金属/SiC半导体接触的SiC表面等离子体改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SiC半导体由于具有禁带宽度大、临界击穿电场和热导率高等特点,在高温、高压、大功率器件领域具有广阔的应用前景。金属/SiC半导体接触包括SiC欧姆接触和肖特基接触,是构成SiC器件最基本也是最重要的结构,其质量直接影响SiC器件的效率、增益和开关速度等性能指标。制备良好的SiC欧姆接触和肖特基接触是提高SiC器件性能和可靠性的基础。金属半导体接触特性不仅与金属功函数和半导体掺杂浓度有关,还受半导体表面态的影响。相对于Si、GaN等其它半导体而言,SiC半导体表面存在更加复杂的表面态,如用传统的RCA湿法清洗获得的SiC表面仍然存在C、O等污染物,使得金属/SiC接触特性受SiC表面特性的影响非常大。因此,开发新的SiC表面处理技术并利用表面态调控改善金属/SiC欧姆接触和肖特基接触特性显得尤为重要。
     本文提出并开发了低温低损伤的SiC半导体表面电子回旋共振(ECR)微波氢等离子体处理新技术。利用该方法对SiC表面态进行调控,研究了金属/SiC接触特性的改善效果,并对相应的改善机理以及相关的理论做了深入的研究。主要研究内容及结果如下:
     1、SiC表面ECR微波氢等离子体处理研究。利用反射式高能电子衍射(RHEED)、原子力显微镜(AFM)以及X射线光电子能谱(XPS)分析了氢等离子体处理对SiC表面结构、形貌、化学及电学性质等的影响。RHEED分析结果表明,经氢等离子体处理后,SiC表面原子排列规则,单晶取向性好,且表面未发生重构;AFM分析发现,SiC表面经处理后变得非常平整,表面均方根粗糙度降低至0.268nm; XPS分析结果显示,经氢等离子体处理后,SiC表面O含量明显降低,C污染物全部被去除,并且表面具有较好的抗氧化性;经计算发现,处理后的SiC表面态密度降低至1010cm-2eV-1量级。表面污染物的去除和表面态密度的显著降低为SiC器件后续工艺,提高器件性能及可靠性提供了有利的保障。
     2、ECR氢等离子体预处理对金属/n型4H-SiC接触欧姆特性的改善效果及机理研究。对比分析了处理前后Ti/4H-SiC接触的I-V特性和比接触电阻率,发现经处理后,Ti与较高掺杂浓度(1×1018cm-3)的4H-SiC接触后无需退火就形成了低比接触电阻率的欧姆接触。为了明晰欧姆接触的形成机理,在对欧姆接触理论充分研究的基础上,对不同功函数的金属与不同掺杂浓度的SiC接触经氢等离子体处理前后的电学特性进行了系统的对比研究。研究结果表明,Ti/4H-SiC欧姆接触形成的机理在于在接触界面处形成了低的肖特基势垒。氢等离子体处理降低了SiC表面态密度,使得费米能级钉扎效应被消除,势垒高度不再受制于高的表面态密度。并且在镜像力降低、隧穿效应、能带变窄等势垒降低机制的共同作用下,经氢处理后,Ti/4H-SiC接触势垒高度降至0.41eV,无需退火就形成了低比接触电阻率的欧姆接触。避免采用高温退火以及重掺杂SiC衬底制备良好的欧姆接触将有利于提高器件的可靠性,降低SiC器件制备成本。
     3、ECR氢等离子体预处理对金属/n型4H-SiC肖特基接触特性的改善效果及机理研究。对比分析了处理前后Ni、Pt/4H-SiC接触的I-V特性和势垒高度值,发现经氢处理后,Ni、Pt接触的势垒高度增大,说明整流特性得到改善,并且其整流特性在经过低温400℃退火后得到优化。为了研究其改善机理,利用XPS对表面费米能级以及表面态密度的变化进行了分析。结果显示,经氢等离子体处理后,SiC表面费米能级向导带底方向移动,表面态密度降低。400℃退火后,基本出现了平带的情况,表面态密度达到最低。通过结合低功函数金属Ti/4H-SiC接触的实验结果,对金属/4H-SiC接触的势垒高度与金属功函数和表面态密度的关系进行了讨论,发现实验现象与Cowley和Sze的势垒理论相吻合。SiC肖特基接触特性的改善将有利于促进SiC肖特基接触相关器件的发展。
     4、金属/n型4H-SiC接触势垒不均匀性分布问题研究。通过利用ECR氢等离子体处理对SiC表面特性进行有效控制,采用I-V-T和C-V-T方法对Pt与不同表面特性的4H-SiC接触的电学特性进行了研究。根据实验结果,分析讨论了金属/4H-SiC接触特性与表面特性之间的关系。结果表明,Pt/4H-SiC接触势垒高度以及势垒不均匀性分布与SiC表面特性存在强烈的依赖关系。其有效势垒高度随着表面费米能级钉扎程度的降低而升高。在费米能级完全被钉扎或者完全解钉扎的情况下,界面势垒分布均匀并分别满足Bardeen和Schottky-Mott模型。然而当表面费米能级被部分钉扎时,金属/SiC接触界面势垒呈Gaussian分布,并且其不均匀性分布程度随钉扎程度的降低而降低。分析产生这些结果的原因可能是,经不同的表面处理后,表面态密度的大小和不均匀性分布程度发生了变化,并由此构建了金属/SiC接触势垒高度及势垒不均匀性分布与表面态密度以及表面费米能级位置的关系模型,明晰了金属/SiC接触势垒不均匀性分布的形成机理。为准确控制金属/SiC接触的势垒高度,进而准确控制金属/SiC接触特性以及SiC器件性能提供了实验和理论依据。
Silicon carbide (SiC) is a promising candidate for applications in high temperature, high voltage, high power electronic devices because of its outstanding properties such as wide band gap, high critical electric field and high thermal conductivity. Metal/SiC contacts, serving as Ohmic contacts or rectifying contacts form an intrinsic and vital part of SiC devices. The efficiency, gain and switching speed of these devices are strongly depended on the quality of Metal/SiC contacts. Therefore, the formation of good Ohmic contacts and Schottky contacts on SiC is a key factor in improving the electrical performance and reliability of SiC devices. The electrical properties of metal-semiconductor contact not only depend on the work function of metal and the doping concentration of semiconductor, but also on the surface states of semiconductor. Compared to other semiconductors like Si and GaN, the surface states on SiC surfaces are much more complex. For example, SiC surfaces are still contaminated by C and O impurity ions after the traditional RCA cleaning. Consequently, the electrical properties of metal/SiC contacts are strongly influenced by the surface properties of SiC. Therefore, it is of great importance to improve the properties of SiC Ohmic and Schottky contacts through developing new surface treatment technology to improve the surface properties of SiC.
     In this paper, low-temperature low-damage electronic cyclotron resonance (ECR) microwave hydrogen plasma treatment (HPT) was employed to improve the properties of SiC surface. With the HPT, the improvements in electrical characteristics of metal/SiC contacts were studied. Also, the corresponding mechanisms and related theories were further investigated. The main research contents and results are as follows:
     1. The improvements in the properties of4H-SiC surfaces with the HPT have been studied. The effects of the HPT on the structure, morphology, chemical and electronic properties of surfaces were characterized by in-situ reflection high energy electron diffraction (RHEED), Atomic Force Microscope (AFM) and X-ray photoelectron spectroscopy (XPS). With the HPT, RHEED results indicate that smooth, atomically ordered, unreconstructed SiC surfaces are achieved. AFM results display that RMS is reduced to be as low as0.268nm. The XPS results show that the surface oxygen is greatly reduced and the carbon contaminations are completely removed from the4H-SiC surfaces. The hydrogenated SiC surfaces exhibit an unprecedented stability against oxidation in the air with the density of surfaces states as low as1010cm-2eV-1scale. The removal of surface contaminations and the reduction of surface state density would be significant for improving the properties and reliabilities of SiC devices.
     2. The improvements in the Ohmic properties of Ti/n-type4H-SiC contact with the HPT and the corresponding mechanism have been studied. It is found that Ti Ohmic contacts to relatively highly doped (1×1018cm-3) n-type4H-SiC with low resistivity have been produced without high temperature annealing. To elucidate the Ohmic formation mechanism of Ti contact to4H-SiC with the HPT, the electrical properties of metals with different work functions contact to SiC with different doping concentrations before and after the HPT are systematically investigated. The experimental results show that the Ohmic behavior of Ti contact is mainly attributed to low barrier height at Ti/4H-SiC contact interface. The HPT releases the Fermi level from pinning by reducing surface state density. Consequently, barrier height is significantly decreased to as low as0.41eV by the low surface state density together with the effects of band-gap narrowing, image-force and thermionic-field emission at relatively high doping. The formation of SiC Ohmic contact without high temperature annealing and high doping concentration would be helpful for improving the stability of SiC electronic devices and reduce the production cost.
     3. The improvements in the rectifying properties of Ni, Pt/n-type4H-SiC contacts with the HPT and the corresponding mechanism have been studied. It is found the rectifying behaviors of Ni, Pt/4H-SiC contacts have been remarkably enhanced, and are optimized after annealing at400℃. In order to reveal the mechanism involved, XPS was employed to investigate the changes in the position of surface Fermi level and surface state density. XPS measurements show that the surface Fermi level moves toward the conduction band edge by the HPT. It almost attains the bulk Femi level position after annealing at400℃with the lowest density of surface states. Combining the observation of Ti/4H-SiC contact, the the correlation between the barrier height of metal/4H-SiC contact, the metal work function and the surface state density is discussed. It is found the experimental results obey the barrier height theory proposed by Cowley and Sze. The improvement of rectifying properties of metal/4H-SiC contact may help promote the development of Schottky contact related SiC electronic devices.
     4. The barrier inhomigeneities at metal/n-type4H-SiC contact has been studied. Through controlling the surface properties of4H-SiC by the HPT for different periods and annealing process, the Schottky barrier properties of Pt/4H-SiC contacts are investigated by current-voltage-temperature (I-V-T) and capacitance-voltage (C-V-T) measurements. Using the experimental results, the dependence of the barrier height and barrier inhomogeneities on the SiC surface properties is discussed and analyzed. It is found that the barrier height and barrier inhomogeneities of Pt contacts to4H-SiC appear to be strongly influenced by the surface properties of4H-SiC. The effective barrier height increases with decreasing the degree of Fermi level pinning. Electrically homogeneous contacts with barrier heights close to Bardeen limit and ideal Schottky limit are observed for the samples with "pinning" and "pinning free" of Fermi level, respectively. However, when the Fermi level is partially pinned, Gaussian distribution of inhomogeneous barrier height is found and the inhomogeneity decreases with reducing the degree of Fermi level pinning. An analysis model, by considering changes in the magnitude and spatial distribution of surface state density after different pretreatments, is proposed to clarify the correlation between the barrier height, the barrier inhomogeneties of metal/SiC, and the surface state density and the position of surface Fermi level of SiC. This study provides a clear insight into physical information on the barrier inhomogeneties of metal/SiC, which is of significance in controling the Schottky barrier of metal/SiC contact precisely and further improving the performance and reliability of SiC electronic devices.
引文
[I]PARK Y S. SiC Material and Devices Semiconductors and Semimetals [M].62, Academia Press, 1998.
    [2]BURK JR A A, O'LOUGHLIN M J, SIERGIEJ R R, et al. SiC and GaN wide bandgap semiconductor materials and devices [J]. Solid-State Electron.,1999,43:1459-1469.
    [3]CASADY J B, JOHNSON R W. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications:A review [J]. Solid-State Electron.,1996,39: 1409-1422.
    [4]KIMOTO T. SiC technologies for future energy electronics [C]. VLSI Technology, Honolulu, 2010.
    [5]GAO G B, STERNER J, MORKOG H. High frequency performance of SiC heterojunction bipolar transistors [J]. IEEE Trans. Electron Devices,1994,41:1092-1097.
    [6]HARRIS G L, Properties of silicon carbide [M]. EMIS Data Review Series 13, London: INSPECT,1995.
    [7]TAIROV Y M, TSVETKOV V F. Investigation of growth processes of silicon carbide single crystals [J]. J. Cryst. Growth,1978,43:209-212.
    [8]TAIROV Y M, TSVETKOV V F. General principle of growing large-size single crystals of various silicon carbide polytypes [J]. J. Cryst. Growth,1981,52:146-150.
    [9]BRAUN F. Uber die stromleitung durch schwefelmetalle [J]. Pogg. Ann.,1874,153:556-560.
    [10]SCHOTTKY W. Halbleitertheorie der sperrschicht [J]. Naturwissenschaften,1938,26:843-849.
    [11]MOTT N F. Note on the contact between a metal and an insulator or semiconductor [J]. Proc. Cambr. Philos. Soc.,1938,34:568-571.
    [12]BETHE H A. Theory of the boundary layer of crystal rectifiers [J]. MIT Radiation Lab Report 1942,43:12-15.
    [13]RIDEOUT V L, RIDEOUT V L. A review of the theory and technology for Ohmic contacts to group III-V compound semiconductors [J]. Solid-State Electron.,1975,18:541-550.
    [14]BARDEEN J. Surface states and rectification at a metal semi-conductor contact [J]. Phys. Rev., 1947,71:717-727.
    [15]COWLEY A M, SZE S M. Surface states and barrier height of metal-semiconductor systems [J]. J. Appl. Phys.,1965,36:3212-3220.
    [16]PORTER L M, DAVIS R F. A critical review of Ohmic and rectifying contacts for silicon carbide [J]. Mater. Sci. Eng. B,1995,34:83-105.
    [17]MORKOC H, STRITE S, GAO G B, et al. Large-band-gap SiC, Ⅲ-Ⅴ nitride, and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies [J]. J. Appl. Phys.,1994,76:1363-1398.
    [18]PADOVANI F A, STRATTON R. Field and thermionic-field emission in Schottky barriers [J]. Solid-State Electron.,1966,9:695-707.
    [19]KING S W, NEMANICH R J, DAVIS R F. Wet chemical processing of (0001)6H-SiC hydrophobic and hydrophilic surfaces [J]. J. Electrochem. Soc.,1999,146:1910-1917.
    [20]KING S W, NEMANICH R J, DAVIS R F. Dry ex situ cleaning processes for (0001) Si 6H-SiC surfaces articles [J]. J. Electrochem. Soc.,1999,146:1910-1917.
    [21]TSUCHIDA H, KAMATA I, IZUMI K. Infrared attenuated total reflection spectroscopy of 6H-SiC (0001) and (000T) surfaces [J]. J. Appl. Phys.,1999,85:3569-3575.
    [22]CATELLANI A, CICERO G, GALLI G. Wetting behavior of low-index cubic SiC surfaces [J]. J. Chem. Phys.,2006,124:024707-024710.
    [23]TERAJI T, HARA S. Control of interface states at metal/6H-SiC (0001) interfaces [J]. Phys. Rev. B,2004,70:035312-035330.
    [24]DHAR S, SEITZ O, HALLS M D, et al. Chemical properties of oxidized silicon carbide surfaces upon etching in hydrofluoric acid [J]. J. Am. Chem. Soc.,2009,131:16808-16813.
    [25]HARA S. The Schottky limit and a charge neuturality level found on metal/6H-SiC interfaces [J]. Surf. Sci.,2001,494:L805-L810.
    [26]LOSURDO M, BRUNO G, BROWN A, et al. Study of the tempreture-dependent interaction of 4H-SiC and 6H-SiC surfaces with atomic hydrogen [J]. Appl. Phys. Lett.,2004,84:4011-4013.
    [27]KAPLAN R, PARRILL T M. Reduction of SiC surface oxides by a Ga molecular beam:LEED and electron spectroscopy studies [J]. Surf. Sci.,1986,165:L45-L52.
    [28]KAPLAN R. Surface structure and composition of β- and 6H-SiC [J]. Surf. Sci.,1989, 215:111-134.
    [29]BOZSO F, MUEHLHOFF L, TRENARY M, et al. Electron spectroscopy study of SiC [J]. J. Vac. Sci. Technol. A,1984,2:1271-1274.
    [30]TSUCHIDA H, KAMATA I, IZUMI K. Si-H bonds on the 6H-SiC (0001) surface after H2 annealing [J]. Jpn. J. Appl. Phys.,1997,36:699-702.
    [31]TSUCHIDA H, KAMATA I, IZUMI K. FTIR-ATR analysis of SiC (0001) and SiC (0001) surfaces [J]. Mater. Sci. Forum,1998,264-268:351-353.
    [32]SEYLLER T. Passivation of hexagonal SiC surfaces by hydrogen termination [J]. J. Phys.: Condens. Matter,2004,16:S1755-S1782.
    [33]SIEBER N, MANTEL B F, SEYLLER TH, et al. Electronic and chemical passivation of hexagonal 6H-SiC surfaces by hydrogen termination [J]. Appl. Phys. Lett.,2001, 78:1216-1218.
    [34]SIEBER N, MANTEL B F, SEYLLER T, et al. Hydrogenation of 6H-SiC as a surface passivation stable in air [J]. Diamond Relat. Mater.,2001,10:1291-1294.
    [35]LIN M E, STRITE S, AGARWAL A, et al. GaN grown on hydrogen plasma cleaned 6H-SiC substrates [J]. Appl. Phys. Lett.,1993,62:702-704.
    [36]LOSURDO M, GIANGREGORIO M M, BRUNO G, et al. Study of the interaction of 4H-SiC and 6H-SiC (0001) Si surfaces with atomic nitrogen [J]. Appl. Phys. Lett.,2004,85:4034-4036.
    [37]SCHOELL S J, HOWGATE J, HOEB M, et al. Electrical passivation and chemical functionalization of SiC surfaces by chlorine termination [J]. Appl. Phys. Lett.,2011, 98:182106(1-3).
    [38]PORTER L M, DAVIS R F. A critical review of Ohmic and rectifying contacts for silicon carbide [J]. Mater. Sci. Eng. B,1995,34:83-105.
    [39]PECZ B. Contact formation in SiC devices [J]. Appl. Surf. Sci.,2001,184:287-294.
    [40]HAN S Y, KIM K H, KIM J K, et al. Ohmic contact formation mechanism of Ni on n-type 4H-SiC [J]. Appl. Phys. Letts.,2001,79:1816-1818.
    [41]DMITRIEV V A, IRVINE K, SPENCER M. Low resistivity (~10-5 Ωcm2) Ohmic contacts to 6H silicon carbide fabricated using cubic silicon carbide contact layer [J]. Appl. Phys. Lett., 1994,64:318-320.
    [42]KELNER G, BINARI S, SHUR M, et al. High temperature operation of alpha-silicon carbide buried-gate junction field-effect transistors [J]. Electron. Lett.,1991,27:1038-1040.
    [43]NIKITINA I P, VASSILEVSKI K V, WRIGHT N G, et al. Formation and role of graphite and nickel silicide in nickel based Ohmic contacts to n-type silicon carbide [J]. J. Appl. Phys.,2005, 97:083709-083715.
    [44]PECZ B B, RADNOCZI G, CASSETTE S, et al. TEM study of Ni and Ni2Si Ohmic contacts to SiC [J]. Diamond Relat. Mater.,1997,6:1428-1431.
    [45]ROCCAFORTE F. Improvement of high temperature stability of nickel contacts on n-type 6H-SiC [J]. Appl. Sur. Sci.,2001,184:295-298.
    [46]VIA F L. Schottky-Ohmic transition in nickelsilicide/SiC-4H system:is it really a solved problem [J]. Microelectron. Eng.,2003,70:519-523.
    [47]CROFTON J. High-temperature Ohmic contact to n-type 6H-SiC using nickel. J. Appl. Phys., 1994,77:1317-1319.
    [48]CROFTON J. The physics of Ohmic contacts to SiC [J]. Phys. Status Solidi B,1997, 202:581-603.
    [49]CROFTON J, MCMULLIN P G, WILLIAMS J R, et al. High temperature Ohmic contact to n-type 6H-SiC using nickel [J]. J. Appl. Phys.,1995,77:1317-1319.
    [50]AVEN M, SWANK R. In Ohmic contacts to semiconductors [M], New York:The Electrochemical Society,1969:69-81.
    [51]PETIT J B, NEUDECK P G, SALUPO C S, et al. Metal contacts to n- and p-type 6H-SiC: electrical characteristics and high-temperature stability [C]. Institute of Physics Conference Series, Institute of Physics,1993,137:679-682.
    [52]BARDA B, MACHAC P, HUBICKOVA M, et al. Comparison of Ni/Ti and Ni Ohmic contacts on n-type 6H-SiC [J]. J. Mater. Sci. Mater. Electron.,2008,19:1039-1044.
    [53]MACHAC P, BARDA B, KUDRNOVA M. Role of titanium in Ti/Ni Ohmic contact on n-type 6H-SiC [J]. Microelectron. Eng.,2010,87:274-277.
    [54]MACHAC P, BARDA B, KUDRNOVA M. Sputtering of Ni/Ti/SiC Ohmic contacts [J]. Microelectron. Eng.,2008,85:2016-2018.
    [55]MARINOVA TS, GEORGIEVA A K, KRASTEV V, et al. Nickel based Ohmic contacts on SiC [J]. Mater. Sci. Eng. B,1997,46:223-226.
    [56]NAKAMURA T, SATOH M. Schottky barrier height of a new Ohmic contact NiSi2 to n-type 6H-SiC [J]. Solid-State Electron.,2002,46:2063-2067.
    [57]陈刚,柏松,李哲阳等.4H-SiC欧姆接触与测试方法研究[J].固体电子学研究与进展,2008,28:38-41.
    [58]CHADDHA A K, PARSONS J D, KURVAAL G B. Themrally stable low specific resistance TiC Ohmic contacts to n-tytPe 6H-SiC [J]. Appl. Phys. Lett.,1995,166:760-762.
    [59]CROFTON J, WILLIAMS J R, BOZACK M J. A TiW high-temperature Ohmic contact to n-type 6H-SiC [C]. Institute of Physics Conference Series,137, Institute of Physics,1993, 719-722.
    [60]UEMOTO T. Reduction of Ohmic contact resistance on n-type 6H-SiC by heavy doping [J]. Jpn. J. Appl. Phys.,1995,34:L7-L9.
    [61]BUCHHOLT K, GHANDI R, DOMEIG M, at el. Ohmic contact properties of magnetron sputtered Ti3SiC2 on n- and p-type 4H-SiC carbide [J]. Appl. Phys. Lett.,2011,98:042108 (1-3).
    [62]LU W, MITCHEL W C, THORNTON C, et al. Carbon structural transitions and Ohmic contacts on 4H-SiC [J]. J. Electron. Mater.,2003,32:426-431.
    [63]SEYLLER T, EMTSEV KV, SPECK F, et al. Schottky barrier between 6H-SiC and graphite: Implications for metal/SiC contact formation [J]. Appl. Phys. Lett.,2006,88:242103(1-3).
    [64]LUNDBERG N, OSTLING M. Formation and characterization of cobalt 6H silicon carbide Schottky contacts [J]. Appl. Phys. Lett.,1993,63:3069-3071.
    [65]CROFTON J, BARNES P A, WILLIAMS J R, et al. Ohmic contact properties of magnetron sputtered Ti3SiC2 on n- and p-type 4H-silicon carbide [J]. Appl. Phys. Lett.,1993,62:384-386.
    [66]JOHNSON B, CAPANO M. The effect of titanium on Al-Ti contacts to p-type 4H-SiC [J]. Solid-State Electron.,2003,47:1437-1441.
    [67]MOHNEY S E, HULL B A, LIN J Y, et al. Morphological study of the Al-Ti Ohmic contact to p-type SiC [J]. Solid-State Electron.,2002,46:689-693.
    [68]JOHNSON B J, CAPANO MICHAEL A. Mechanism of Ohmic behavior of Al/Ti contacts to p-type 4H-SiC after Annealing [J]. J. Appl. Phys.,2004,95:5616-5620.
    [69]JOHNSON B J, CAPANO M A. Mechanism of Ohmic behavior of Al/Ti contacts to p-type 4H-SiC after annealing [J]. J. Appl. Phys.,2004,95:5156-6520.
    [70]NAKATSUKA O, TAKEI T, KOIDE Y, et al. Low resistance TiAl Ohmic contacts with multi-layered structure for p-type 4H-SiC [J]. Material Transactions,2002,43:1684-1688.
    [71]FRAZZETTO A, GIANNAZZO F, NIGRO R L, et al. Structural and transport properties in alloyed Ti/Al Ohmic contacts formed on p-type Al-implanted 4H-SiC annealed at high temperature [J]. J. Phys. D:Appl. Phys.,2011,7:255302(1-12).
    [72]VANG H, LAZAR M, BROSSELARD P, et al. Ni-Al Ohmic contact to p-type 4H-SiC [J]. Superlattices and Microstruct.,2006,40:626-631.
    [73]LEE S-K, ZETTERLING C M, OSTLING M, et al. Electrical characterization of TiC Ohmic contacts to aluminum implanted 4H-SiC [J]. Appl. Phys. Lett.,2000,77:1478-1480.
    [74]LEE S-K, ZETTERLING C M, OSTLING M, et al. Low resistivity Ohmic titanium carbide contacts to n-and p-type 4H-Silicon carbide [J]. Solid-State Electron.,2000,44:1179-1186.
    [75]PAPANICOLAOU N A. CHRISTOU A, GIPE M L. Pt and PtSix Schottky contacts on n-type Beta SiC [J]. J. Appl. Phys.,1989,65:3526-3530.
    [76]WALDROP J R, GRANT R W, WANG Y C, et al. Metal Schottky barrier contacts to alpha 6H-SiC [J]. J. Appl. Phys.,1992,72:4757-4760.
    [77]BHATNAGAR M, NAKANISHI H, MCLARTY P K, et al. Comparison of Ti and Pt silicon carbide Schottky rectifiers [J]. Int. Tech. Dig. Electron. Dev. Meet,1992,789-792.
    [78]WALDROP J R, GRANT R W. Schottky barrier height and interface chemistry of annealed metal contacts to alpha 6H-SiC:Crystal face dependence [J]. Appl. Phys. Lett.,1993, 62:2685-2687.
    [79]SCHOEN K P, WOODALL J M, COOPER J A, et al. Design considerations and experimental analysis of high-voltage SiC Schottky barrier rectifiers [J]. IEEE Trans. Electron Devices,1998, 45:1595-1604.
    [80]LEE S K, ZETTERLING C M, OSTLING M. Schottky diode formation and characterization of titanium tungsten to n-and p-type 4H silicon carbide [J]. J. Appl. Phys.,2000,87:8039-8044.
    [81]ITOH A, MATSUNAMI H. Analysis of Schottky barrier heights of metal/SiC contacts and its possible application to high-voltage rectifying devices [J]. Phys. Status Solidi A,1997,162: 389-408.
    [82]ROCCAFORTE F, VIA LA, RAINERI F, et al. Highly reproducible ideal SiC Schottky rectifiers:Effects of surface preparation and thermal annealing on the Ni/6H-SiC barrier height [J]. Appl. Phys. A:Mat. Sci. Process.,2003,77:827-833.
    [83]SAXENA V, SU J N, STECKL A J. High-voltage Ni-and Pt-SiC Schottky diodes utilizing metal field plate termination [J]. IEEE Trans. Electr.,1999,46:456-464.
    [84]KESTLE A, WILKS S P, DUNSTAN P R, et al. Improved Ni/SiC Schottky diode formation [J]. Electron. Lett.,2000,36:267-268.
    [85]SOCHACKI M, KOLENDO A, SZMIDT J, et al. Properties of Pt/4H-SiC Schottky diodes with interfacial layer at elevated temperatures [J]. Solid-State Electron.,2005,49:585-590.
    [86]KOJIMA K, YOSHIKAWA M, OHSHIMA T, et al. Characterization of Au Schottky contacts on p-type 3C-SiC grown by low pressure chemical vapor deposition [J], Mater. Sci. Forum, 2000,338:1239-1242.
    [87]SATOH M, MATSUO H. Evaluation of Schottky barrier height of Al, Ti, Au, and Ni contacts to 3C-SiC [J]. Mater. Sci. Forum,2006,527-529:923-926.
    [88]RAGHUNATHAN R, BALIGA B J. High voltage Schottky barrier diodes on p-type 4H and 6H-SiC [J]. Mater. Sci. Forum,1998,264-268:933-936.
    [89]KAMIMURA K, OKADA S, ITO H, et al. Characterization of Schottky contact on p-type 6H-SiC [J]. Mater. Sci. Forum,2000,338:1227-1230.
    [90]LEE S K, ZETTERLING C M, OSTLING M. Schottky barrier height dependence on the metal workfunction for p-type 4H-Silicon carbide [J]. J. Electron. Mat.,2001,30:242-246.
    [91]ZHANG Q, MADANGARLI V, TARPLEE M, et al. Comparison of current-voltage characteristics of n- and p-type 6H-SiC Schottky diodes [J]. J. Electr. Mater.,2001,30: 196-201.
    [92]ITOH A, KIMOTO T, MATSUNAMI H. Efficient power Schottky rectifiers of 4H-SiC [C]. Proceedings of 1995 International Symposium on Power Semiconductor Devices & ICs, Yokohama. ISPSD,1995:101-106.
    [93]LUNDBERG N, OTLING M, TAGTSTROM P, et al. Chemical vapor deposition of tungsten Schottky diodes to 6H-SiC [J]. J. Electrochemical Soc.,1996,143:1662-1667.
    [94]SYRKIN A L, BLUET J M, BASTIDE G, et al. Surface barrier height in metal-SiC structures of 6H,4H and 3C polytypes [J]. Mat. Sci. & Eng. B-Solid State Mat. Adv. Tech.,1997, 46:236-239.
    [95]MEAD C A, SPITZER W G. Fermi level position at metal-semiconductor interfaces [J]. Phys. Rev.,1964,134:713-A716.
    [96]HAGEN S H. Surface-barrier diodes on Silicon Carbide [J]. J. Appl. Phys.,1968,39:1458-1461.
    [97]KOSYACHENKO L A, KUKHTO E F, SKLYARCHUK V M. Emission of silicon carbide surface barrier diodes with forward biasing [J]. Translated from Zhurnal Prikladnoi Spektroskopii,1984,41:615-620.
    [98]WALDROP J R, GRANT R W. Schottky barrier height and interface chemistry of annealed metal contacts to alpha 6H-SiC:Crystal face dependence [J]. Appl. Phys. Lett.,1993, 62:2685-2687.
    [99]PORTER L M, DAVIS R F, BOW J S, et al. Chemistry, microstructure, and electrical properties at interfaces between thin films of titanium and alpha (6H) silicon carbide (0001) [J]. J. Mater. Res.,1995,10:668-679.
    [100]PORTER L M, GLASS R C, DAVIS R F, ET AL. Chemical and electrical mechanisms in titanium, platinum and hafnium contacts to alpha (6H) silicon carbide [J]. Mat. Res. Soc. Symp. Proc.,1993,282:471-477.
    [101]PORTER L M, BOW J S, KIM M J, et al. Chemistry, microstructure, and electrical properties at interfaces between thin films of cobalt and alpha (6H) silicon carbide (0001) Journal [J]. J. Mater. Res.,1995,10:26-33.
    [102]HARA S, TERAJI T, OKUSHI H, et al. Control of Schottky and Ohmic interfaces by unpinning Fermi level [J]. Appl. Surf. Sci.,1997,117-118:394-399.
    [103]TERAJI T, HARA S, OKUSHI H, et al. Ideal Ohmic contact to n-type 6H-SiC by reduction of Schottky barrier height [J]. Appl. Phys. Letts.,1997,71:689-691.
    [104]TERAJI T, HARA S. Control of interface states at metal/6H-SiC (0001) interfaces [J]. Phys. Rev. B,2004,70:035312-1-19.
    [105]罗小蓉,李肇基,张波等.表面氢化对SiC/金属接触的作用机理[J].固体电子学研究与进展,2004,2:164-167.
    [106]WAHAB Q, MACAK E B, ZHANG J, et al. Improvements in the electrical performance of high voltage 4H-SiC schottky diodes by hydrogen annealing [J]. Mater. Sci. Forum,2001, 353-356:691-694.
    [107]CHANG S, LIU X, HUANG W, et al. Fabrication of Ti Ohmic contact to n-type 6H-SiC without high-temperature annealing [J]. Chin. Phys. B,2012,21:096801(1-4).
    [108]CAO Y, NYBORG L, JELVESTAM U, et al. Effect of pre-treatment and nickel layer thickness on nickel silicide/silicon carbide contact [J]. Appl. Surf. Sci.,2005.241:392-402.
    [109]UM M Y. JEON 1 S, EOM D. et al. Influence of hydrogen plasma treatment and post-annealing on defects in 4H-SiC [J]. Jpn. J. Appl. Phys.,2004,43:4114-4118.
    [110]MORRISON D J, PIDDUCK A J, MOORE V, et al. Surface preparation for Schottky metal 4H-SiC contacts formed on plasma-etched SiC [J]. Semicond. Sci. Technol.,2000, 15:1107-1114.
    [111]SOCHACKI M, SZMIDT J. Dielectric films fabricated in plasma as passivation of 4H-SiC Schottky diodes [J]. Thin Solid Films,2004,446:106-110.
    [112]AMIT S K, RUSLI, XIA J. Field-plate-terminated 4H-SiC Schottky diodes using Al-based high-k dielectrics [J]. IEEE T. Electron Dev.,2009,56:2925-2934.
    [113]NOH J I, NAHM K S, KIM K C, et al. Effect of surface preparation on Ni Ohmic contact to 3C-SiC [J]. Solid-State Electron.,2002,46:2273-2279.
    [114]GRODZICKI M, CHRZANOWSKI J, MAZUR P, et al. Cr Ohmic contact on an Ar+ ion modified 6H-SiC (0001) surface [J]. Optica Applicata,2009,39:765-772.
    [115]SHIVARAMAN S, HERMAN L H, RANA F, et al. Schottky barrier inhomogeneities at the interface of few layer epitaxial graphene and silicon carbide [J]. Appl. Phys. Lett.,2012, 100:183112(1-4).
    [116]TOUMI S, HAMIDA A F, BOUSSOUAR L, et al. Gaussian distribution of inhomogeneous barrier height in tungsten/4H-SiC (0001) Schottky diodes [J]. Microelectron. Eng.,2009, 86:303-309.
    [117]LATRECHE A, OUENNOUGHI Z, SELLAI A, et al. Electrical characteristics of Mo/4H-SiC Schottky diodes having ion-implanted guard rings:temperature and implant-dose dependence [J]. Semicond. Sci. Technol.,2011,26:085003.
    [118]AYDINM E, YILDIRIM N, TURUT A. Temperature-dependent behavior of Ni/4H-nSiC Schottky contacts [J]. J. Appl. Phys.,2007,102:043701-043707.
    [119]FREEOUF J L, JACKSON T N, LAUX S E, et al. Size dependence of "effective" barrier heights of mixed-phase contacts [J]. J. Vac. Sci. Technol.,1982,21:570-573.
    [120]WOODALL J M, FREEOUF J L. Summary Abstract:Are they really Schottky barriers after all? [J]. J. Vac. Sci. Technol.,1982,21:574-576.
    [121]TUNG R T. Electron transport of inhomogeneous Schottky barriers [J]. Appl. Phys. Lett.,1991, 58:2821-2823.
    [122]TUNG R T. Electron transport at metal semiconductor interfaces:general theory [J]. Phys. Rev. B,1992,45:13509-13523.
    [123]SULLIVAN J P, TUNG R T, PINTO M R, et al. Electron transport of inhomogeneous Schottky barriers:A numerical study [J]. J. Appl. Phys.,1991,70:7403-7424.
    [124]TUNG R T, LEVI A F J, SULLIVAN J P, et al. Schottky-barrier inhomogeneity at epitaxial NiSi2 interfaces on Si(100) [J]. Phys. Rev. Lett.,1991,66:72-75.
    [125]WERNER J H, GUTTLER H H. Barrier inhomogeneities at Schottky contacts [J]. J. Appl. Phys.,1991,69:1522-1533.
    [126]秦福文.RHEED原位监测的PEMOCVD方法及GaN基薄膜低温生长[D].大连:大连理工大学,2004.
    [127]高明超.SiC表面ECR氢等离子体处理研究[D].大连:大连理工大学,2008.
    [128]王富国. ECR-PAMOCVD外延生长C-GaN过程中等离子微参数对衬底预处理的影响[D].大连:大连理工大学,2000.
    [129]汪晓芹CdZnTe晶片表面化学处理及欧姆接触特性的研究[D].西安:西北工业大学,2006.
    [130]YVES B, FRANCOIS F, MICHEL F, Correlations between X-ray photoelectron spectroscopy data and catalytic properties in selective oxidation on Sb-Sn-O catalysts [J]. J. Catal.,1979, 58:52-60.
    [131]SCOFIELD J H. Hartree-slater subshell photoionization cross-sections at 1254 and 1487 eV [J]. J. Electron. Spectrosc. Relat. Phenom.,1976,8:129-137.
    [132]LOSURDO M, GIANGREGORIO M M, CAPEZZUTO P, et al. Modification of 4H-SiC and 6H-SiC (0001) surfaces through the interaction with atomic hydrogen and nitrogen [J]. J. Electron. Mater.,2005,34:457-465.
    [133]BRIGGS D, Handbook of x-ray and ultraviolet photoelectron spectroscopy [M]. Heyden, London,1988.
    [134]SEYLLER TH, EMTSEV K V, SPECK F, et al. Schottky barrier between 6H-SiC and graphite: Implications for metal/SiC contact formation [J]. Appl. Phys. Lett.,2006,88:242103(1-3).
    [135]BAKOWSKI M, GUSTAVSSON U, LINDEFELT U. Simulation of SiC high power devices [J]. Phys. Status Solidi A,1997,162:421-440.
    [136]KILDEMO M, GROSSNER U, JUEL M, et al. Electronic properties of the Sm/4H-SiC surface alloy [J]. J. Appl. Phys.,2006,99:013703(1-9).
    [137]HAN S Y, LEE J-L. Interpretation of Fermi level pinning on 4H-SiC using synchrotron photoemission spectroscopy [J]. Appl. Phys. Lett.,2004,84:538-540.
    [138]LIETEN R R, DEGROOTE S, KUIJK M, et al. Ohmic contact formation on n-type Ge [J]. Appl. Phys. Lett.,2008,92:022106.
    [139]SCHRODER D K, Semiconductor material and device characterization [M].2nd Ed. Wiley-lnterscience.1998.
    [140]LESTER L F, BROWN J M, RAMER J C, et al. Nonalloyed Ti/Al Ohmic contacts to n-type GaN using high-temperature premetallizaiton anneal [J]. Appl. Phys. Lett.,1996, 69:2737-2739.
    [141]KLOOTWIJK J H, TIMMERING C E. Merits and limitations of circular TLM structures for contact resistance determination for novel Ⅲ-Ⅴ HBTs, Proc. IEEE 2004 lnt [J]. Conference on Micrelectronic Test Structures,2004,17:247-252.
    [142]WALDROP J R, GRANT R W. Schottky barrier height and interface chemistry of annealed metal contacts to alpha 6H-SiC:Crystal face dependence [J]. Appl. Phys. Lett.,1993, 62:2685-2687.
    [143]KIM D-W, BAIK H K. Current conduction mechanism of Si/Ti-based Ohmic contacts to n-GaN [J]. Appl. Phys. Lett.,2000,77:1011-1013.
    [144]CHANG C M, CHANG Y C, LEE C Y, et al. Ti5Si4 nanobats with excellent field emission properties [J]. J. Phys. Chem. C,2009,113:9153-9156.
    [145]MIYAZAKI S, SCHAFER J, RISTEIN J, et al. Surface Fermi level position of hydrogen passivated Si (111) surfaces [J]. Appl. Phys. Lett.,1995,68:1247-1249.
    [146]SIEBER N, MANTEL B F, SEYLLER TH, et al. Electronic and chemical passivation of hexagonal 6H-SiC surfaces by hydrogen termination [J]. Appl. Phys. Lett.,2001, 78:1216-1218.
    [147]RHODERICK E H, WILLIAMS R H. Metal-semiconductor contacts [M]. Clarendon, Oxford, 1998.
    [148]LIN Y-J. Electronic transport and Schottky barrier heights of Pt/n-type GaN Schottky diodes in the extrinsic region [J]. J. Appl. Phys.,2009,106:013702-013705.
    [149]SHUR M, Physics of semiconductor devices [M]. New Jersey:Englewood Cliffs,1990.
    [150]BERGER H H. Models for contacts to planar devices [J]. Solid-State Electron.,1972, 15:145-158.
    [151]CHOW T P, TYAGI R. Wide bandgap compound semiconductors for superior high-voltage unipolar power devices [J]. IEEE Trans. Electron. Dev.,1994,41:1481-1483.
    [152]SZE S M.Physics of semiconductor device,2nd ed. New York:Wiley,1981.
    [153]HAN S Y, LEE J-L. Interpretation of Fermi level pinning on 4H-SiC using synchrotron photoemission spectroscopy [J]. Appl. Phys. Lett.,2004,84:538-540.
    [154]SONDE S, GIANNAZZO F, RAINERI V, et al. Electrical properties of the graphene/4H-SiC (0001) interface probed by scanning current spectroscopy [J]. Phys. Rev. B,2009, 80:241406(1-4).
    [155]SYRKIN A L, ANDREEV A N, LEBEDEV A A, et al. Surface barrier height in metal-n-6H-SiC structures [J]. Mater. Sci. Eng. B,1995,29:198-201.
    [156]MOHAMMAD S N, Contact mechanisms and design principles for alloyed Ohmic contacts to n-GaN [J]. J. Appl. Phys.,2004,95:7940-7953.
    [157]HUDAIT M K, KRUPANIDHI S B, Doping dependence of the barrier height and ideality factor of Au/n-GaAs Schottky diodes at low temperatures [J]. Physica B,2001,307:125-137.
    [158]LINDEFELT U, Doping-induced band edge displacements and band gap narrowing in 3C-,4H-, 6H-SiC, and Si [J]. J. Appl. Phys.,1998,84:2628-2637.
    [159]KOLIAKOUDAKIS C, DONTAS J, KARAKALOS S, et al. Cr/4H-SiC Schottky contacts investigated by electrical and photoelectron spectroscopy techniques [J]. Phys. Status Solidi A, 2008,205:2536-2540.
    [160]XIE K, FLEMISH J R, ZHAO J H, et al. Low damage and residue free dry etching of 6H-SiC using electron cyclotron resonance plasma [J]. Appl. Phys. Lett.,1995,67:368-370.
    [161]KAWAUSO A, ITOH H, OKADA S. Annealing processes of vacancy type defects in electron irradiated and as grown 6H-SiC studied by positron lifetime spectroscopy [J]. J. Appl. Phys., 1996,80:5639-5645.
    [162]KHANNA S, NEELESHWAR S, NOOR A. Current-voltage-temperature characteristics of Cr/4H-SiC Schottky diodes [J]. J. Electron Dev.,2011,9:382-389.
    [163]BENMAZA H, AKKAL B, ABID H, et al. Barrier height inhomogeneities in a Ni/SiC-6H Schottky n-type diode [J]. Microelectron. J.,2008,39:80-84.
    [164]LATRECHE A, OUENNOUGHI Z, SELLAI A, et al. Electrical characteristics of Mo/4H-SiC Schottky diodes having ion-implanted guard rings:temperature and implant-dose dependence [J]. Semicond. Sci. Technol.,2011,26:085003(1-9).
    [165]DUMAN S, DOGAN S, GURBULAK. B, et al. The barrier-height inhomogeneity in identically prepared Ni/n-type 6H-SiC Schottky diodes [J]. Appl. Phys. A:Mater. Sci. Process.2008, 91:337-340.
    [166]PEREZ R, MESTRES1 N, MONTSERRAT J, et al. Barrier inhomogeneities and electrical characteristicsof Ni/Ti bilayer Schottky contacts on 4H-SiC after high temperature treatments [J]. Phys. Status. Solidi A,2005,202:692-697.
    [167]CHEVTCHENKO S, NI X, FAN Q, et al. Surface band bending of a-plane GaN studied by scanning Kelvin probe Microscopy [J]. Appl. Phys. Lett.,2006,88:122104 (1-3).
    [168]IM H-J, DING Y, PELZ J P, et al. Nanometer-scale test of the Tung model of Schottky-barrier height inhomogeneity [J]. Phys. Rev. B,2001,64:075310 (1-9).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700