马铃薯晚疫病水平抗病材料筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马铃薯(Solanum tuberosum L.)是茄科茄属多年生草本植物,是我国和世界第四大粮食作物。在影响马铃薯生产的诸多外部因素中,影响最大的是由致病疫霉(Phytophthora infestans (Mont.) de Bary)引起的马铃薯晚疫病。马铃薯对晚疫病的抗性有两种,即水平抗性和垂直抗性,其中马铃薯的垂直抗性易丧失,水平抗性才具有持久性。因此,我们把水平抗病材料和品种的选育作为一个重要的育种目标。
     本试验以从国际马铃薯研究中心引进的一批不带R基因材料的杂交实生籽为试验材料,希望能从中筛选出一批具有优良水平抗性且农艺性状优良的材料,可以作为其它育种计划的中间材料或直接在生产上应用。2001年我们采用了网室人工接种初次筛选,之后进行了田间诱导晚疫病发生观察,室内离体接种鉴定,分子标记辅助筛选,并讨论了他们之间的关系。主要研究结果如下:
     1.26个杂交组合的13000粒实生籽总共有5795株出苗,各组合间出苗率变化很大(0.80%~74.40%,平均为44.58%)。根据晚疫病发病病级初步筛选,共选留24个组合的1616个单株。除395012和395016两个组合无中选株外,其余组合选留株数为1~188株,平均中选率为27.87%。各组合间中选率差异较大,为0.39%~63.94%。根据综合性状评价,395019,395021,395050和399005等组合表现较好,植株群体长势较强,其余组合长势教弱。
     2.田间诱导晚疫病发生抗性鉴定表明,抗病株系数占各组合总株系数的百分率为36.36%~100%,最低的组合是399002,最高的组合有395007、395017、395018、395029、395052和399003,均为100%,其余组合在55.57%~97.14%之间,说明各组合晚疫病抗性存在明显差异。
     3.各组合抗病水平变异较大,室内离体接种鉴定表明高抗株系数占总株系数的百分率为0%~72.15%,中抗为0%~50.00%,低抗为0%~26.80%,反映了水平抗病材料表型连续变化的数量特征。22个组合中高抗晚疫病植株数占总株数的百分率为33.47%,中抗植株数占总株数的百分率为20.71%,低抗植株数占总株数的百分率为15.78%。抗病植株数占总株数的百分率为69.96%,感病植株数占总株数的百分率为30.04%。
     4.利用4个标记对22个组合729份材料进行QTL位点分析的结果表明,有6份材料只检测到1个QTL位点,占总数的0.82%;34份材料检测到2个QTL位点,占总数的4.66%;103份材料检测到3个QTL位点,占总数的14.13%;而有586份材料则检测到四个QTL位点,占总数的80.38%。这表明与4个标记紧密连锁的QTL位点在大多数杂交后代中均是存在的。
     5.探讨了马铃薯植株田间诱导发病鉴定,室内叶片离体接种鉴定,分子标记辅助选择之间的关系。田间诱导发病结果与标记总带数有极显著相关性,与标记prpl
    
    的3条带均有显著相关性,与570bp和soobp条带有极显著的相关性,表明尸,I标
    记在这个群体中与数量抗病基因紧密连锁。其余3个标记无显著相关性。叶片离体
    接种鉴定与田间诱导发病鉴定及分子标记辅助选择之间无显著相关性。
Potato (Solarium tuberosum L.), is the fourth biggest crops in both the world and China. Late blight, caused by the oomycete Phytophthora infestans (Mont.) de Bary, is a major disease of potato cultivation which can lead to complete loss of the crop yield. Resistances of potato to late blight have two types; vertical resistance and horizontal resistance. Vertical resistance is generally monogenic easily overcome. However, horizontal resistance is partial, polygenic and more durable. Based on the principle, current breeding strategies focus on horizontal resistance.
    True potato seeds of 26 combinations from CIP were employed, derived from B population with horizontal resistance to late blight. We desired to get lines with stable horizontal resistance to late blight and good agronomic traits, which can be used as intermediate breeding materials or directly used in potato production. In our experiments, we primarily selected and evaluated seedling by artificial incubation in net house in 2001. Furthermore, we studied field resistance of foliage, leaf resistance in vitro and molecular marker-assisted selection. The major results are as following:
    1. There were 5795 of 13000 true potato seeds germinated from 24 combinations. The frequency of emergence varied from 0.80% to 74.40% (average 44.58%) among the combinations. 1616 plants were selected with an average selection rate of 27.87%. The selection rate had big difference among the combinations with 0.39-63.94%. The plants from the combinations 395019. 395021, 395050 and 399005 showed strong growth vigor while the others were weak to middle.
    2. The identification of field resistance to late blight showed that the rate of resistance varied from 33.36% to 100%. The plants from the combinations 395007, 395017, 395018, 395029, 395052 and 399003 showed high horizontal resistance to late blight, with 100% resistance rate. The resistance rate of the other combinations was 55.57% to 97.14%.
    3. The resistance to late blight of the selected plants varied from the combinations. The rate of high resistance varied from 0% to 72.15% (average 33.47%), middle resistance varied from 0% to 50.00% (average 20.71%), low resistance varied from 0% to 26.80 % (average 15.78%). This indicates that horizontal resistance to late blight is quantitative trait. Percentage of plant resistance to late blight of 22 combinations is 69.76%.
    4. QTL of the total 729 plants from 22 combinations were analysed by 4 molecular markers. The results demonstrated that 6 plants (0.8%) had one QTL, 34 plants had two
    
    
    QTL (4.66%), 103 plants had three QTL (14.13%), 586 plants had four QTL (80.38%). This showed that QTL closely linked with marker could be detected in most hybrid progenies.
    5. The relationships among field assessment of foliage resistance to late blight, laboratory assessment of leaf resistance to late blight and molecular marker-assisted selection were disscussed. There were extremely significant correlations between field resistance and total bands of marker selection. Field resistance to late blight had significant correlation with the marker prpl, and extremely significant correlation with the bands of 570bp and 800bp, however, had no significant correlation with other markers. This indicated that foliage resistance to late blight was linked with marker prpl. There were significant correlation among foliage identification in vitro, field assessment and marker-assisted selection.
引文
1.方中达.植病研究方法.第三版.北京,中国农业出版社,1998,380-382
    2.王英华,国立耘,梁德霖,朱小琼.马铃薯晚疫病菌在内蒙古和甘肃的交配型分布及对几种杀菌剂的敏感性.中国农业大学学报,2003,8(1):78-82
    3.李克来.马铃薯抗晚疫病和研究方法的探讨.青海师范大学学报(自然科学版),1988,(1):38-46
    4.刘志勇,王晓玲,倪中福,扬爱冬,孙其信,扬作民.小麦抗叶锈基因Lr9,Lr24的分子标记辅助选择研究.农业生物技术学报,2000,8(1):13~16
    5.刘晓鹏,谢从华,宋伯符.湖北恩施地区马铃薯晚疫病病菌生理小种的组成及分布.马铃薯杂志,1995,9(2):81-82
    6.刘景芳,张增艳,陈孝,刘曼西,谢皓,辛志勇.小麦抗白粉病基因Pm13及Pm4累加体的分子标记辅助选择.植物病理学报,2002,32(4):296-300
    7.朱杰华,张志铭,杨志辉.马铃薯晚疫病菌(Phytophthora infestans)A2交配型的研究进展.河北农业大学学报,1999,22(4):94-98
    8.朱杰华,张志铭,丁明亚,李玉琴,扬军玉.培养条件对马铃薯晚疫病菌卵孢子产生的影响.微生物学通报,2000a,27(5):317-320
    9.朱杰华,张志铭,李玉琴,田世民,常建霞.河北省马铃薯晚疫病菌(Phytophthora infestans)A2交配型的分布.河北农业大学学报,2000b,23(3):73-75
    10.朱杰华,张志铭,李玉琴.马铃薯晚疫病菌(Phytophthora infestans)A2交配型的分布.植物病理学报,2000c,30(4):375
    11.朱杰华,杨志辉,曹克强,樊幕贞,刘颖超,刘均玲.影响活体内马铃薯晚疫病菌卵孢子产生因素的研究.菌物系统,2001,20(2):244-249
    12.何卫,杨艳丽,王军,罗文富,王毅,张志铭,谢开云,车兴壁,钟素泰,Enrique Chujoy,Juan Landeo.马铃薯晚疫病水平抗性新群体材料研究.见:陈伊里主编,马铃薯产业与西部开发(2001).哈尔滨,哈尔滨工程大学出版社,2001,198-201
    13.宋伯符,谢开云.CIP的全球晚疫病防治倡议与我国的参与.马铃薯杂志,1997,11(1):51-55
    14.李汝刚.伍宁丰,范云六,宋伯符,Vleeshouwers G A A,Pea A.表达Osmotin蛋白的转基因马铃薯对晚疫病的抗性分析.生物工程学报,1999,15(20):135-139
    15.李炜,张志铭,李川.马铃薯晚疫病菌对瑞毒霉抗性的研究.河北农业大学学报,1998a,21(3):53-60
    16.李炜,张志铭,樊慕贞.马铃薯晚疫病菌对瑞毒霉抗性的测定.河北农业大学学报,1998b,21(2):63-65
    
    
    17.杨艳丽,罗文富,Chujoy E,王军,何卫,王毅,赵庆云,张修国.马铃薯无性系对晚疫病的抗病性配合力分析.山东农业大学学报(自然科学版),2001,32(2):157-151
    18.林传光,黄河,王高才,霍守祥,王道本.马铃薯晚疫病的田间动态观察及防治试验.植物病理学报,1955,1(1):31-44
    19.林传光,黄河,霍守祥.关于马铃薯晚疫病的预测和防治研究(摘要).北京农业大学学报,1956,2(1):79-85
    20.林传光,黄河,王道本,霍守祥.马铃薯晚疫病中心病株形成的观察.植物病理学报,1957,3(1):19-29
    21.罗文富,杨艳丽,王军,E.Chujoy,宋伯符,王毅,赵庆云.马铃薯群体B品系对晚疫病水平抗性遗传稳定性试验.云南农业大学学报,2000,15(3):205-207
    22.姚裕琪,粱德霖,孔繁春.适宜马铃薯晚疫病菌生长的豆类培养基筛选.华北农学报,1998,13(3):88-90
    23.姚裕琪,巩秀峰,高奇华,曹亚利,赵敬明.马铃薯晚疫病抗性鉴定及评价.内蒙古农业科技,2001(2):8-9
    24.赵志坚,何云昆,李成云,张志铭,朱杰华,李先平,邓继新.云南省发现马铃薯晚疫病菌(Phytophthora infestans)A2交配型.西南农业学报,1999,12(3):1-3
    25.黄河,林传光.我国北部马铃薯晚疫病菌生理小种的发生与变化.植物病理学报,1981,11(1):45-49
    26.黄河,徐田玉,徐大雅,程汉清,霍守祥,李风泉.马铃薯对晚疫病水平抗性的研究.马铃薯,1983,1:6-15
    27.黄河.同宗配合的马铃薯晚疫病菌曾在中国被发现.植物病理学报,2002,32(4):347-350
    28. Aljanabi S M, Martinez L. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research. 1997, 25(22): 4692-4693
    29. Austin B P M. Emergence of potato blight, 1843-46. Nature, 1964, 203:805-808
    30. Ballvora A, Ercolano M R, Weiss J, Meksem K, Bormann C A, Oberhagemann P, Salamini F, Gebhardt C. The R1 gene for potato resistance late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. Plant J, 2002, 30(3): 361-371
    31. Beerhues L, Kombrink E. Primary structure and expression of mRNAs encoding basic chitinase and 1,3-β-glucanase in potato. Plant Mol Biol, 1994, 24:353-367
    32. Black W, Mastenbroek C, Mills W R, Peterson L C. A proposal for an international nomenclature of races of Phytophthora infestans and of genes controlling immunity in Solanum demissum derivatives. Euphytica, 1953, 2:173-178
    33. Collins A, Milbourne D, Ramsay L, Meyer R, Chatot-Balandras C, Oberhagemann P, De Jong W, Gebhardt C, Bonnel E, Waugh R. QTL for field resistance to late blight in potato are strongly correlated with maturity and vigour. Molecular Breeding, 1999, 5:387-398
    
    
    34. Deahl K L, Pagani M C, Vilaro F L, Perez F M, Moravec B, Cooke L R. Characteristics of Phytophthora infestans isolates from Uruguay. European Journal of Plant Pathology, 2003. 109: 277-281
    35. Drenth A, Janssen E M, Govers F. Formation and survival of oospores of Phytophthora infestans under natural conditions. Plant Pathology, 1995, 44:86-94
    36. El-Kharbotly A, Leonards-Schippers C, Huigen D J, Jacobsen E, Pereira A, Stiekekema W J, Salamini F, Gebhardt C. Segregation analysis and RFLP mapping of the R1 and R3 alleles conferring race-specific resistance to Phytophthora infestans in progeny of diploid potato parents. Mol Gen Genet, 1994, 242:749-754
    37. El-Kharbotly A, Palomino-Sanchez C, Salamini F, Jacobsen E, Gebhart C. R6 and R7 alleles of potato conferring race-specific resistance to Phytophthora infestans (Mont.) de Bary identified genetic loci clustering with the R3 locus on chromosome Ⅺ. Theor Appl Genet, 1996, 92: 880-884
    38. Ewing E E, imko I, Smart C D, Bonierbale M W, Mizubuti E S G, May G D, Fry WE. Genetic mapping from field tests of qualitative and quantitative resistance to Phytophthora infestans in a population derived from Solanum tuberosum and Solanum berthaultii. Molecular Breeding, 2000, 6:25-36
    39. Fry W E, Goodwin S B, Dyer A T, Matuszuk J Z, Drenth A, Tooley P W, Sujkowskii L S, Koh Y J, Cohen B A, Spieiman L J, Deahl K L, Inglis D A Sandlan K P. Historical and recent migration of Phytophthora infestans: chrology, pathways and implications. Plant Disease, 1993, 77:653-661
    40. Fry W E, Smart C D. The return of Phytophthora infestans, a potato pathogen that just won't quit. Potato Research, 1999, 42:279-282
    41. Ghislain M, Trognitz B, Ma del R Herrera, Solis J, Casallo G, Vásquez C, Hurtado O, Castillo R, Portal L, Orrillo M. Genetic loci associated with fild resistance to late blight in offspring of Solanum phureja and S. tuberosum grown under short-day condition. Theor Appl Genet, 2001, 103:433-442
    42. Goodwin S B, Drenth A. Origin of the A2 mating type of Phytophthora infestans outside Mexico. Phytophthology, 1997, 87:992-999
    43. Goodwin S B, Sujkowski L S, Fry W E. Rapid evolution of pathogenicity within clonal lineages of the potato late blight disease fungus. Phytophthology, 1995, 85:669-676
    44. Hahn K, Strittmatter G. Pathogen-defense gene prpl-1 from potato encodes an auxin-responsive glutathione S-transferase. Eur J Biochem, 1994, 226(2): 619-626
    45. Hodgson W A. Laboratory testing of the potato for partial resistance to Phytophthora infestans. American Potato J, 1961, 38:259-264
    46. Hohl H R, Iselin K. Strains of Phytophthora infestans from Switzerland with A2 mating type behavior. Trans Br Mycol Soc, 1984, 84:529-530
    
    
    47. Jackon S D. Multiple signaling pathways control tuber induction in potato. Plant Physiol, 1999, 119:1-8
    48. Johannes M S, Leontine T C, Petra J C C W, Willem J S. Two related genotypes of Solanum microdontum carry different segregating alleles for field resistance to Phytophthora infestans. Molecular Breeding, 2000, 6:215-225
    49. Kamoun S, Van West P, Govers F. Quantification of late blight resistance of potato using transgenic Phytophthora infestans expressing β-glucuronidase. European Journal of Plant Pathology, 1998, 104:521-525
    50. Kombrink E, Schrider M, Hahlbrock K. Several "pathogenesis-related" proteins in potato are β-1, 3-glucanases and chitinases. Proc Natl Acad Sci USA. 1988, 85:782-786
    51. Leonard-Schippers C, Gieffers W. Salamini F, Gebhart C. The Rl gene conferring race-speeific resistance to Phytophthora infestans in potato is located on potato chromosome V, Mol Gen Genet. 1992, 233:278-283
    52. Leonards-Schippers C. Gieffers W, Schafer-pregl R, Ritter E, Knapp S J, Salamini F. Gebhardt C. Quantitative resistance to Phytophthora infestans in potato: a case for QTL mapping in an allogamoous plant species. Genetics, 1994, 137:67-77
    53. Li X, Van Eck H J, Rouppe van der Voort J N A M, Huigen D J, Stam R Jacobsen E. Autotetraploids and genetic mapping using common AFLP markers: the R2 allele conferring resistance to Phytophthora infestans mapped on potao chromosome 4, Theor Appl Genet, 1998, 96:1121-1128
    54. Logemann J, Mayer J E, Schell J, Willmitzer L. Differential expression of genes in potato tubers after wounding, Proc Natl Acad Sci USA, 1988:1136-1140
    55. Malcomson J F. Black W. New R-genes in Solanum demissum and their complementary races of Phytophthora infestans (Mont.) de Bary. Euphytica, 1996, 15:199-203
    56. Manosalva P, Torres S, Trognitz F, Gysin R, Nio-liu D, Simon R, Herrera M, Pérez W, Landeo J, Trognitz B, Ghislain M, Nelson R. Plant defense genes associated with quantitative resistance to potato late blight. In: International Potato Center, Program Report 1999-2000. Scientist and Farmer: Partners in Research for the 21st Century. Lima, Peru: International Potato Center, 2001. 27-38
    57. Meksem K, Leister D, Salamini F, Gebhart C. A high-resolution map of chromosome Ⅴ of potato based on RFLP and AFLP markers in vicinity of the Rl locus. Mol Gen Genet, 1995, 249:74-81
    58. Meyer R C, Milbourne D, Hackett C A, Bradshaw J E, McNichol J W, Waugh R. Linkage analysis in tetraploid potato and association of markers with quantitative resistance to late blight (Phytophthora infestans). Mol Gen Genet. 1998. 259:150-160
    59. Micheletto S, Andreoni M. Huarte M A. Vertical resistance to late blight in wild potato species from Argentina. Euphytica. 1999, 110:133-138
    
    
    60. Micheletto S, Boland R, Huarte M. Argentinian wild diploid Solarium species as sources of quantitative late blight resistance. Theor Appl Genet, 2000, 101:902-906
    61. Michelmore R. Molecular approaches to manipulation of disease resistance genes. Annu. Rev. Phytopathol. 1995,15:393-427
    62. Mohan M, Nair S, Bhagwat A, Krishna T G, Yano M, Bhatia C R, Sasaki T. Genome mapping, molecular markers and marker-assisted selection in crop plants. Molecular Breeding, 1997, 3: 87-103
    63. Oberhagemann P, Chatot-Balandras C, Schfer-Pregl R, Wegener D, Palomino C, Salamini F, Bonnel E, Gebhardt C. A genetic analysis of quantitative resistance to late blight in potato: Towards marker-assisted selection. Molecular Breeding, 1999, 5(5): 399-415
    64. Ojiambo P S, Nyanapah J O, Lungaho C, Karinga J K, Kidanemariam H M. Comparing different epidemiological models in field evaluations of selected genotypes from Solanum tuberosum CIP population A for resistance to Phytophthora infestans (Mont) De Bary in Kenya. Euphytica, 2000, 111:211-218
    65. Ozias Akins P, Pring D R, Vasil I K. Rearrengement in the mitochondrial genome of somatic hybrid cell lines of Pennisetum americura (L.) K. Schum. + Pamicum maximum Jacq. Theor Appl Genet, 1987, 74:15-20
    66. Pierpoint W S. Jacson P J, Rochel M E. The presence ofa thaumatin-like protein, a chitinases and a glucanases among the pathogenesis-related protin in potato. Physiological and Molecular Plant Pathology,, 1990, 36:325-338
    67. Robertson D S. A possible technique for isolating genomic DNA for quantitative traits in plants. J Theor Biol. 1985, 117:1-10
    68. Rouppe van der Voort J N A M, van Eck H J, Draaistra J, van Zandvccrt, Jacobsen E, Bakker J. An online catalogue of AFLP markers covering the potato genome. Molecular Breeding, 1998, 4: 73-77
    69. Ryu K Y, Luo W E Yang Y L, Guo L Y, Guo H C, Wang Y. Chen H R. Mating Type Fungicide Sensitivity and Physiological Race of Phytophthora infestans Collected from Yunnan Province (in Chinese). ACTA PHYTOPATHOLOGICA SINCA, 2003, 33(2): 126-131
    70. Sanchez G M, Smart C D, Simko I, Anna O A, James M D, Gary D Lyon, Rachel L Toth. Identification of two new R-genes to Phytophthora infestans from Solanurn berthaultii. Phytopathology 90:S68. Publicaation no. P-2000-0486-AMA.
    71. Sandbrink J M, Colon L T, Wolters P J C C. Stiekema W J. Two related genotypes of Solanum microdontum carry different segregating alleles for field resistance to Phytophthora infestans. Molecular Breeding, 2000, 6:215-225
    72. Schrder M, Hahlbrock K, Kombrink E. Temporal and spatial patterns of 1,3-β-glucanase and chitinase induction in potato leaves infected by Phytophthora infestans. Plant J, 1992.2:161-172
    
    
    73. Sherty H S, Vasanthi N S. Disease resistant genes and marker assisted selection for crop improvement. Crop Improv, 1999, 26(2): 113-134
    74. Smart C D, Fry W E. Invasions by the late blight pathogen: renewed sex and enhanced fitness. Biological Invasions, 2001, 3:235-243
    75. Stein J M, Kirk W W. Containment of existing potato late blight (Phytophthora infestans) foliar epidemics with fungicides. Crop Protection, 2002, 21:575-582
    76. Tanksley S D, Ganal M W, Prince J P, de Vicente M C, Bonietbale M W, Broun P, Fulton T M, Giovannoni J J, Grandillo S, Martin G B, Messeguer R, Millerr J C, Miller L, Paterson A H, Pineda O, Roder M S, Wing R A, Wu W, Young D N. High density molecular linkage maps of the potato and tomato genomes. Genetics, 1992, 132:1141-1160
    77. Taylor J L, Frizemeier K H, Hiuser I, Kombrink E, Schrider M. Structural analysis and activiation by fungal infection of a gene encoding a pathogenesis-related protin in potato. Mol Plant-Microbe Interact, 1990, 3(2): 72-77
    78. Tooley T W, Sweigard J A, Fry W E. Fitness and virulence of Phytophthora infestans isolates from sexual and asexual populations. Phytophthology, 1986, 76(11): 1209-1212
    79. Trognitz B R, Orrillo M, Portal L, Román P, Perez S, Chacón G. Evaluation and analysis of reduction of late blight disease in a diploid potato progeny. Plant Pathology, 2001, 50(3): 281-291
    80. Trognitz F, Manosalva P, Gysin R, Nio-liu D, Simon R, Herrera M, Trognitz B, Ghislain M, Nelson R. Plant Defense Genes Associated with Quantitative Resistance to Potato Late Blight in Solanum phureja×Dihaploid S.tuberosum Hybrids. Molecular Plant-Microbe Interactions, 2002, 15(6): 587-597
    81. Tun-tschu Chang, Wen-hsiung Ko. Effect of metalaxyl on mating type of Phytophthora infestans and P. parasitica. Ann Phytopath Soc Japan, 1990, 56:194-198
    82. Umaerus V, Lihnell D. A Laboratory method for measuring the degree of attack by Phytophthora infestans. Potato Res. 1976, 19:91-107
    83. Visker M H P W, Keizer L C P, Van Eck H J, Jacobsen E, Colon L T, Struik P C. Can the QTL for late glight resistance on potato chromosome 5 be attributed to foliage maturity type? Theor Appl Genet, 2003, 106:317-325
    84. Young N D. QTL mapping and quantitative disease resistance in plants. Ann. Rev Phytopathol, 1996, 34:479-501
    85. Zhang Z M, Li Y Q, Tian S M, Zhu J H. The occurrence of potato late blight pathogen (Phytophthora infestans ) A2 mating type in China (in Chinese). Journal of Agricultural University of Hebei, 1996, 19(4): 65-69
    86. Zhang Z M, Zhu J H, Song B F, Li Y Q, Tian S M, Jiang H S. Further investigation on A2 mating type of Phytophthora infestans in china (in Chinese). Journal of Agricultural University of Hebei,
    
    2001, 24(2): 32-37
    87. Zhu J, Wu N. Analysis of correlation between A_2 mating type and DNA polymorphisms of Phytophthora infestans using RAPD (in Chinese). Journal of Agricultural University of Hebei, 2001, 24(2): 77-79
    88. Zwankhuizen M J, Govers F, Zadoks J C. Inoculum sources and genotypic diversity of Phytophthora infestans in Southern Flevoland, the Netherlands. European Journal of Plant Pathology, 2000, 106:667-680

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700