高压IGBT的设计与实现及功率器件可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
IGBT作为最新一代的复合全控型功率器件,具有电压控制、输入阻抗大、驱动功率小、控制电路简单、开关损耗小、工作频率高等诸多优点,而高压IGBT在电机控制、新能源、轨道交通、智能电网、电动汽车等领域起着不可替代的作用。由于国内工艺技术水平相对落后,高压IGBT的设计与生产长期落后于国外。本课题旨在结合现有国内工艺,研发具有自主知识产权的高压IGBT芯片,为高压IGBT在国内的研发和实现积累一定的经验。
     功率器件可靠性问题已经成为影响功率模块整体性能的关键问题之一。本论文通过对功率器件SG-NLDMOS在热流子退化及关态雪崩击穿下的退化进行仿真与实验研究,揭示其退化机制,并提出改进措施。此项研究可为功率器件的可靠性设计及评估体系提供一定的参考价值。
     本论文的主要工作及创新点包括:
     1、提出高压IGBT的设计方法,设计并实现了一款1700V/100A高压大电流NPT-IGBT,包括其元胞结构、终端结构、工艺流程及版图的设计。通过分析及仿真确定元胞的结构参数;采用场限环与场板相结合的终端结构,讨论场板的设置对终端结构的影响,提出多晶硅场板设置的方案;对IGBT背面的集电极工艺进行探索及优化;简化工艺流程,应用六块光刻版完成整个工艺流程;设计了栅电极置中的版图结构。
     2、提出了双面N+扩散残留层的新结构来改善平面栅型IGBT的JFET电阻,在改善器件导通压降的同时,击穿电压没有发生显著的下降;把N+扩散残留层应用到沟槽栅型IGBT当中,提出了DR-IGBT的结构,并与传统的NPT-IGBT和LPT CSTBT进行比较。与传统的NPT-IGBT相比,在相同的击穿电压下,其导通压降与电流能力更优;与LPT CSTBT相比,击穿电压更高,而导通压降则在大电流密度下比LPT CSTBT更低;引入背面P-缓冲层,提出了NPN管辅助快速开关的IGBT(NFS-IGBT)新结构,具有更好的导通压降与关断时间的折衷。
     3、采用中子嬗变掺杂的区熔单晶硅作为衬底,制作了多目标光刻版,流片完成后进行半桥模块的封装,并对IGBT器件进行了测试。击穿电压达到1700V以上,125℃下工作电流100A;阈值电压5.2V左右、栅发射极漏电流小于80nA、关断时间0.744μs、关断功耗25mJ,都达到设计要求,只是导通压降略高(3.7V)。
     4、采用直流电压应力实验TCAD仿真、电荷泵测试,对SG-NLDMOS器件的热载流子效应进行研究,揭示热载流子效应与栅压相关,在中等栅压下,热载流子退化发生在积累区,界面态和氧化层陷阱电荷同时发生作用;在高栅压下,退化发生在侧墙区,界面态起主导作用;研究了结构参数Ndd对热载流子效应的影响,并提出了改善措施。采用电流脉冲应力实验、TCAD仿真和电荷泵测试,研究了SG-NLDMOS的关态雪崩击穿退化机制,发现雪崩击穿退化近似于高栅压和中等栅压下热载流子退化的叠加,氧化层陷阱正电荷主要产生于积累区,而界面态在整个漂移区中都有增加。
As the latest generation of somposite full-controlled power devices, IGBT has most outstanding characteristics, such as voltage control, large input impedance, small driving power, simple control circuit, low switching losses, and high operating frequency. High-voltage IGBT plays an irreplaceable role in motor control, new energy, rail transportation, smart grid, electric vehicles, and other fields. However, due to relatively late research, technology lags behind, resulting in the design and production of high-voltage IGBT long-term behind foreign countries. The purpose of this thesis is to combine the existing domestic technology, research, and development of high-voltage IGBT with independent intellectual property rights, and accumulate certain experience for domestic high-voltage IGBT design.
     In addition, the power device's reliability problem has become one of the key problems affecting the overall ferformance of the power integrated circuit. Through the research of hot carrier degradation and off-state avalanche breakdown degradation of SG-NLDMOS by experiments and simulation, this thesis reveals the degradation mechanisms and put forward the measures of improvement. The research can provide certain reference value for the power device reliability design and evaluation system.
     The main work and innovations include:
     1. Put forward the design method of high-voltage IGBT. Design1700V NPT-IGBT, including its cell structure, terminal structure, process, and layout design. The structure of the various parts of cell parameters was determined through analysis the principle of the device and simulation the device. The field limiting ring combined with field plate was adopted as terminal structure, the influence of field plate arranged on the terminal structure was discussed, and the polysilicon field plate setting scheme was put forward. The process of IGBT back collector was explored to optimize it. To simplify the entire process and the whole process was completed with six photolithographies. And finally the layout with gate in the center was designed.
     2. The structure of N+diffusion remnant layer was proposed to improve the JFET resistance of planar gate IGBT, thus improving the on-state voltage drop at the same time without a significant breakdown voltage decline. The structure of N+diffusion remnant layer was applied to the trench gate IGBT which is proposed DR-IGBT, and compared with conventional NPT-IGBT and LPT CSTBT. Under the same breakdown voltage, the on-state voltage drop and current capability of DR-IGBT are superior to NPT-IGBT. The breaddown voltage of DR-IGBT is higher than LPT CSTBT, while the voltage drop of DR-IGBT in the high current density is lower than the LPT CSTBT. By introduction of P-buffer layer to optimize the back structure of IGBT, the NPN aided fast switching IGBT (NFS-IGBT) is presented, which has visibly better trade-off relationship between on-state voltage drop and turn-off time.
     3. The NPT-IGBT fabrication used high resistance float zone silicon crystal with neutron transmutation doping as substrate and making of a MPW mask. After the chip completed, the NPT-IGBT was packed with the half-bridge module and tested. Vces>1700V, Ic=100A (125℃) Vth:5.2V, Ige<80nA, Toff=0.744μs, Eoff=25mJ. All the electrical characteristics meet the disgn requirements, except Vces=3.7V.
     4. The hot carrier effect of SG-NLDMOS was investigated by DC voltage stress, TC AD simulation, and charge pumping test. The hot carrier effect of SG-NLDMOS is associated with the gate voltage. When stressed under middle Vgs, interface states and positive oxide trapped charge generation in the accumulation region under the poly step cause the degradation. When stressed under high Vgs, interface states formation in the spacer region near the drain contact play a leading role. The structural parameter affects on the hot carrier effects have been studied and the measures of improving the hot carrier degradation are put forward. The degradation induced by off-state avalanche breakdown of SG-NLDMOS was investigated by current pulse stress, TCAD simulations, and charge pumping test. The degradation induced by off-state avalanche breakdown is similar to the stacked hot-carrier degradation under high Vgs and middle Vgs. The positive oxide trapped charge generates in the accumulation region, while the interface states have increased in the whole drift region.
引文
[1]肖向锋,“电力电子器件产业发展战略研究”,电力电子,2011,(1),pp.6-10
    [2]钱照明,盛况,“大功率半导体器件的发展与展望”,大功率变流技术,2010,(1),pp.1-9
    [3]S. Bernet, "Recent developments of high power converters for industry and traction applications", IEEE Transactions on Power Electronics,2000,15(6), pp.1102-1117
    [4]A. Nakagawa, Y. Kawaguchi, and K. Nakamura, "Silicon Limit Electrical Characteristics of Power Devices and ICs", Proceedings of the 9th International Seminar on Power Semiconductors,2008, pp.25-32
    [5]V. Benda, "Power Semiconductors-State of the art and future trends", Global Journal of Technology & Optimization,2011,2(1), pp.1-8
    [6]http://www.sdpc.gov.cn/zcfb/zcfbtz/2010tz/t20100330_337554.htm
    [7]http://www.isuppli.com/China-Electronics-Supply-Chain/MarketWatch/Pages/
    [8]T. Laska, M. Munzer, F. Pfirsch, C. Scheaffer and T. Schmidt, "The Field Stop IGBT (FS IGBT)-A New Power Device Concept with a Great Improvement Potential", Proceedings of 2000 International Symposium on Power Semiconductor Devices & ICs,2000, pp. 355-358
    [9]S. Dewar, S. Linder, C. Arx, A. Mukhitinov and G. Debled, " Sopf Punch Through (SPT)-Setting new Standards in 1200V IGBT", Proceedings of PCIM Europe Conference,2000, pp. 7-14
    [10]K. Nakamura, S. Kusunoki, H. Nakamura, Y. Ishimura, Y. Tomomatsu, and T. Minato, "Advanced Wide Cell Pitch CSTBTs Having Light Punch Through (LPT) Structure", Proceedings of 2002 International Symposium on Power Semiconductor Devices & ICs, 2002, pp.277-280
    [11]M. Rahimo, A. Kopta, S. Linder, "Novel Enhanced-Planar IGBT Technology Rated up to 6.5KV for Lower Losses and Higher SOA Capability", Proceedings of 2006 International Symposium on Power Semiconductor Devices & ICs,2006, pp.1-4
    [12]H. Takahashi, H. Haruguchi, H. Hagino,, "Carrier Stored Trench-Gate Bipolar Transistor (CSTBT)-A Novel Power Device for High Voltage Applications", Proceedings of 1996 International Symposium on Power Semiconductor Devices & ICs,1996, pp.349-352
    [13]V. K. Khanna, "Insulated Gate Bipolar Transistor (IGBT):Theory and Design", IEEE Press, Wiley-Interscience,2003
    [14]V. Benda, J. Gowar, and D. A. Grant,“功率半导体器件-理论及应用”,北京:化学工业出版材料科学与工程出版中心,2005
    [15]杨晶琦,“电力电子器件原理与设计”,国防工业出版社,1999
    [16]万积庆,唐元洪,“功率晶体管原理”,湖南大学出版社,2009
    [17]D. Burns, I. Deram, J. Mello, J. Morgan, I. Wan, and F. Robb, "NPT-IGBT-Optimizing for Manufacturability", Proceedings of 1996 International Symposium on Power Semiconductor Devices & ICs,1996, pp.331-334
    [18]H.W. Becke, C. F. Wheatley Jr., "Power MOSFET with an anode region", US Patent, 4364073,1982-12-14
    [19]B. J. Baliga, M. S. Adler, P. V. Gray, R. P. Love, and N. Zommer, "The insulated gate rectifier(IGR):A new power switching device",1982 International Electron Devices Meeting,1982,28, pp.264-267
    [20]B. J. Baliga, "Fast-switching insulated gate transistors", IEEE Electron Device Letters,1983, 4(12), pp.452-454
    [21]M. F. Chang, G. C. Pifer, B. J. Baliga, M. S. Adler, and P. V. Gray, "25 Amp,500 Volt Insulated Gate Transistors",1983 International Electron Devices Meeting,1983,29, pp. 83-86
    [22]J. P. Russell, A. M. Goodman, L. A. Goodman, and J. M. Neilson, "The COMFET-A New High Conductance MOS-Gated Device", IEEE Electron Device Letters,1983,4, pp.63-65
    [23]A. M. Goodman, J. P. Russell, L. A. Goodman, C. J. Nuese, and J. M. Neilson, "Improved COMFETs with fast switching speed and high-current capability",1983 International Electron Devices Meeting,1983,29, pp.79-82
    [24]A. Nakagawa, H. Ohashi, M. Kurata, H. Yamaguchi, and K. Watanabe, "Non-latch-up 1200V 75A bipolar-mode MOSFET with large ASO" 1984 International Electron Devices Meeting, 1984,30, pp.860-861
    [25]A. Nakagawa, and H. Ohashi, "600- and 1200-V Bipolar-Mode MOSFET's with High Current Capability", IEEE Electron Device Letters,1985,6(7), pp.378-380
    [26]K. Gauen, Motorola Application Note,1985, AN-934
    [27]G. Msjumdar, "Recent Technologies and Trends of Power Devices",2007 International Workshop on Physics of Semiconductor Devices,2007, pp.787-792
    [28]G. Majumdar, and T. Minato, "Recent and Future IGBT Evolution",2007 Power Conversion Conference,2007, pp.355-359
    [29]H.-R. Chang, and B. J. Baliga, "500-V n-Channel Insulated-Gate Bipolar Transistor with a Trench Gate Structure", IEEE Transactions on Electron Devices,1989,36(9), pp. 1824-1829
    [30]F. Udrea, and G. Amaratunga, "Theoretical and numerical comparison between DMOS and trench technologies for insulated gate bipolar transistor, IEEE Transactions on Electron Devices,1995,42(7), pp.1356-1366
    [31]X. Yuan, T. Trajkovic, F. Udrea, J. Thomson, P. R. Waind, P. Taylor, and G. A. J. Amaratunga, "Suppression of parasitic JFET effect in trench IGBTs by using a self-aligned p base process", Solid-State Electronics,2002,46, pp.1907-1912
    [32]M. Nemoto and B. J. Baliga, " The Recessed-Gate IGBT Structure", Proceedings of 1999 International Symposium on Power Semiconductor Devices & ICs,1999, pp.149-152
    [33]Z. Li, M. Qian, and B. Zhang, " TAC-IGBT: an improved IGBT structure", Proceedings of 2009 International Symposium on Power Semiconductor Devices & ICs,2009, pp.124-127
    [34]M. Mori, Y. Uchino, J. Sakano, and H. Kobayashi, "A novel high-conductivity IGBT (HiGT) with a short circuit capability", Proceedings of 1998 International Symposium on Power Semiconductor Devices & ICs,1998, pp.429-432
    [35]K. Oyama, T. Arai, K. Saitou, K. Masuda, and M. Mori, "Advanced HiGT with Low-injection Punch-through (LiPT) structure", Proceedings of 2004 International Symposium on Power Semiconductor Devices & ICs,2004, pp.111-114
    [36]P. A. Gough, M. R. Simpson, and V. Rumennik, "Fast switching lateral insulated gate transistor",1986 International Electron Devices Meeting,1986,32, pp.218-221
    [37]T. P. Chow, B. J. Baliga, H. R. Chang, P. V. Gray, W. Hennessy, and C. E. logan, " P-Channel, Vertical Insulated Gate Bipoar Transistors with Collector short",1987 International Electron Devices Meeting,1987,33, pp.670-673
    [38]J. G. Fossum, and R. J. McDonald, "An Insightful Analysis of the Hybrid Insulated-Gate Bipolar Transistor", IEEE Trancations on Electron Devices,1988,35(9), pp.1560-1562
    [39]H. Akiyama, T. Minato, M. Harada, H. Pan, H. Kondoh, and Y. Akasaka, "Effects of shorted collector on characteristics of IGBTs", Proceedings of 1990 International Symposium on Power Semiconductor Devices & ICs,1990, pp.131-134
    [40]E. Napoli, P. Spirito, A. G. Strollo, F. Frisina, L. Fragapane, and D. Fagone, "Design of IGBT with integral freewheeling diode", IEEE Electron Device Letters,2002,23(9), pp.532-534
    [41]H. Takahashi, A. Yamamoto, S. Aono, and T. Minato, "1200 V reverse conducting IGBT", Proceedings of 2004 International Symposium on Power Semiconductor Devices & ICs, 2004, pp.133-136
    [42]L. Storasta, M. Rahimo, M. Bellini, A. Kopta, R. Vemulapati, and N. Kaminski, "The radial layout design concept for the bi-mode insulated gate transistor", Proceedings of 2011 International Symposium on Power Semiconductor Devices& ICs,2011, pp.56-59
    [43]M. Antoniou, F. Udrea, F. Bauer, and I. Nistor, "A new way to alleviate the RC IGBT snapback phenomenon:The super junction solution", Proceedings of 2010 International Symposium on Power Semiconductor Devices & ICs,2010, pp.153-156
    [44]W. C. W. Hsu, F. Udrea, H. Y. Hsu, and W. C. Lin, "Reverse conducting insulated gate bipolar transistor with an anti-parallel thyristor", Proceedings of 2010 International Symposium on Power Semiconductor Devices & ICs,2010, pp.149-152
    [45]A. Bourennane, H. Tahir, J. L. Sanchez, L. Pont, G. Sarrabayrouse, and E. Imbernon, "High temperature wafer bonding technique for the realization of a voltage and current bidirectional IGBT", Proceedings of 2011 International Symposium on Power Semiconductor Devices & ICs,2011, pp.140-143
    [46]L. Zhu, and X. Chen, "An Investigation of a Novel Snapback-Free Reverse Conducting IGBT and with Dual Gates", IEEE Transactions on Electron Devices,2012,59(11), pp.3048-3053
    [47]H. Jiang, B. Zhang, W. Chen, M. Qiao, Z. Li, C. Liu, Z. Rao, and B. Dong, "Low turnoff loss reverse-conducting IGBT with double n-p-n electron extraction paths", Electronics Letters, 48(8), pp.457-458
    [48]H. Jiang, B. Zhang, W. Chen, Z. Li, C. Liu, Z. Rao, and B. Dong, "A Snapback Suppressed Reverse-Conducting IGBT With a Floating P-Region in Trench Collector", IEEE Electron Device Letters,2012,33(3), pp.417-419
    [49]M. Rahimo, A. Kopta, U. Schlapbach, J. Vobecky, E. Schnell, and S. Klaka, "The Bi-mode Insulated Gate Transistor (BIGT) A potential Technology for Higher Power Applications", Proceedings of 2009 International Symposium on Power Semiconductor Devices & ICs, 2009, pp.283-286
    [50]袁寿财,王晓宝,刘欣荣,‘'850V/18A,1200V/8A IGBT研制”,半导体技术,1994,(5),pp.47-51
    [51]卓伟,刘光廷,‘'1000V/20A IGBT的研制”,半导体技术,1995,(3),pp.52-55
    [52]袁寿财,“新型功率器件IGBT研制”,半导体技术,1997,(2),pp.26-29
    [53]袁寿财,“辐照对IGBT特性的影响”,半导体技术,1997,(4),pp.26-30
    [54]张华曹,“电流增益与IGBT的开通及关断特性”,半导体技术,1998,(2),pp.29-31
    [55]何进,王新,陈星弼,“基于SDB技术的新结构PT型IGBT器件研制”,半导体学报,2000,21(9),pp.877-881
    [56]Cheng Xu, Wu Yu, Liu Xingming, Wang Zhe, Kang Baowei, Li Junfeng, and Han Zhengsheng, "A New Structure IGBT with High Performance", Chinese Journal of Semiconductors,2003,24(6), pp.586-591
    [57]高琰,亢宝位,程序,“一种具有新耐压层结构的IGBT",半导体技术,2003,28(7),pp.64-68
    [58]袁寿财,汪李明,祝咏晨,"IGBT全自对准栅挖槽工艺研究”,微电子学,2004,34(2),pp.211-214
    [59]袁寿财,“一种硅化物全自对准槽栅绝缘栅双极晶体管设计及制备工艺”,中国发明专利,CN02114674.8,2003-03-05
    [60]张玉林,“绝缘栅双极晶体管(IGBT)低温特性研究”,硕士学位论文,中国科学院研究生院(电工研究所),2005
    [61]亢宝位,单建安,周文定,“具有内透明集电极的绝缘栅双极晶体管”,中国发明专利,CN200710063086.2,2007-08-01
    [62]E. T. Ogawa, J. Kim, G. S. Haase, H. C. Mogul, and J. W. McPherson, "Leakage, breakown, and TDDB characteristics of porous low-k silica-based interconnect dielectrics", Proceedings of 41st Annual IEEE International Reliability Physics Symposium,2003, pp. 166-172
    [63]J. Prendergast, J. Suehle, P. Chaparala, E. Murphy, and M. Stephenson, "TDDB Characterisation of Thin SiO2 Films with Bimodal Failure Populations", Proceedings of 33rd Annual IEEE International Reliability Physics Symposium,1995, pp.124-130
    [64]J. Scarpulla, D. C. Eng, S. R. Olson, and C.-S. Wu, "A TDDB model of Si3N4-based capacitors in GaAs MMICs", Proceedings of 37th Annual IEEE International Reliability Physics Symposium,1999, pp.128-137
    [65]李志国,卢振钧,"ULSI中铜互连线通孔电迁徙失效的数值模拟”,电子学报,2003,31(7),pp.1104-1106
    [66]姜晓鸿,“集成电路局部缺陷及其相关的功能成品率和电迁徙问题的研究”博士学位论文,西安电子科技大学,1998
    [67]M. D. Ker, "Whole-chip ESD protection design with efficient VDD-to-VSS ESD clamp circuits for submicron CMOS VLSI", IEEE Transactions on Electron Devices,1999,46(1), pp.173-183
    [68]R. Merrill, E. Issaq, "ESD design methodology", Proceedings of Electrical Overstress/Electrostatic Discharge Symposium,1993, pp.233-237
    [69]C. Furbock, D. Pogany, M. Litzenberger, E. Gornik, N. Seliger, H. GoBner, T. Muller-Lynch, M. Stecher, and W. Werner, "Interferometric temperature mapping During ESD stress and failure analysis of smart power technology ESD protection devices", Journal of Electrostatics,2000,49, pp.195-213
    [70]M. Koyanagi, H. Kaneko, and S. Shimizu, "Optimum design of n+-n-double-diffused drain MOSFET to reduce hot-carrier emission", IEEE Transaction on Electron Devices,1985,32, pp.562-570
    [71]杨肇敏,徐葭生,"NMOS短沟DD结构热载流子效应的研究”,半导体学报,1989,10(7),pp.489-496
    [72]J. F. Chen, J. R. Lee, K.-M. Wu, T.-Y. Huang, C. M. Liu, and S. L. Hsu, "OFF-State Avalanche-Breakdown-Induced ON-Resistance Degradation in Lateral DMOS Transistors", IEEE Electron Device Letters,2007,28(11), pp.1033-1035
    [73]K. O. Jeppson, C. M. Svensson, "Negative bias stress of MOS devices at high electric fields and degradation of MNOS devices", Journal of Applied Physics,1977,48(5), pp.2004-2014
    [74]C. E. Blat, E. H. Nicollian, and E. H. Poindexter, "Mechanism of negative-bias-temperature instability", Journal of Applied Physics,1991,69(3), pp.1712-1720
    [75]L. Tsetseris, X. J. Zhou, D. M. Fleetwood, R. D. Schrimpf, and S. T. Pantelides, "Physical mechanisms of negative-bias temperature instability", Applied Physics Letters,2005,86(14), pp.142103-1-3
    [76]D. K. Schroder, "Negative bias temperature instability:What do we understand?", Microelectronics Reliability,2007,47, pp.841-852
    [77]薄仕群,林兆军,“MOS器件的热载流子效应”,河北大学学报(自然科学版),1994,14(2),pp.4246
    [78]E. Takeda, N. Suzuki, "An empirical model for device degradation due to hot-carrier injection", IEEE Electron Device Letters,1983,4(4), pp.111-113
    [79]S. Tam, P. Ko, and C. Hu, "Lucky-electron model of channel hot-electron injection in MOSFET's", IEEE Transactions on Electron Devices,1984,31(9), pp.1116-1125
    [80]C. Hu, S. Tam, F. Hsu, P. Ko, T. Chan, and K. W. Terrill, "Hot-Electron-Induced MOSFET Degradation- Model, Monitor, and Improvement", IEEE Journal of Solid-State Circuits, 1985,20(1), pp.295-305
    [81]V-H. Chan, J. E. Chung, "Two-stage hot-carrier degradation and its impact on submicrometer LDD NMOSFET lifetime prediction", IEEE Transactions on Electron Devices,1995,42(5), pp.957-962
    [82]刘红侠,郝跃,孙志,“深亚微米MOS器件的热载流子效应”,半导体学报,2001,22(6),pp.770-773
    [83]K. Fischer, K. Shenai, "Electrothermal effects during unclamped inductive switching (UIS) of power MOSFET's", IEEE Transactions on Electron Devices,1997,44 (5), pp.874-878
    [84]K. Chinnaswamy, P. Khandelwal, M. Trivedi, and K. Shenai, "Unclamped inductive switching dynamics in lateral and vertical power DMOSFETs", Conference Record of the 1999 IEEE Industry Applications Conference,1999,2, pp.1085-1092
    [85]K. Pinardi, U. Heinle, S. Bengtsson, J. Olsson, and J. Colinge, "Unclamped inductive switching behaviour of high power SOI vertical DMOS transistors with lateral drain contacts", Solid-State Electronics,2002,46, pp.2105-2110
    [86]洪慧,韩雁,文进才,陈科明,“功率集成电路技术理论与设计”,浙江大学出版社,2011
    [87]韩雁,洪慧,马绍宇,霍明旭,“集成电路设计制造中EDA工具实用教程”,浙江大学出版社,2007
    [88]D. S. Kuo, and C. Hu, "Optimization of Epitaxial Layers for Power Bipolar-MOS Transistor", IEEE Electron Device Letters,1986,7(9), pp.510-512
    [89]S. M. Sze, Kwok K. Ng, "Physics of Semiconductor Devices", Wiley-Interscience:John Wiley & Sons, Inc.,2007
    [90]崔京京,“绝缘栅双极型晶体管的设计与研究”,硕士学位论文,浙江大学,2012
    [91]D. S. Kuo, C. Hu, and S. P. Sapp, "An Analytical Model for the Power Bipolar-MOS Transistor", Solid-State Electronics,1986,29, pp.1229-1238
    [92]Y. C. Kao, E. D. Wolley, "High-Voltage Planar p-n Junctions", Proceedings of the IEEE,1967, 55(8), pp.1409-1414
    [93]F. Conti, M. Conti, "Surface Breakdown in Silicon Planar Diodes Equipped with Field Plate", Solid-State Electronics,1972,15(1), pp.93-105
    [94]V. A. K. Temple, "Junction Termination Extension (JTE), a new techniqui for increasing avalanche breakdown voltage and controlling surface electric field in p-n junctions",1977 International Electron Devices Meeting,1977, pp.423-426
    [95]R. Stengl, U. Gosele, C. Fellinger, M. Beyer, and S. Walesch, "Variation of lateral doping as a field terminator for high-voltage power devices", IEEE Transactions on Electron Devices, 1986,33(3), pp.426-428
    [96]J. A. Appels, H. M. J. Vaes, "High voltage thin layer devices (RESURF devices)",1979 International Electron Devices Meeting,1979,25, pp.238-241
    [97]T. Matsushita, T. Aoki, T. Ohtsu, H. Yamoto, H. Hayashi, M. Okayama, and Y. Kawana, "Highly reliable high-voltage transistors by use of the SIPOS process", IEEE Transactions on Electron Devices,1976,23(8), pp.826-830
    [98]R. L. Davies, F. E. Gentry, "Control of electric field at the surface of P-N junctions", IEEE Transactions on Electron Devices,1964,11(7), pp.313-323
    [99]K. R. Davis, R. D. Schrimpf, F. E. Cellier, K. F. Galloway, D. I. Burton, and C. F. Wheatley, "The Effects of Ionizing Radiation on Power-MOSFET Termination Structures", IEEE Transactions on Nuclear Science",1989,36(6), pp.2104-2109
    [100]M. S. Adler, "Theory and breakdown voltage for planar devices with a single field limiting ring", IEEE Transactions on Electron Devices,1977,24(2), pp.107-113
    [101]万积庆,陈迪平,“场限环与场板复合结构浅平面结高压器件设计”,微细加工技术,1996,(2),pp.49-52
    [102]刘恩科,朱秉升,罗晋生,“半导体物理学”,北京:国防工业出版社,1997
    [103]H. Yilmaz, "Cell geometry effect on IGT latch-up", IEEE Electron Device Letters,1985,6, pp.419-421
    [104]H. Yilmaz, J. L. Benjamin, R. F. Dyer Jr., L. S. Chen, W. R. V. Dell, and G. C. Pifer, "Comparison of the punch-through and non-punch-through IGT structures", IEEE Transaction on Industry Application,1986,22(3):466-470
    [105]李如春,陈去非,陈启秀,“三重扩散型IGBT的计算机模拟分析”,半导体学报,1995,16(11),pp.869-873
    [106]李如春,陈去非,陈启秀,“生产IGBT的一种工艺——三重扩散”,固体电子学研究与进展,1996,16(1),pp.75-79
    [107]崔骊,李平,“三重扩散IGBT的参数优化”,微电子学,1999,29(6),pp.437-440
    [108]陈福元,毛建军,胡煜涛,胡梦,“三重扩散法制备绝缘栅双极晶体管用N-/P-/P+衬底方法”,中国发明专利,CN200810121645.5,2009-04-01
    [109]亢宝位,“低功耗半导体功率开关器件及其制造方法”,中国发明专利,CN00135808.1,2001-05-23
    [110]韩雁,丁扣宝,“半导体器件TCAD设计与应用”,电子工业出版社,2013
    [111]S. M. Sze and G. Gibbons, "Avalanche breakdown voltages of abrupt and linearly graded p-n junctions in Ge, Si, GaAs and GaP", Applied Physics Letter,1966,8, pp.111-113
    [112]M. Antoniou, F. Udrea, F. Bauer, and I. Nistor, "The Soft PunchThrough + Superjunction Insulated Gate Bipolar Transistor:A High Speed Structure With Enhanced Electron Injection", IEEE Transaction on Electron Devices,2011,58(3), pp.769-775
    [113]J. Vobecky, "Future Trends in High Power Devices", Porceeding of 27th International Conference on Microelectronics,2010, pp.67-72
    [114]A. Kopta, M. Rahimo, S. Eicher, and U. Schlapbach, "A Landmark in Electrical Performance of IGBT Modules Utilizing Next Generation Chip Technologies", Proceedings of 2006 International Symposium on Power Semiconductor Devices & ICs,2006, pp.1-4
    [115]P. Ranstad and H. P. Nee, "On Dynamic Effects Influencing IGBT losses in soft-switching converters", IEEE Transaction on Power Electronics,2011,26(1), pp.260-271
    [116]Y. Onozawa, M. Otsuki, N. Iwamuro, S. Miyashita, T. Miyasaka, Y. Seki, and T. Matsumoto, "1200V Low-Loss IGBT Module with Low Noise Characteristics and High dlc/dt Controllability", IEEE Transaction on Industry Application,2007,43(2), pp.513-519
    [117]S. Kyoung, J. S. Lee, S.H. Kwak, E. Kang, and M. Y. Sung, "A Novel Trench IGBT with a Deep P+ Layer Beneath the Trench Emitter", IEEE Electron Device Letter,2009,30(1), pp. 82-84
    [118]Z. Chen, K. Nakamura, and T. Terashima, "LPT(Ⅱ)-CSTBTTM(Ⅲ) for High Voltage application with ultra robust turn-off capability utilizing novel edge termination design", Proceedings of 2012 International Symposium on Power Semiconductor Devices & ICs, 2012, pp.25-28
    [119]T. Takahishi, Y. Tomomatsu, and K. Sato, "CSTBT (Ⅲ) as the next generation IGBT", Proceedings of 2008 International Symposium on Power Semiconductor Devices& ICs, 2008, pp.72-75
    [120]M. Mori, K. Oyama, Y. Kohno, J. Sakano, J. Uruno, K. Ishizaka, and D. Kawase, "A Trench-gate High-conductivity IGBT (HiGT) with short-circuit capability", IEEE Transaction on Electron Devices,2007,54 (8),2011-2016
    [121]K. Nakamura, K. Sadamatsu, D. Oya, H. Shigeoka, and K. Hatade, "Wide cell pitch LPT (Ⅱ) CSTBTTM (Ⅲ) technology rating up to 6500 V for low loss", Proceedings of 2010 International Symposium on Power Semiconductor Devices & ICs,2010, pp.387-390
    [122]Y. Haraguchi, S. Honda, K. Nakata, A. Narazaki, and Y. Terasaki, "600 V LPT-CSTBTTM on advanced thin wafer technology", Proceedings of 2011 International Symposium on Power Semiconductor Devices & ICs,2011, pp.68-71
    [123]J. P. Zhang, Z. H. Li, B. Zhang, and Z. J. Li, "A novel trench bipolar transistor with buried p-layer", Chinese Physics B,2012,21(6), pp.068504-1-6
    [124]M. Trivedi and K. Shenai, "Modeling the turn-off of IGBT's in hard- and soft-switching applications", IEEE Transaction on Electron Devices,1997,44(5), pp.887-893
    [125]N. Luther-King, M. Sweet, O. Spulber, K. Vershinin, M. M. De Souza, and E. M. S. Narayanan, "Striped anode engineering:a concept for fast switching power devices", Solid-State Electronics,2002,46(6), pp.903-909
    [126]S. Huang, G. A. J. Amaratunga, and F. Udrea, "The injection efficiency controlled IGBT", IEEE Electron Device Letters,2002,23(2), pp.88-90
    [127]S. Huang, K. Sheng, F. Udrea, and G. A. J. Amaratunga, "A dynamic n-bufffer insulated gate bipolar transistor", Solid-State Electronics,2001,45(1), pp.173-182
    [128]D. W. Green, K. V. Vershinin, M. Sweet, and E. M. S. Narayanan, "Anode engineering for the insulated gate bipolar transistor- A comparative review", IEEE Transaction on Power Electronics,2007,22(5), pp.1857-1866
    [129]S. Hardikar, Y. Z. Xu, M. M. De Souza, and E. M. S. Narayanan, "A segmented anode, NPN controlled lateral insulated gate bipolar transistor", Solid-State Electronics,2001,45(7), pp. 1055-1058
    [130]S. Hardikar, R. Tadikonda, M. Sweet, K. Vershinin, and E. M. S. Narayanan, "A fast switching segmented anode NPN controlled LIGBT", IEEE Electron Device Letters,2003, 24(11), pp.701-703
    [131]C. H. Kim, S. K. Chung, " Impurity profile effects of buffer layer on PT-IGBT characteristics", IEEE Transactions on Electron Devices,2003,50(2), pp.513-516
    [132]J. H. Chun, B. H. Lee, D. S. Byeon, D. Y. Kim, M. K. Han, and Y. I. Choi, "An insulated gate bipolar transistor employing the plugged N+ anode", Microelectronics Reliability,1999, 39(1), pp.29-33
    [133]陈星弼,“功率MOSFET与高压集成电路”,东南大学出版社,1990
    [134]D. Brisbin, A. Strachan, and P. Chaparala, "Hot carrier reliability of N-LDMOS transistor arrays for power BiCMOS applications", Proceedings of 40th Annual IEEE International Reliability Physics Symposium,2002, pp.105-110
    [135]M. A. BelaTd, K. Ketata, K. Mourgues, H. Maanane, M. Masmoudi, and J. Marcon, "Comparative analysis of accelerated ageing effects on power RF LDMOS reliability", Microelectronics Reliability,2005,45,1732-1737
    [136]D. Brisbin, A. Strachan, and P. Chaparala, "Optimizing the hot carrier reliability of N-LDMOS transistor arrays", Microelectronics Reliability,2005,45,1021-1032
    [137]J. F. Chen, K-M. Wu, K-W. Lin, Y-K. Su, and S. L. Hsu, "Hot-carrier reliability in submicrometer 40V LDMOS transistors with thick gate oxide", Proceedings of 43rd Annual IEEE International Reliability Physics Symposium,2005, pp.560-564
    [138]C-C. Cheng, J. F. Lin, T. Wang, T. S. Hsieh, J. T. Tzeng, Y. C. Jong, R. S. Liou, S. C. Pan, and S. L. Hsu, "Physics and characterization of various hot-carrier degradation modes in LDMOS by using a three-region charge-pumping technique", IEEE Transactions on Device and Materials Reliability,2006,6(3), pp.358-363
    [139]M. A. Belald, K. Ketata, K. Mourgues, M.Gares, M. Masmoudi, and J. Marcon, "Reliabiliy study of power RF LDMOS device under thermal stress", Microelectronics Journal,2007, 38(2), pp.164-170
    [140]M. Gares, M. A. Belald, H. Maanane, M. Masmoudi, J. Marcon, K. Mourgues, Ph. Eudeline, "Study of Hot-carrier effects on power RF LDMOS device reliability", Microelectronics Reliability,2007,47, pp.1394-1399
    [141]C-C. Cheng, J. F. Lin, T. Wang, T. H. Hsieh, J. T. Tzeng, Y. C. Jong, R. S. Liou, S. C. Pan, and S. L. Hsu, "Impact of Self-Heating Effect on Hot Carrier Degradation in High-Voltage LDMOS",2007 IEEE International Electron Devices Meeting,2007, pp.881-884
    [142]D. Corso, S. Aurite, E. Sciacca, D. Naso, S. Lombardo, A. Santangelo, M. C. Nicotra, and S. Cascino, "Measurement of the hot carrier damage profile in LDMOS devices stressed at high drain voltage", Microelectronics Reliability,2007,47, pp.806-809
    [143]H. Enichlmair, S. Carniello, J. M. Park, and R. Minixhofer, "Analysis of hot carrier effects in a 0.35 um high voltage n-channel LDMOS transistor", Microelectronics Reliability,2007,47, pp.1439-1443
    [144]J. F. Chen, K-S. Tian, S-Y. Chen, J. R. Lee, K. M. Wu, T. Y. Huang, and C. M. Liu, "Gate current dependent hot-carrier-induced degradation in LDMOS transistors", Electronics Letters,2008,44(16), pp.991-992
    [145]H. Enichlmair, J. M. Park, S. Carniello, B. Loeffler, R. Minixhofer, and M. Levy, "Hot carrier stress degradation modes in p-type high voltage LDMOS transistors", Proceedings of 47th Annual IEEE International Reliability Physics Symposium,2009, pp.426-431
    [146]S. Manzini, "Hot carrier degradation in a class of radio frequency n-channel LDMOS transistors", Proceedings of 44th Annual IEEE International Reliability Physics Symposium, 2006, pp.338-344
    [147]P. Moens, G. Van den bosch, "Characterization of total safe operating area of lateral DMOS transistors", IEEE Transactions on Device and Materials Reliability,2006,6(3), pp.349-357
    [148]S. Aresu, W. D. Ceuninck, G. Van den bosch, G. Groeseneken, P. Moens, J. Manca, D. Wojciechowski, and P. Gassot, "Evidence for source side injection hot carrier effects on lateral DMOS transistors", Microelectronics Reliability,2004, pp.1621-1624
    [149]P. Moens, G. Van den bosch, G. Groeseneken, D. Bolognesi, "A unified hot carrier degradation model for integrated lateral and vertical nDMOS transistors", Proceedings of 2003 International Symposium on Power Semiconductor Devices & ICs,2003, pp.88-91
    [150]P. Moens, G. Van den bosch, and G. Groeseneken, "Hot-carrier degradation phenomena in lateral and vertical DMOS transistors", IEEE Transactions on Electron Devices,2004,51 (4), 623-628
    [151]P. Moens, G. Van den bosch, C. De Keukeleire, R. Degraeve, M. Tack, and G. Groeseneken, "Hot hole degradation effects in lateral nDMOS transistors", IEEE Transactions on Electron Devices,2004,51(10), pp.1704-1710
    [152]P. Moens, J. Mertens, F. Bauwens, P. Joris, W. De Ceuninck, and M. Tack, "A comprehensive model for hot carrier degradation in LDMOS transistors", Proceedings of 45th Annual IEEE International Reliability Physics Symposium,2007, pp.492-497
    [153]P. Moens, M. Tack, R. Degraeve, and G. Groeseneken, "A novel hot-hole injection degradation model for lateral nDMOS transistors", Technical Digest of 2001 International Electron Devices Meeting,2001, pp.39.6.1-39.6.4
    [154]W. Sun, H. Wu, L. Shi, Y. Yi, and H. Li, "On-resistance degradations for different stress conditions in high-voltage pLEDMOS transistor with thick gate oxide", IEEE Electron Device Letters,2007,28(7), pp.631-634
    [155]R. Versari, A. Pieracci, "Experimental Study of Hot-Carrier Effects in LDMOS Transistors", IEEE Transactions on Electron Devices,1999,46(6), pp.1228-1233
    [156]S.-Y. Chen, J. F. Chen, J. R. Lee, K.-M. Wu, C. M. Liu, and S. L. Hsu, "Anomalous Hot-Carrier-Induced Increase in Saturation-Region Drain Current in n-Type Lateral Diffused Metal-Oxide-Semiconductor Transistors", IEEE Transactions on Electron Devices,2008, 55(5), pp.1137-1142
    [157]韩成功,“功率集成电路中高压MOS器件及其可靠性的研究”,硕士学位论文,浙江大学,2010
    [158]A. W. Ludikhuize, "Kirk effect limitations in high voltage IC's", Proceedings of 1994 International Symposium on Power Semiconductor Devices and ICs,1994, pp.249-252
    [159]R. Groeseneken, H. E. Maes, N. Beltran, R. F. De Keersmaecher, "A reliable approach to charge-pumping measurements in MOS Transistors", IEEE Transactions on Electron Devices,1984,31(1), pp.42-53
    [160]张卫东,汤玉生,郝跃,“MOS器件热载流子效应的测试方法”,西安电子科技大学学报,1997,24(4),pp.509-514
    [161]Qian Qinsong, Liu Siyang, Sun Weifeng, and Shi Longxing, "Research into charge pumping method technique for hot-carrier degradation measurement of LDMOS", Journal of Semiconductors,2009,30(10), pp.104005-1-5
    [162]V. Vescoli, J.M. Park, H. Enichlmair, M. Knaipp, G. Rohrer, R. Minixhofer, and M.Schrems, "Hot-carrier reliability in high-voltage lateral double-diffused MOS transistors", IET Circuits, Devices & Systems,2008,2(3), pp.347-353
    [163]J. F. Chen, K.-S. Tian, S.-Y. Chen, K.-M. Wu, and C. M. Liu, "On-Resistance Degradation Induced by Hot-Carrier Injection in LDMOS Transistors With STI in the Drift Region", IEEE Electron Device Letters,2008,29(9), pp.1071-1073
    [164]J. F. Chen, S.-Y. Chen, K.-S. Tian, K.-M. Wu, Y.-K. Su, and S. L. Hsu, "Effects of Drift-Region Design on the Reliability of Integrated High-Voltage LDMOS Transistors", Integrated Circuit Design and Technology,2007 IEEE International Conference on Integrated Circuit Design and Technology,2007, pp.1-4
    [165]Y. Nishioka, K. Ohyu, Y. Ohji, N. Natuaki, K. Mukai, and T.-P. Ma, "Hot-electron hardened Si-gate MOSFET utilizing F implantation", IEEE Electron Device Letters,1989,10(4), pp. 141-143
    [166]K. Pinardi, U. Heinle, S. Bengtsson, J. Olsson, and J. Colinge, "Unclamped inductive switching behaviour of high power SOI vertical DMOS transistors with lateral drain contacts", Solid-State Electronics,2002,46, pp.2105-2110
    [167]C. Kocon, J. Zeng, and R. Stokes, "Implant spacer optimization for the improvement of power MOSFETs' Unclamped Inductive Switching (UIS) and high temperature breakdown", Proceedings of 2000 International Symposium on Power Semiconductor Devices & ICs, 2000, pp.157-160

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700