜慧芳.中国花生核心种质中高油酸材料的分布和遗传多样性.植物遗传资源学报,2011,12(4):513-518
    [153]阮松林,薛庆中.植物的种子引发.植物生理学通讯,2002,38:198-276
    [154]宋建,陈杰,陈火英,刘杨,庄天明.利用SSR分子标记分析番茄的遗传多样性.上海交通大学学报(农业科学版),2006,24:524-528
    [155]苏菊萍,王圆荣,亢银萍.酯酶同工酶电泳技术在玉米品种真实性和纯度测定中的应用研究.种子科技,1999,(4):30
    [156]孙群,王建华,孙宝启.种子活力的生理和遗传机理研究进展.中国农业科学,2007,40(1):48-53
    [157]孙亚东,梁燕,吴江敏,张飞,闫见敏.番茄种质资源的遗传多样性和聚类分析.西北农业学报,2009,18(5):297-301
    [158]谭孟君,肖层林,詹庆才.利用SSR分子标记鉴定杂交稻种子金优299纯度研究.作物研究,2008,22(2):73-75
    [159]王灏,王道杰,李成梅,李殿荣.利用RAPD技术进行杂交油菜杂油59品种鉴定和纯度分析.中国农业科学,2002,35(12):1550-1555
    [160]王玲平,戴丹丽,吴晓花,汪宝根,李国景.AFLP分子标记技术在浙蒲2号种子纯度快速鉴定中的应用.浙江农业学报,2008,20(2):84-87
    [161]王全,张桂华,苗伟利.应用SSR技术进行黄瓜杂交种种子纯度鉴定.长江蔬菜,2009,(7):43-44
    [162]王日升,李杨瑞,杨丽涛,李立志,方锋学,李文嘉.番茄栽培品种SSR标记和形态标记的遗传多样性分析.热带亚热带植物学报,2006,14(2):120-125
    [163]王晓波,马传喜,司红起,乔玉强,何贤芳.中国小麦微核心种质资源PPO基因的等位变异.中国农业科学,2009,42(1):28-35
    [164]王彦荣,刘友良,沈益新.种子劣变的生理学研究进展综述.草地学报,2001,9(3):159-164
    [165]王彦荣.种子引发的研究现状.草业学报,2004,(13):7-12
    [166]温庆放,朱海生,林义章,康建坂,薛珠政.应用RAPD技术快速鉴定樱桃番茄杂种纯度.福建农林大学学报(自然科学版),2006a,35(1):33-37
    [167]温庆放,朱海生,林义章,康建坂,薛珠政.樱桃番茄种质资源遗传多样性的分析.福建农业学报,2006b,21(1):59-62
    [168]吴则东,王华忠,韩英.种子纯度鉴定的常用方法及其在甜菜上的应用展望.中国糖料,2010,(1):59-61
    [169]谢宗铭,陈福隆,孙宝启.种子蛋白乳酸尿素聚丙烯酰胺凝胶电泳技术及其对向日葵自交系和杂交种的鉴定.中国油料作物学报,1999,21(3):30-33
    [170]胥婷婷,林峰,华为,汪军妹,朱靖环,贾巧君,尚毅,杨建明.我国大麦选育品种核心种质的初步构建.浙江农业学报,2011,23(3):483-488
    [171]许向阳,孟凡娟,李景富.番茄资源对叶霉病的抗性鉴定和SSR标记遗传变异分析.植物病理学报,2007,37(5):520-527
    [172]姚祝平,叶青静,杨悦俭,王荣青,阮美颖,周国治.番茄种质遗传多样性的AFLP分析.浙江农业学报,2010,22(2):156-160
    [173]曾卓华.“两杂”种子纯度及真实性鉴定技术研究进展.种子,2008,27(3):40-43
    [174]张春奇,查素娥,李红波.番茄育种研究概况及展望.农业科技通讯,2011,(3):29-32
    [175]张海利,陈勇兵,熊自立,宰文珊.耐低温耐弱光番茄种质资源筛选方法初探.浙江农业科学,2010,1:22-23
    [176]张孟玉,张红生.我国蔬菜种子进出口贸易分析.园艺学报,2006,33(6):1253-1258
    [177]郑光华,燕义唐,张庆昌.大豆种子吸胀冷害与“修补”过程的探讨.中国科学(B辑),1988,4:395-402
    [178]郑小鹰,黄为平.过氧化物酶及种子蛋白分析鉴定甜椒杂交种纯度.华北农学报,1996,11(4):119-121
    [179]周岚,陈殿元.SSR分子标记技术及其在玉米种子鉴定上的应用.中国种业,2005,(6):51-52
    [180]周延清.DNA分子标记技术在植物研究中的应用.化学工业出版社,2005,1-6
    [181]朱海山,张宏,毛昆明,李洪涛,汪安云.RAPD标记鉴定番茄杂交种子纯度的研究.云南农业大学学报,2003,18(3):270-272

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700