硅纳米线电极的放电特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气体放电研究,尤其是微小问隙下的放电,具有突出的学术价值。一方面,在集成电路和MEMS等器件中,放电击穿是应着力避免的问题;另一方面,在新型的气体传感器、气体除尘、离子推进等领域,放电击穿是重要的分析和应用手段。因此,对材料的电学击穿以及放电行为进行系统的研究显得非常有必要。对纳米材料在小间隙低电压的情况下的放电行为的研究,尚处于起步阶段,更是目前的研究热点之一。本文以硅纳米线(SiNWs)作为研究对象,研究其制备、修饰,以及在场致电子发射、电晕放电和气体电离等方面的性能。论文的主要内容和研究结果如下:
     第一,完成了硅纳米电极的优化制备,并以此为基础,首次在其上进行了金纳米粒子修饰,得到了Au/SiNWs电极。运用金属辅助化学湿法刻蚀,制备了直径在50-300nm左右,具有高长径比的直立结构的SiNWs,并研究了刻蚀参数对纳米线形态的影响。通过硅烷偶联剂APTMS将金纳米粒子成功组装到SiNWs表面,金纳米粒子的平均直径为10nm,且修饰的金纳米粒子为单晶,含量为7.26%。
     第二,研究了SiNWs以及金纳米粒子修饰的SiNWs (Au/SiNWs)的真空场发射性能,获得了超低的开启电场。首先,研究了不同类型硅片制成的SiNWs的场发射性能,发现n型低掺杂SiNWs的场发射性能最好。其次,采用SiNWs/金纳米粒子复合结构来提高场发射性能,发现经过修饰以后的SiNWs勺场发射性能有了很大的改进,开启电场由未修饰的1.76V/μm降低至0.17V/μm。同时由于金纳米粒子的修饰作用,提高了SiNWs的导电性能,所以电流密度也因此增大。接着研究了SiNWs和Au/SiNWs的变温场发射特性。发现SiNWs的场发射性能随着温度的增加而能略有所提高,在各个温度下的电流密度有明显差异。而随着温度的升高Au/SiNWs勺场发射性能明显提高。最后,鉴于SiNWs表面本证氧化层的存在,提出了基于MIS的SiNWs能带模型,分析了场发射的机理。
     第三,采用SiNWs尖端-金属平面电极结构,研究了常温常压下,SiNWs电极的正电晕和负电晕放电特性。首先,采用简化的针尖-平面电极模型,进行了放电器件设计。接着对此结构在常温常压下进行测试,得到正电晕放电的起始电压在700V左右,稳定的正电晕放电工作电压的范围为700-1600V。负电晕放电起始电压在400V左右,负电晕放电工作电压的范围为400-1700V,发现负电晕的电晕范围比正电晕放电时更大,负电晕放电的性能要比正电晕放电稳定。最后,根据电晕放电电压-电流的拟合公式进一步研究了多针尖-平面电极结构的电晕放电特性。
     第四,利用微机械加工的SiNWs电极,研究了微米间隙尺度(1-20μm)时SiNWs电极的气体电离特性,发现微小间隙下放电规律与经典Paschen公式的背离。首先,利用MEMS技术制作出两种间隙在微米级可控的电极结构。一种是通过刻蚀玻璃,形成玻璃凹槽式电极结构;一种是对硅表面进行选择性刻蚀,形成硅凹槽式电极结构。接着在常温常压下研究SiNWs的电离全伏安特性,测得空气的击穿电压仅为21±1V左右,远远低于其他一维纳米材料的击穿电压。其次分别研究两个特征量即气压P和电极间隙d对气体电离的影响。随着压力对数降低,气体击穿电压和击穿电流均随之呈线性降低。当电极间隙小于7μm,击穿电压关于电极间隙d呈强线性关系,背离Paschen曲线。当电极间隙大于7μm,击穿电压与Paschen曲线基本符合。研究了电极极性、纳米电极掺杂类型和浓度等对气体电离的影响。研究发现,n型低掺杂SiNWs的击穿电压小于p型的击穿电压,击穿电流大于p型的击穿电流。而p型低掺的击穿电压和电流均低于p型高掺的击穿电压。
Gas discharge research, especially the discharge under small gap, has outstanding academic values. On one hand, in the fields of integrated circuits and MEMS devices, discharge breakdown is harmful and should be avoided; the other hand, in the areas of new gas sensors, electrostatic precipitators, ion propulsions, discharge breakdown is becoming an important means of analysis and application. Therefore, the electrical breakdown of the material and the discharge behavior of the system are very necessary. The discharge behavior research of nanomaterials under the small electrode distance and low-voltage, is still in its infancy, and is becoming into one of the hotspots. In this thesis, silicon nanowires (SiNWs) were studied as the research object. The nanostructures fabrication and modification, as well as its application in electron emission, corona discharge and gas ionization were analyzed. The main contents and results are as follows:
     Firstly, the preparation and optimization of SiNWs electrodes were carried out and the gold nanoparticles decorated SiNWs electrodes were fabricated. SiNWs were first prepared by metal-assisted wet chemical etching. The vertically aligned silicon nanowire arrays with the average diameter of100nm were obtained and have high field enhancement factor. The influence of the process parameters such as etchant solution concentration, temperature, doping type on the nanowires appearance was studied. Gold nanoparticles(AuNPs), prepared by reduction of chloroauric acid, with the average diameter of10nm, were assembled onto the surface of SiNWs with APTMS as coupling agent to form the Au/SiNWs nanocomposite electrode. And the AuNPs were single crystal with content of7.26%.
     Secondly, the field emission (FE) behaviors of SiNWs and Au/SiNWs composites were studied and the ultra-low turn-on electric field was obtained. First, the FE performance of SiNWs, made from wafers with different doping types and doping concentrations, was investigated. And the study indicated that lightly-doped n-type SiNWs has the higher FE perfromance. Next, the FE characteristics of Au/SiNWs nanocomposite were studied. It is found that by introduction of AuNPs, the FE performance of SiNWs can be improved remarkably:the turn-on field can be reduced from1.76V/μm (SiNWs) to0.17V/(.μm (Au/SiNWs). On this foundation, the variable temperature field emission characteristics, i.e., the field emission properties of SiNWs and Au/SiNWs under different temperatures, had also been studied. The FE performance of the SiNWs increased slightly with temperature, the current density at various temperatures are different. For Au/SiNWs, the FE characteristics increased obviously with temperature. At last, in view of the existence of silicon dioxide, we proposed the MIS-Schottky band model for SiNWs and analyzed the possible FE mechanism.
     Thirdly, under the atmospheric pressure, with SiNWs electrodes as needle electrode and metal as plane electrode, the positive corona and negative corona discharge characteristics of SiNWs was been studied. According to the mechanism of needle-to-plane corona discharge, the corona discharge electrode was designed. The onset voltage of positive corona discharge is about700V voltage, and the stable working voltage range of the corona discharge is700-1600V. The onset voltage of negative corona discharge is about400V voltage, and the stable working voltage range of the corona discharge is400-1700V.
     Fourthly, the micro-gap, l-20μm, ionization behavior of micromachined SiNWs electrodes at atmospheric under room temperature were investigated, and the departure from the classical Paschen's curve was found. First, two kinds of micromachined ionization devices with controllable micron level electrode gap were fabricated. Both of them consist of SiNWs electrode and glass electrode. The first one is that glass is etched to form the concaved-glass/SiNW structure. And the second one is to selectively to fabricate SiNW to form the concaved-SiNW/glass structure. The homemade ionization testing system was used. Ionization devices were tested and the corresponding I-V characteristics of the air ionization at atmospheric were recorded and analyzed. The obtained breakdown voltage in air is only about21V, which is smaller than other similar structures with one-dimensional nanomaterials. The effects of two parameters, pressure P and electrode gap distance d, were discussed respectively. When the pressure reduced logarithmically, both the current and the gas breakdown voltage linearly decreased accordingly. When the electrode gap is less than7μm, breakdown voltage showed strong linear relation with the gap distance d, departure from the Paschen's curve. The influence of parameters, e.g., electrode polarities, doping type and doping concentration of SiNWs, on gas ionization were also been studied. The results as following:the breakdown voltage of n-type low doped SiNWs is less than p-type low doped, but on the contrary of the breakdown current. And the breakdown voltage and current of p-type low doped SiNWs were both below p-type high doped SiNWs.
引文
1. Anis H, Srivastava K. Particle-Initiated Breakdowns in Compressed Gas Insulation Under Time-Varying Voltages. Power Apparatus and Systems, IEEE Transactions on 1981:3694-3702.
    2. Hara M, Yamashita T, Akazaki M. Microdischarge characteristics in air gap between spherical particle and plane. Physical Science, Measurement and Instrumentation, Management and Education-Reviews, IEE Proceedings A 1983,130:329-335.
    3. Morcos M, Ward S, Anis H. On the detection and control of metallic particle contamination in compressed GIS equipment. In:Electrical Insulation and Dielectric Phenomena,1998. Annual Report. Conference on:IEEE; 1998. pp.476-480.
    4. Texier C. Breakdown initiation in vacuum:electrical charge of microparticles emitted in a vacuum gap. Journal of Physics D:Applied Physics 2001,10:1693.
    5. Yamamoto O, Hara T, Shimada M, Hayashi M. Effect of low-temperature electrode baking on breakdown in vacuum. Electrical Insulation, IEEE Transactions on 1993,28:574-579.
    6. Carraz F, Rain P, Tobazeon R. Particle-initiated breakdown in a quasi-uniform field in transformer oil. Dielectrics and Electrical Insulation, IEEE Transactions on 1995,2:1052-1063.
    7. Hughes J, Bright A, Makin B, Parker I. A study of electrical discharges in a charged water aerosol. Journal of Physics D:Applied Physics 2002,6:966.
    8. Jiang X, Yuan Y, Bi M, Du Y, Ma J. DC positive discharge performance of rod-plane short air gap under rain conditions. Dielectrics and Electrical Insulation, IEEE Transactions on 2013,20:104-111.
    9. Becker K, Schoenbach K, Eden J. Microplasmas and applications. Journal of Physics D: Applied Physics 2006,39:R55.
    10. Petrovic ZL, Skoro N, Maric D, Mahony C, Maguire P, Radmilovic-Radenovic M, et al. Breakdown, scaling and volt-ampere characteristics of low current micro-discharges. Journal of Physics D:Applied Physics 2008,41:194002.
    11. Kurunczi P, Lopez J, Shah H, Becker K. Excimer formation in high-pressure microhollow cathode discharge plasmas in helium initiated by low-energy electron collisions. International Journal of Mass Spectrometry 2001,205:277-283.
    12. Cooray V. The lightning flash:let; 2003.
    13. Kuffel J, Kuffel E, Zaengl W. High voltage engineering fundamentals:Access Online via Elsevier; 2000.
    14. Boggs SA. Partial discharge:overview and signal generation. Electrical Insulation Magazine, IEEE 1990,6:33-39.
    15.徐学基,复旦大学电光源教授,诸定昌.气体放电物理:复旦大学出版社;1996.
    16. Djubua B, Chubun N. Emission properties of Spindt-type cold cathodes with different emission cone material. Electron Devices, IEEE Transactions on 1991,38:2314-2316.
    17. Lemer P, Cutler P, Miskovsky N. Theoretical analysis of field emission from a metal diamond cold cathode emitter. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures 1997,15:337-342.
    18. Xu N, Huq SE. Novel cold cathode materials and applications. Materials Science and Engineering:R:Reports 2005,48:47-189.
    19. Oh CW, Lee CG, Park BG, Lee JD, Lee JH. Fabrication of metal field emitter arrays for low voltage and high current operation. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 1998,16:807-810.
    20. Spindt C, Holland C, Rosengreen A, Brodie I. Field-emitter arrays for vacuum microelectronics. Electron Devices, IEEE Transactions on 1991,38:2355-2363.
    21. Spindt C, Brodie I. Molybdenum field-emitter arrays. In:Electron Devices Meeting,1996. IEDM'96., International:IEEE; 1996. pp.289-292.
    22. Adachi H, Ashihara K, Saito Y, Nakane H. Reduction of work function on a W (100) field emitter due to co-adsorption of Si and Ti. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 1998,16:875-879.
    23. Hunt CE, Trujillo JT, Orvis WJ. Structure and electrical characteristics of silicon field emission microelectronic devices. Electron Devices, IEEE Transactions on 1991,38:2309-2313.
    24. Li Q, Yuan M, Kang W, Tang S, Xu J, Zhang D, et al. Fabrication and characterization of silicon field emission diodes and triodes. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 1994,12:676-679.
    25. Lee JH, Kang SW, Song Y-H, Cho KI, Lee SY, Yoo HJ. Fabrication and characterization of silicon field emitter arrays by spin-on-glass etch-back process. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures 1998,16:238-241.
    26. Kang S, Cho K-I, Lee JJ, Lee K. A novel structure of silicon field emission cathode with sputtered TiW for gate electrode and TEOS oxide for gate dielectric. Electron Devices, IEEE Transactions on 1999,46:2253-2255.
    27. Lee H-I, Park S-S, Park D-I, Hahm S-H, Lee J-H, Lee J-H. Nanometer-scale gap control for low voltage and high current operation of field emission array. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures 1998,16:762-764.
    28. Rakhshandehroo M, Pang S. Fabrication of self-aligned silicon field emission devices and effects of surface passivation on emission current. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 1998,16:765-769.
    29. Takai M, Iriguchi T, Morimoto H, Hosono A, Kawabuchi S. Electron emission from gated silicide field emitter arrays. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures 1998,16:790-792.
    30. Uh HS, Park BG, Lee JD. Surface application of molybdenum silicide onto gated poly-Si emitters for enhanced field emission performance. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 1998,16:866-870.
    31. Kang S-Y, Lee JH, Song Y-H, Kim YT, Cho KI, Yoo HJ. Emission characteristics of TiN-coated silicon field emitter arrays. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 1998,16:871-874.
    32. Li Q, Kang W, Yaun M, Xu J, Zhang D. Fabrication and characterization of an array of gated avalanche p+-n++junction as a micro-vacuum triode. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures 1994,12:2875-2879.
    33. Hirano T, Kanemaru S, Itoh J. A New Metal-Oxide-Semiconductor Field-Effect-Transistor-Structured Si Field Emitter Tip. JAPANESE JOURNAL OF APPLIED PHYSICS PART2 LETTERS 1996,35:861-863.
    34. Hirano T, Kanemaru S, Itoh J. A MOSFET-structured Si tip for stable emission current. In: Electron Devices Meeting,1996. IEDM'96., International:IEEE; 1996. pp.309-312.
    35. Miyamoto Y, Yamaguchi A, Oshima K, Saitoh W, Asada M. Metal-insulator-semiconductor emitter with an epitaxial CaF 2 layer as the insulator. Journal of Wacuum Science & Technology B:Microelectronics and Nanometer Structures 1998,16:851-854.
    36. Ishikawa J, Gotoh Y, Sadakane S, Inoue K, Nagao M, Tsuji H. Emission stability analysis of cone-shaped metal-insulator-semiconductor cathode by Monte Carlo simulation. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures 1998,16:895-899.
    37. Mimura H, Abe Y, Ikeda J, Tahara K, Neo Y, Shimawaki H, et al. Resonant Fowler-Nordheim tunneling emission from metal-oxide-semiconductor cathodes. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures 1998,16:803-806.
    38. Ikeda J, Yamada A, Okamoto K, Abe Y, Tahara K, Mimura H, et al. Tunneling emission from valence band of Si-metal-oxide-emiconductor electron tunneling cathode. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures 1998,16:818-821.
    39. Sheng X, Koyama H, Koshida N. Efficient surface-emitting cold cathodes based on electroluminescent porous silicon diodes. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 1998,16:793-795.
    40. Underwood RD, Keller S, Mishra U, Kapolnek D, Keller B, DenBaars S. GaN field emitter array diode with integrated anode. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 1998,16:822-825.
    41. Kozawa T, Suzuki M, Taga Y, Gotoh Y, Ishikawa J. Fabrication of GaN field emitter arrays by selective area growth technique. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 1998,16:833-835.
    42. Chung M, Yoon B-G, Park J, Cutler P, Miskovsky N. Calculation of bulk states contributions to field emission from GaN. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures 1998,16:906-909.
    43. Busta H, Pryor R. Electron emission from a laser ablated and laser annealed BN thin film emitter. Journal of Applied Physics 1997,82:5148-5153.
    44. Nagao M, Fujimori Y, Gotoh Y, Tsuji H, Ishikawa J. Emission characteristics of ZrN thin film field emitter array fabricated by ion beam assisted deposition technique. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures 1998,16:829-832.
    45. Ducroquet F, Kropfeld P, Yaradou O, Vanoverschelde A. Fabrication and emission characteristics of GaAs tip and wedge-shaped field emitter arrays by wet etching. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures 1998,16:787-789.
    46. Zhu W, Bower C, Zhou O, Kochanski G, Jin S. Large current density from carbon nanotube field emitters. Applied Physics Letters 1999,75:873-875.
    47. Choi W, Chung D, Kang J, Kim H, Jin Y, Han I, et al. Fully sealed, high-brightness carbon-nanotube field-emission display. Applied Physics Letters 1999,75:3129-3131.
    48. Zhan G-D, Kuntz JD, Garay JE, Mukherjee AK. Electrical properties of nanoceramics reinforced with ropes of single-walled carbon nanotubes. Applied Physics Letters 2003,83:1228-1230.
    49. Fancher C, De Clercq H, Thomas O, Robinson D, Bowen K. Zinc oxide and its anion:A negative ion photoelectron spectroscopic study. The Journal of chemical physics 1998,109:8426-8429.
    50. Liao L, Li J, Wang D, Liu C, Fu Q. Electron field emission studies on ZnO nanowires. Materials letters 2005,59:2465-2467.
    51. Liao L, Li JC, Wang D, Liu C, Liu C, Fu Q, et al. Field emission property improvement of ZnO nanowires coated with amorphous carbon and carbon nitride films. Nanotechnology 2005,16:985.
    52. Liao L, Zhang W, Lu H, Li J, Wang D, Liu C, et al. Investigation of the temperature dependence of the field emission of ZnO nanorods. Nanotechnology 2007,18:225703.
    53. Ravipati S, Kuo C-J, Shieh J, Chou C-T, Ko F-H. Fabrication and enhanced field emission properties of novel silicon nanostructures. Microelectronics Reliability 2010,50:1973-1976.
    54. Wang B-J, Saka N, Rabinowicz E. Static gap erosion of Ag-CdO electrodes. Components, Hybrids, and Manufacturing Technology, IEEE Transactions on 1991,14:374-385.
    55. Torres J, Dhariwal R, King P. Electric field breakdown at micrometre separations in various media. In:High Voltage Engineering,1999. Eleventh International Symposium on (Conf. Publ. No.467):IET; 1999. pp.201-204.
    56. Torres J, Dhariwal R. Electric field breakdown at micrometre separations. Nanotechnology 1999,10:102.
    57. Dhariwal R, Torres J-M, Desmulliez M. Electric field breakdown at micrometre separations in air and nitrogen at atmospheric pressure. In:Science, Measurement and Technology, IEE Proceedings-:IET; 2000. pp.261-265.
    58. Ono T, Sim DY, Esashi M. Micro-discharge and electric breakdown in a micro-gap. Journal of Micromechanics and Microengineering 2000,10:445.
    59. Mandelis A, Christofides C. Physics, chemistry and technology of solid state gas sensor devices:Wiley New York; 1993.
    60. Madou MJ, Morrison SR. Chemical sensing with solid state devices:Academic press San Diego; 1989.
    61. Kim S. CNT sensors for detecting gases with low adsorption energy by ionization. Sensors 2006,6:503-513.
    62. Tsai N-C, Sue C-Y. Review of MEMS-based drug delivery and dosing systems. Sensors and Actuators A:Physical 2007,134:555-564.
    63. Nishikawa K, Nojima H. Air purification effect of positively and negatively charged ions generated by discharge plasma at atmospheric pressure. Japanese Journal of Applied Physics 2001,40:835.
    64. Li F, Xie Z, Schmidt H, Sielemann S, Baumbach J. Ion mobility spectrometer for online monitoring of trace compounds. Spectrochimica Acta Part B:Atomic Spectroscopy 2002,57:1563-1574.
    65. Sadeghian RB, Islam MS. Ultralow-voltage field-ionization discharge on whiskered silicon nanowires for gas-sensing applications. Nature materials 2011,10:135-140.
    66. Modi A, Koratkar N, Lass E, Wei B, Ajayan PM. Miniaturized gas ionization sensors using carbon nanotubes. nature 2003,424:171-174.
    67. Liao L, Lu H, Shuai M, Li J, Liu Y, Liu C, et al. A novel gas sensor based on field ionization from ZnO nanowires:moderate working voltage and high stability. Nanotechnology 2008,19:175501.
    68. Sadeghian RB, Kahrizi M. A novel miniature gas ionization sensor based on freestanding gold nanowires. Sensors and Actuators A:Physical 2007,137:248-255.
    69. Huang J, Wang J, Gu C, Yu K, Meng F, Liu J. A novel highly sensitive gas ionization sensor for ammonia detection. Sensors and Actuators A: Physical 2009,150:218-223.
    70. Sim H, Lau S, Ang L, Tanemura M, Yamaguchi K. Multi-purpose ionization gas sensing devices using carbon nanofibers on plastic substrates. Diamond and Related Materials 2008,17:1959-1962.
    71. Chopra S, McGuire K, Gothard N, Rao A, Pham A. Selective gas detection using a carbon nanotube sensor. Applied Physics Letters 2003,83:2280-2282.
    72. Chen X, Guo Z, Huang J, Meng F, Zhang M, Liu J. Fabrication of gas ionization sensors using well-aligned MWCNT arrays grown in porous AAO templates. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008,313:355-358.
    73. Zhang Y, Liu J, Li X, Zhu C. The structure optimization of the carbon nanotube film cathode in the application of gas sensor. Sensors and Actuators A:Physical 2006,128:278-289.
    74. Riley DJ, Mann M, MacLaren DA, Dastoor PC, Allison W, Teo KB, et al. Helium detection via field ionization from carbon nanotubes. Nano Letters 2003,3:1455-1458.
    75. Raizer YP, Kisin VI, Allen JE. Gas discharge physics:Springer-Verlag Berlin; 1991.
    76. Howatson AM. An introduction to gas discharges:Pergamon press Oxford; 1965.
    77. Meek JM, Craggs JD. Electrical breakdown of gases.1978.
    78. Wang M, Peng L-M, Wang J, Chen Q. Electron field emission characteristics and field evaporation of a single carbon nanotube. The Journal of Physical Chemistry B 2005,109:110-113.
    79. Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, et al. Room-temperature ultraviolet nanowire nanolasers. Science 2001,292:1897-1899.
    80. Wang ZL, Gao RP, de Heer WA, Poncharal P. In situ imaging of field emission from individual carbon nanotubes and their structural damage. Applied Physics Letters 2002,80:856-858.
    81. Doerk GS, Ferralis N, Carraro C, Maboudian R. Growth of branching Si nanowires seeded by Au-Si surface migration. Journal of Materials Chemistry 2008,18:5376-5381.
    82. Madou MJ, Morrison S. High-field operation of submicrometer devices at atmospheric pressure. In:Solid-State Sensors and Actuators,1991. Digest of Technical Papers, TRANSDUCERS'91.,1991 International Conference on:IEEE; 1991. pp.145-149.
    83. Ghodsian B, Parameswaran M, Syrzycki M. Gas detector with low-cost micromachined field ionization tips. Electron Device Letters, IEEE 1998,19:241-243.
    84. Miller MK. Atom probe field ion microscopy. In:Oak Ridge National Lab., TN (USA); 1986.
    85. Zhang J, Xi N, Chan H, Li G. Single Carbon Nanotube Based Ion Sensor for Gas Detection. In: Nanotechnology,2006. IEEE-NANO 2006. Sixth IEEE Conference on:IEEE; 2006. pp. 790-793.
    1.唐元洪.硅纳米线及硅纳米管YuanHong TANG; 2007.
    2. Budai J, White C, Withrow S, Chisholm M, Zhu J, Zuhr R. Controlling the size, structure and orientation of semiconductor nanocrystals using metastable phase recrystallization. nature 1997,390:384-386.
    3. Leutwyler WK, Bilrgi SL, Burgl H. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996,271:933.
    4. Westwater J, Gosain D, Tomiya S, Usui S, Ruda H. Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 1997,15:554-557.
    5. Wang N, Zhang Y, Tang Y, Lee C, Lee S.< equation>< font face='verdana'> SiO< sub>< font face='verdana'> 2-enhanced synthesis of Si nanowires by laser ablation. Applied Physics Letters 1998,73:3902-3904.
    6. Morales AM, Lieber CM. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998,279:208-211.
    7. Yu D, Bai Z, Ding Y, Hang Q, Zhang H, Wang J, et al. Nanoscale silicon wires synthesized using simple physical evaporation. Applied Physics Letters 1998,72:3458-3460.
    8. Zhang Y, Tang Y, Lam C, Wang N, Lee C, Bello I, et al. Bulk-quantity Si nanowires synthesized by SiO sublimation. Journal of Crystal Growth 2000,212:115-118.
    9. Holmes JD, Johnston KP, Doty RC, Korgel BA. Control of thickness and orientation of solution-grown silicon nanowires. Science 2000,287:1471-1473.
    10. Peng K, Zhu J. Simultaneous gold deposition and formation of silicon nanowire arrays. Journal ofElectroanalytical Chemistry 2003,558:35-39.
    11. Heath JR, LeGoues FK. A liquid solution synthesis of single crystal germanium quantum wires. Chemical Physics Letters 1993,208:263-268.
    12. Heitsch AT, Fanfair DD, Tuan H-Y, Korgel BA. Solution-Liquid-Solid (SLS) Growth of Silicon Nanowires. Journal of the American Chemical Society 2008,130:5436-5437.
    13. Lehmann V. Electrochemistry of silicon:instrumentation, science, materials and applications. Electrochemistry of Silicon:Instrumentation, Science, Materials and Applications, by Volker Lehmann, pp.286. ISBN 3-527-29321-3. Wiley-VCH, April 2002.2002,1.
    14. Zhang XG. Electrochemistry of Silicon and its Oxide:Springer; 2001.
    15. Gorostiza P, Diaz R, Servat J, Sanz F, Morante JR. Atomic force microscopy study of the silicon doping influence on the first stages of platinum electroless deposition. Journal of the Electrochemical Society 1997,144:909-914.
    16. Gorostiza P, Kulandainathan MA, Diaz R, Sanz F, Allongue P, Morante JR. Charge Exchange Processes during the Open-Circuit Deposition of Nickel on Silicon from Fluoride Solutions. Journal of the Electrochemical Society 2000,147:1026-1030.
    17. Ye S, Ichihara T, Uosaki K. Spectroscopic studies on electroless deposition of copper on a hydrogen-terminated Si (111) surface in fluoride solutions. Journal of the Electrochemical Society 2001,148:C421-C426.
    18. Norga G, Platero M, Black K, Reddy A, Michel J, Kimerling L. Mechanism of copper deposition on silicon from dilute hydrofluoric acid solution. Journal of the Electrochemical Society 1997,144:2801-2810.
    19. Bertagna V, Plougonven C, Rouelle F, Chemla M. p-and n-Type Silicon Electrochemical Properties in Dilute Hydrofluoric Acid Solutions. Journal of the Electrochemical Society 1996,143:3532-3538.
    20. Porter Jr LA, Choi HC, Schmeltzer J, Ribbe AE, Elliott LC, Buriak JM. Electroless nanoparticle film deposition compatible with photolithography, microcontact printing, and dip-pen nanolithography patterning technologies. Nano Letters 2002,2:1369-1372.
    21. Carraro C, Magagnin L, Maboudian R. Selective metallization of silicon micromechanical devices. Electrochimica acta 2002,47:2583-2588.
    22. Peng K, Hu J, Yan Y, Wu Y, Fang H, Xu Y, et al. Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles. Advanced Functional Materials 2005,16:387-394.
    23. Peng K, Wu Y, Fang H, Zhong X, Xu Y, Zhu J. Uniform, Axial-Orientation Alignment of One-Dimensional Single-Crystal Silicon Nanostructure Arrays. Angewandte Chemie International Edition 2005,44:2737-2742.
    24. Peng K, Fang H, Hu J, Wu Y, Zhu J, Yan Y, et al. Metal-Particle-Induced, Highly Localized Site-Specific Etching of Si and Formation of Single-Crystalline Si Nanowires in Aqueous Fluoride Solution. Chemistry-A European Journal 2006,12:7942-7947.
    25. Huang Z, Fang H, Zhu J. Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Advanced Materials 2007,19:744-748.
    26. Peng K, Lu A, Zhang R, Lee ST. Motility of metal nanoparticles in silicon and induced anisotropic silicon etching. Advanced Functional Materials 2008,18:3026-3035.
    27. Teerlinck I, Mertens P, Schmidt H, Meuris M, Heyns M. Impact of the electrochemical properties of silicon wafer surfaces on copper outplating from HF solutions. Journal of the Electrochemical Society 1996,143:3323-3327.
    28. Kumar D, Srivastava SK, Singh P, Sood K, Singh V, Dilawar N, et al. Room temperature growth of wafer-scale silicon nanowire arrays and their Raman characteristics. Journal of Nanoparticle Research 2010,12:2267-2276.
    29. Smith R, Collins S. Porous silicon formation mechanisms. Journal of Applied Physics 1992,71:R1-R22.
    30. Yu J-Y, Chung S-W, Heath JR. Silicon nanowires:preparation, device fabrication, and transport properties. The Journal of Physical Chemistry B 2000,104:11864-11870.
    31. Souha H, Viale D, Weber G, Gillot B. Effects of a silicon oxide layer on reactivity of silicon with copper (1) chloride. Journal of materials science 1989,24:1767-1771.
    32. 万丽娟.硅纳米线阵列的制备及其在生化传感器中的应用:华东师范大学;2010.
    33. Wan L, Gong W, Jiang K, Li H, Tao B, Zhang J. Selective formation of silicon nanowires on pre-patterned substrates. Applied surface science 2009,255:3752-3758.
    34. Au FC, Wong K, Tang Y, Zhang Y, Bello I, Lee S. Electron field emission from silicon nanowires. Applied Physics Letters 1999,75:1700-1702.
    35. Ha J, Chung B, Han S, Choi J. Drastic changes in the field emission characteristics of a Mo-tip field emitter array having PH3-doped a-Si:H as a resistive layer material throughout vacuum packaging processes in'a field emission display. Journal of Vacuum Science & Technology B 2002,20:2080-2084.
    36. Ok Y-W, Seong T-Y, Choi C-J, Tu K. Field emission from Ni-disilicide nanorods formed by using implantation of Ni in Si coupled with laser annealing. Applied Physics Letters 2006,88:043106-043106-043103.
    37. Chen T-M, Hung J-Y, Pan F-M, Chang L, Wu S-C, Tien T-C. Pulse Electrodeposition of Iridium Oxide on Silicon Nanotips for Field Emission study. Journal of nanoscience and nanotechnology 2009,9:3264-3268.
    38. Li C, Sun X, Wong N, Lee C, Lee S, Teo BK. Silicon nanowires wrapped with Au film. The Journal of Physical Chemistry B 2002,106:6980-6984.
    39. Zhao F, Cheng G-a, Zheng R-t, Zhao D-d, Wu S-l, Deng J-h. Field emission enhancement of Au-Si nano-particle-decorated silicon nanowires. Nanoscale Research Letters 2011,6:1-5.
    40.陈雪皎.金纳米粒子在传感器中的应用探索:华东师范大学;2012.
    1. Gomer R. Field emission and field ionization:Harvard University Press Cambridge, MA; 1961.
    2. Sedlacek M. Electron physics of vacuum and gaseous devices:Wiley:New York; 1996.
    3. Sze SM, Ng KK. Physics of semiconductor devices:Wiley-interscience; 2006.
    4. Forbes RG. Use of a spreadsheet for Fowler-Nordheim equation calculations. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures 1999,17:534-541.
    5. Burgess R, Kroemer H, Houston J. Corrected values of Fowler-Nordheim field emission functions V (Y) and S (Y). Physical Review 1953,90:515-515.
    6. Boxman RL, Martin PJ. Handbook of vacuum arc science and technology:fundamentals and applications:William Andrew Publishing; 1995.
    7. Latham RV. High voltage vacuum insulation:basic concepts and technological practice: Academic Press; 1995.
    8. Peng K, Wu Y, Fang H, Zhong X, Xu Y, Zhu J. Uniform, Axial-Orientation Alignment of One-Dimensional Single-Crystal Silicon Nanostructure Arrays. Angewandte Chemie International Edition 2005,44:2737-2742.
    9. Wu H-C, Tsai H-Y, Chiu H-T, Lee C-Y Silicon Rice-Straw Array Emitters and Their Superior Electron Field Emission. ACS Applied Materials & Interfaces 2010,2:3285-3288.
    10. Wu H-C, Tsai T-Y, Chu F-H, Tai N-H, Lin H-N, Chiu H-T, et al. Electron Field Emission Properties of Nanomaterials on Rough Silicon Rods. The Journal of Physical Chemistry C 2009,114:130-133.
    11. Fowler RH, Nordheim L. Electron emission in intense electric fields. Proceedings of the Royal Society of London. Series A 1928,119:173-181.
    12. Zhao F, Cheng G-a, Zheng R-t, Zhao D-d, Wu S-l, Deng J-h. Field emission enhancement of Au-Si nano-particle-decorated silicon nanowires. Nanoscale Research Letters 2011,6:1-5.
    13. Tzeng Y-F, Wu H-C, Sheng P-S, Tai N-H, Chiu HT, Lee CY, et al. Stacked Silicon Nanowires with Improved Field Enhancement Factor. ACS Applied Materials & Interfaces 2010,2:331-334.
    14. Tzeng Y-F, Liu K-H, Lee Y-C, Lin S-J, Lin I-N, Lee C-Y, et al. Fabrication of an ultra-nanocrystalline diamond-coated silicon wire array with enhanced field-emission performance. Nanotechnology 2007,18:435703.
    15. Ravipati S, Kuo C-J, Shieh J, Chou C-T, Ko F-H. Fabrication and enhanced field emission properties of novel silicon nanostructures. Microelectronics Reliability 2010,50:1973-1976.
    16. Li C, Fang G, Sheng S, Chen Z, Wang J, Ma S, et al. Raman spectroscopy and field electron emission properties of aligned silicon nanowire arrays. Physica E:Low-dimensional Systems and Nanostructures 2005,30:169-173.
    17. Khademi A, Azimirad R, Zavarian AA, Moshfegh AZ. Growth and field emission study of molybdenum oxide nanostars. The Journal of Physical Chemistry C 2009,113:19298-19304.
    18. Seelaboyina R, Huang J, Park J, Kang DH, Choi WB. Multistage field enhancement of tungsten oxide nanowires and its field emission in various vacuum conditions. Nanolechnology 2006,17:4840.
    19. Ghosh K, Kumar M, Wang H, Maruyama T, Ando Y. Facile decoration of platinum nanoparticles on carbon-nitride nanotubes via microwave-assisted chemical reduction and their optimization for field-emission application. The Journal of Physical Chemistry C 2010,114:5107-5112.
    20. Givargizov E, Zhirnov V, Stepanova A, Rakova E, Kiselev A, Plekhanov P. Microstructure and field emission of diamond particles on silicon tips. Applied surface science 1995,87:24-30.
    21. Fung YM, Cheung W, Wilson IH, Chen D, Xu J, Wong S, et al. Electron field emission characteristics of textured silicon surface. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 2001,19:884-887.
    22. Zeng B, Xiong G, Chen S, Jo S-H, Wang W, Wang D, et al. Field emission of silicon nanowires. Applied Physics Letters 2006,88:213108-213108-213103.
    23. Chueh Y, Chou L, Cheng S, He J, Wu W, Chen L. Synthesis of taperlike nanowires with strong field emission. Applied Physics Letters 2005,86:133112-133111-133113.
    24. Riccitelli R, Di Carlo A, Fiori A, Orlanducci S, Terranova ML, Santoni A, et al. Field emission from silicon nanowires:Conditioning and stability. Journal of Applied Physics 2007,102:054906-054906-054905.
    25. McClain D, Solanki R, Dong L, Jiao J. Synthesis of single crystalline silicon nanowires and investigation of their electron field emission. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 2006,24:20-24.
    1. Peek FW. Dielectric phenomena in high voltage engineering:McGraw-Hill Book Company, inc.; 1920.
    2. Papoular R. Electrical phenomena in gases:Iliffe Books; 1965.
    3. Becker K, Schoenbach K, Eden J. Microplasmas and applications. Journal of Physics D: Applied Physics 2006,39:R55.
    4. Foest R, Schmidt M, Becker K. Microplasmas, an emerging field of low-temperature plasma science and technology. International Journal of Mass Spectrometry 2006,248:87-102.
    5. Iza F, Kim GJ, Lee SM, Lee JK, Walsh JL, Zhang YT, et al. Microplasmas:Sources, particle kinetics, and biomedical applications. Plasma Processes and Polymers 2008,5:322-344.
    6. Yamamoto T, Velkoff H. Electrohydrodynamics in an electrostatic precipitator. Journal of Fluid Mechanics 1981,108:1-18.
    7. Carroll D, Dzidic I, Stillwell R, Haegele K, Horning E. Atmospheric pressure ionization mass spectrometry. Corona discharge ion source for use in a liquid chromatograph-mass spectrometer-computer analytical system. Analytical Chemistry 1975,47:2369-2373.
    8. Rickard M, Dunn-Rankin D, Weinberg F, Carleton F. Maximizing ion-driven gas flows. Journal of electrostatics 2006,64:368-376.
    9. Hsu C-P, Jewell-Larsen NE, Krichtafovitch IA, Montgomery SW, Dibene JT, Mamishev AV. Miniaturization of electrostatic fluid accelerators. Microelectromechanical Systems, Journal of 2007,16:809-815.
    10. Hsu C-P, Jewell-Larsen NE, Krichtafovitch IA, Mamishev AV. Heat-transfer-enhancement measurement for microfabricated electrostatic fluid accelerators. Microelectromechanical Systems, Journal of 2009,18:111-118.
    11. Schlitz D, Singhal V. An electro-aerodynamic solid-state fan and cooling system. In: Semiconductor Thermal Measurement and Management Symposium,2008. Semi-Therm 2008. Twenty-fourth Annual IEEE:IEEE; 2008. pp.46-49.
    12. Go DB, Garimella SV, Fisher TS, Mongia RK. Ionic winds for locally enhanced cooling. Journal of Applied Physics 2007,102:053302-053302-053308.
    13. Go DB, Maturana RA, Fisher TS, Garimella SV. Enhancement of external forced convection by ionic wind. International Journal of Heat and Mass Transfer 2008,51:6047-6053.
    14. Go D, Maturana R, Mongia R, Garimella S, Fisher T. Ionic Winds for Enhanced Cooling in Portable Platforms. In:Electronics Packaging Technology Conference,2008. EPTC 2008. 10th:IEEE; 2008. pp.737-742.
    15. Lee S, Kim D, Jin Y, Han Y, Desta Y, Bryant M, et al. A Micro corona motor fabricated by a SU-8 built-on X-ray mask. Microsystem technologies 2004,10:522-526.
    16. Lee S, Kim D, Bryant MD, Ling FF. A micro corona motor. Sensors and Actuators A:Physical 2005,118:226-232.
    17. Chua B, Wexler AS, Tien NC, Niemeier DA, Holmen BA. Design, fabrication, and testing of a microfabricated corona ionizer. Microelectromechanical Systems, Journal of 2008,17:115-123.
    18. Chua B, Wexler AS, Tien NC, Niemeier DA, Holmen BA. Electrical mobility separation of airborne particles using integrated microfabricated corona ionizer and separator electrodes. Microelectromechanical Systems, Journal of 2009,18:4-13.
    19. Henson BL. A derivation of Warburg's law for point to plane coronas. Journal of Applied Physics 1981,52:3921-3923.
    20. Henson BL. Derivation of the current-potential equation for steady point-to-plane corona discharges. Journal of Applied Physics 1982,53:3305-3307.
    21. Sigmond R. Simple approximate treatment of unipolar space-charge-dominated coronas: The Warburg law and the saturation current. Journal of Applied Physics 1982,53:891-898.
    22. Lama W, Gallo C. Systematic study of the electrical characteristics of the"Trichel"current pulses from negative needle-to-plane coronas. Journal of Applied Physics 1974,45:103-113.
    23. Boulloud A, Charrier J, Stark W, Waters R. Interaction between adjacent positive glow corona. In:Proc. Seventh Int. Conf. Gas Discharges and their Applications; 1982. pp.185-188.
    24. Abdel-Salam M, Fattah AA, Saied MM, Tharwat-El-Mohandes M. Positive corona pulse characteristics from two interacting needles in air. Industry Applications, IEEE Transactions on 1985:912-918.
    25. Thanh LC. Negative corona in a multiple interacting point-to-plane gap in air. Industry Applications, IEEE Transactions on 1985:518-522.
    26. Yamamoto T, Lawless PA, Sparks LE. Triangle-shaped DC corona discharge device for molecular decomposition. Industry Applications, IEEE Transactions on 1989,25:743-749.
    27. McKinney PJ, Davidson JH, Leone DM. Current distributions for barbed plate-to-plane coronas. Industry Applications, IEEE Transactions on 1992,28:1424-1431.
    28. Davidson JH, McKinney PJ, Linnebur P. Three-dimensional (3-D) model of electric field and space charge in the barbed plate-to-plate precipitator. Industry Applications, IEEE Transactions on 1996,32:858-866.
    29. Eijkel JC, Stoeri H, Manz A. A molecular emission detector on a chip employing a direct current microplasma. Analytical Chemistry 1999,71:2600-2606.
    30. Longwitz RG, van Lintel H, Renaud P. Study of micro-glow discharges as ion sources for ion mobility spectrometry. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures 2003,21:1570-1573.
    31. Zebboudj Y, Ikene R. Positive corona inception in HVDC configurations under variable air density and humidity conditions. EPJ APPLIED PHYSICS 2000,10:211-218.
    32. Spyrou N, Peyrous R, Soulem N, Held B. Why Paschen's law does not apply in low-pressure gas discharges with inhomogeneous fields. Journal of Physics D:Applied Physics 1995,28:701.
    33. Akishev Y, Grushin M, Kochetov I, Karal'nik V, Napartovich A, Trushkin N. Negative corona, glow and spark discharges in ambient air and transitions between them. Plasma Sources Science and Technology 2005,14:S18.
    34. Cross J. Electrostatics:principles, problems and applications.1987.
    35. Henson BL. A space-charge region model for microscopic steady coronas from points. Journal of Applied Physics 1981,52:709-715.
    36. Ferreira G, Oliveira O, Giacometti J. Point-to-plane corona:Current-voltage characteristics for positive and negative polarity with evidence of an electronic component. Journal of Applied Physics 1986,59:3045-3049.
    1. Braithwaite NSJ. Introduction to gas discharges. Plasma Sources Science and Technology 2000,9:517.
    2. Budzikiewicz H. Massenspektrometrie:Eine Einfuhrung:VCH; 1992.
    3. Miller MK. Atom probe field ion microscopy. In:Oak Ridge National Lab., TN (USA); 1986.
    4. Gomer R. Field emission and field ionization:Harvard University Press Cambridge, MA; 1961.
    5. Tsong TT. Atom-Probe Field Ion Microscopy. Physics Today 1993,46:24.
    6. Brandon D. The resolution of atomic structure:recent advances in the theory and development of the field ion microscope. British Journal of Applied Physics 2002,14:474.
    7. Liu X, Orloff J. Analytical model of a gas phase field ionization source. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures 2005,23:2816-2820.
    8. Sakurai T, Muller EW. Field calibration using the energy distribution of a free-space field ionization. Journal of Applied Physics 1977,48:2618-2625.
    9. Beckey H. Experimental techniques in field ionisation and field desorption mass spectrometry. J. Phys. E(Sci. Instrum.) 1979,12:72-81.
    10. Muller EW, Bahadur K. Field ionization of gases at a metal surface and the resolution of the field ion microscope. Physical Review 1956,102:624.
    11. Orloff J, Swanson L. Study of a field-ionization source for microprobe applications. Journal of vacuum science and technology 1975,12:1209-1213.
    12. Tsong T. Field penetration and band bending for semiconductor of simple geometries in high electric fields. Surface Science 1979,85:1-18.
    13. Ernst L. On the field penetration into semiconductors in the field ion microscope. Surface Science 1979,85:302-308.
    14. Ernst L, Block J. Field ion microscopy of germanium:Field ionization and surface states. Surface Science 1975,49:293-309.
    15. Ohno Y, Nakamura S, Adachi T, Kuroda T. Field-ion microscopy of GaAs and GaP. Surface Science 1977,69:521-532.
    16. Dousmanis G, Duncan R. Calculations on the Shape and Extent of Space Charge Regions in Semiconductor Surfaces. Journal of Applied Physics 1958,29:1627-1629.
    17. Sze SM, Ng KK. Physics of semiconductor devices:Wiley-interscience; 2006.
    18. Seiwatz R, Green M. Space charge calculations for semiconductors. Journal of Applied Physics 1958,29:1034-1040.
    19. Sakurai T. Anomalous field evaporation of silicon. Surface Science 1978,78:L221-L226.
    20. Modi A, Koratkar N, Lass E, Wei B, Ajayan PM. Miniaturized gas ionization sensors using carbon nanotubes. nature 2003,424:171-174.
    21. Zhang Y, Liu J, Li X, Zhu C. The structure optimization of the carbon nanotube film cathode in the application of gas sensor. Sensors and Actuators A:Physical 2006,128:278-289.
    22. Liao L, Lu H, Shuai M, Li J, Liu Y, Liu C, et al. A novel gas sensor based on field ionization from ZnO nanowires:moderate working voltage and high stability. Nanotechnology 2008,19:175501.
    23. Sadeghian RB, Kahrizi M. A novel miniature gas ionization sensor based on freestanding gold nanowires. Sensors and Actuators A:Physical 2007,137:248-255.
    24. Sakurai T, Miiller EW. Field calibration using the energy distribution of field ionization. Physical Review Letters 1973,30:532-535.
    25. Forbes RG, Edgcombe C, Valdre U. Some comments on models for field enhancement. Ultramicroscopy 2003,95:57-65.
    26. Read F, Bowring N. Field enhancement factors of random arrays of carbon nanotubes. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment 2004,519:305-314.
    27. Miller HC. Change in Field Intensification Factor beta of an Electrode Projection (Whisker) at Short Gap Lengths. J. Appl. Phys 1967,38:4501-4504.
    28. Richter H, Wang Z, Ley L. The one phonon Raman spectrum in microcrystalline silicon. Solid State Communications 1981,39:625-629.
    29. Campbell I, Fauchet PM. The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Communications 1986,58:739-741.
    30. Wang R-p, Zhou G-w, Liu Y-l, Pan S-h, Zhang H-z, Yu D-p, et al. Raman spectral study of silicon nanowires:High-order scattering and phonon confinement effects. Physical Review B 2000,61:16827.
    31. Li B, Yu D, Zhang S-L. Raman spectral study of silicon nanowires. Physical Review B 1999,59:1645.
    32. Piscanec S, Ferrari A, Cantoro M, Hofmann S, Zapien J, Lifehitz Y, et al. Raman spectrum of silicon nanowires. Materials Science and Engineering:C 2003,23:931-934.
    33. Howatson AM. An introduction to gas discharges:Pergamon press Oxford; 1965.
    34. Meek JM, Craggs JD. Electrical breakdown of gases.1978.
    35. Slade PG, Taylor ED. Electrical breakdown in atmospheric air between closely spaced (0.2 μm-40 μm) electrical contacts. Components and Packaging Technologies, IEEE Transactions on 2002,25:390-396.
    36. Chen C-H, Yeh JA, Wang P-J. Electrical breakdown phenomena for devices with micron separations. Journal ofMicromechanics and Microengineering 2006,16:1366.
    37. Torres J, Dhariwal R. Electric field breakdown at micrometre separations. Nanotechnology 1999,10:102.
    38. Zouache N, Lefort A. Electrical breakdown of small gaps in vacuum. Dielectrics and Electrical Insulation, IEEE Transactions on 1997,4:358-364.
    39. Held B, Soulem N, Peyrous R, Spyrou N. Self-sustained conditions in inhomogeneous fields. Journal de Physique Ⅲ1997,7:2059-2077.
    40. Raizer YP, Kisin VI, Allen JE. Gas discharge physics:Springer-Verlag Berlin; 1991.
    41. Khalifa M. High-voltage engineering.1990.
    42. Heylen A. Ionization coefficients and sparking voltages in argon and argon-ethane mixtures. Journal of Physics D:Applied Physics 2002,1:179.
    43. Spyrou N, Peyrous R, Soulem N, Held B. Why Paschen's law does not apply in low-pressure gas discharges with inhomogeneous fields. Journal of Physics D:Applied Physics 1999,28:701.
    44. Zhang W, Fisher T, Garimella S. Simulation of ion generation and breakdown in atmospheric air. Journal of Applied Physics 2004,96:6066-6072.
    45. Radmilovic-Radjenovic M, Lee JK, Iza F, Park G. Particle-in-cell simulation of gas breakdown in microgaps. Journal of Physics D:Applied Physics 2005,38:950.
    46. 杨津基.气体放电:科学出版社;1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700