各向异性Boussinesq方程的整体适定性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流体动力学方程(组)作为刻画物质运动的宏观模型,是我们认识与理解自然现象的一类重要的非线性偏微分方程.它一直占据数学物理界的核心研究领域.如:Boussi-nesq方程能够描述大气与海洋运动中最显著的两个特征:旋转和分层.它有着极强的物理背景和数学意义,引起了研究者的广泛关注.
     近年来,Boussinesq方程的研究取得了很大进展,尤其二维次临界和临界情形的研究已经达到了一个很满意的状态.最近,通过建立速度场的增长估计和利用方程的结构,二维各向异性Boussinesq方程的整体正则性问题也得以解决.而三维Boussinesq马解的唯一性和光滑解的整体适定性依然是一个公开问题.为了更好的理解对流项在流体运动中的影响,人们也考虑了具有特殊结构的流体(如:轴对称无旋流体).
     本文主要致力于研究各向异性Boussinesq方程的Cauchy问题.利用方程的耦合结构,轴对称流的性质以及非Lipschitz向量场的导数损失估计,我们建立了一些三维具有轴对称结构各向异性Boussinesq方程的整体适定性理论;利用Fourier局部化技术和速度场的增长估计,我们对粗糙初值建立了二维各向异性非线性Boussinesq方程的整体适定性.另外,我们也考虑了流体动力学方程其它一些相关模型.研究了三维不可压Navier-Stokes方程弱解的正则性准则、高维可压Navier-Stokes-Poisson方程在Lp框架下小解的整体适定性、分数阶Keller-Segel系统在临界Fourier-Herz空间中的不适定性等问题.
     本文具体内容如下:
     第二章回忆Littlewood-Paley理论的一些基本知识.同时给出了一些预备引理和交换子估计.最后,我们回顾一下轴对称流体的代数和几何性质.
     第三章研究三维水平耗散Boussinesq方程的Cauchy问题.在假设初始值是轴对称无旋的情形下,通过利用方程的耦合结构和水平方向上的光滑效应,我们证明了解的整体适定性.这里的一个重要因素是利用轴对称流体的结构和调和分析的技巧,我们首次建立了γ/uγ与γ/wθ的代数关系.
     第四章继续研究三维各向异性Boussinesq系统的Cauchy问题.在假设轴对称初值ρ0(γ,z)的支集与轴((Oz)不相交的条件下,我们证明了三维水平黏性Boussinesq系统的整体适定性.由输运方程的性质,我们首先建立了γ-ρ的增长估计.再结合水平方向上的光滑效应,我们进一步建立了估计此意味着然而,空间L2-3似乎容许了太强的奇性阻止我们获得(ρ,u)的高阶正则性.为此,利用微局部化技术和水平方向上的光滑效应,我们开发了时空估计由此,通过建立时空Log型不等式,我们就获得了解的整体适定性.
     第五章研究三维不可压Navier-Stokes方程弱解的正则性准则.由不可压流的性质,我们首先建立了经由一个元素Λiγuj(γ∈[0,1]且i,j∈{1,2,3})描述的Leray-Hopf弱解的正则性准则,即这里F是指标(α,β)的集合,且Λi:=√-(?)i2.这就推广和改进了有关Leray-Hopf弱解正则性准则方面的结果,包括C. Cao和E. S. Titi (Arch. Ration. Mech. Anal.202(2011)919-932)的工作.更重要的,通过利用Bony仿积分解,我们给出了如下端点情形(α=∞)的正则性准则,其中,i,j∈{1,2,3}.
     在第六章,我们首先来研究二维垂直耗散非线性Boussinesq方程的大解的整体适定性.接下来,我们考虑高维可压Navier-Stokes-Poisson方程在Lp框架下小解的整体适定性.再者,我们还建立了分数阶Keller-Segel模型在临界Fourier-Herz空间中的不适定性.
The fluid dynamic equation (system) as the basic model to describe fluid flow, is an important nonlinear partial differential equations to understand the natural phe-nomena. It lies in the hot research areas of mathematics and physics. For instance, Boussinesq equations describe the two distinctive features in the dynamics of the ocean or of the atmosphere:rotation and stratification. This system have been intensively studied due to their physical background and mathematical significance.
     Great progress about Boussinesq system has been made in the past years, espe-cially the study for the two-dimensional subcritical or critical Boussinesq equations is in a satisfactory state. Recently, by establishing the growth estimate of the velocity field and using the structure of equations, the global well-posedness for the two-dimensional anisotropic Boussinesq system has been achieved. However, the uniqueness of weak so-lution or the global well-posedness of smooth solution for the tridimensional Boussinesq equations is still an open problem. To better understand the influence of the convec-tion term in the fluid, some researchers consider some fluids with special structure (for example:axisymmetric flow without swirl).
     This thesis is devoted to the study of Cauchy problem for the anisotropic Boussi-nesq equations. By using the coupling structure of Boussinesq equations, properties of axisymmetric flow and losing estimates for the non-Lipschitz vector field, we establish some global results on tridimensional anisotropic Boussinesq system under assumption that the initial data is axisymmetric without swirl; by using Fourier localization method and the growth estimate of the velocity, we prove the global well-posedness of the two-dimensional anisotropic non linear Boussinesq system for the rough initial data. In addition, we are concerned with some else relevant models. We investigate some prob-lems such as the regularity criterion of tridimensional incompressible Navier-Stokes equations、the global well-posedness for the high dimensional compressible Navier-Stokes-Poisson equations in the LP framework、 the ill-posedness to Keller-Segel system with fraction diffusion.
     The detail of this thesis is arranged as follows.
     In the second chapter, we recall the basic Littlewood-Paley theory. Next, we give some useful lemmas and a commutator estimate. At last we review algebraic and geometric properties of axisymmetric flow.
     In the third chapter, we investigate the Cauchy problem for the tridimensional Boussinesq equations with horizontal dissipation. Under the assumption that the initial data is axisymmetric without swirl, by using structure of the coupling of Boussinesq equations and the horizontal smoothing effect, we prove the global well-posedness for this system. In our proof, the main ingredient is to establish a magic relationship between yr/r and wθ/r by taking full advantage of the structure of the axisymmetric fluid without swirl and some tricks in harmonic analysis.
     In the fourth chapter, we continue to consider Cauchy problem of the tridimen-sional anisotropic Boussinesq equations. Under the assumption that the support of the axisymmetric initial data po(r,z) does not intersect with the axis (Oz), we prove the global well-posedness for this system with axisymmetric initial data. We first show the growth of the quantity p/r for large time by taking advantage of characteristic of trans-port equation. This growing property together with the horizontal smoothing effect enables us to establish the estimate for the quantity which implies However, space L.2admits forbidden singularity to prevent us from getting the high regularity of (ρ,u). To bridge this gap, we exploit the space-time estimate about by making good use of the horizontal smoothing effect and micro-local techniques. The global well-posedness for the large initial data is achieved by establishing a new type space-time logarithmic inequality.
     In the fifth chapter, we investigate the regularity criterion of the tridimensional Navier-Stokes equations via one velocity component. By deeply using properties of the incompressible fluid, we mainly establish regularity criteria of Leray-Hopf weak solutions via only one element Λriuj with γ∈[0,1] and i, j∈{1,2,3}, that is Here F is the set of index (α,β) which appears in our results and the fractional operator This extends and improves some known regularity criterions of Leray-Hopf weak solutions in term of one velocity component, including the notable works of C. Cao and E. S. Titi (Arch. Ration. Mech. Anal.202(2011)919-932). More importantly, by making full use of the Bony paraproduct decomposition, we show that Leray-Hopf weak solutions is smooth on [0, T] in term of (at the endpoint a=∞) where i,j∈{1,2,3}.
     In the sixth chapter, we firstly study the global well-posedness for the two dimen-sional non Boussinesq equations with vertical dissipation. Next, we consider a global well-posedness of the compressible Navier-Stokes-Possion equations in IP framework with small initial data. Finally, we prove the ill-posedness of Keller-Segel equations with fractional diffusion in critical Fourier-Herz space.
引文
[1]H. ABIDI and T. HMIDI, On the global well-posedness for Boussinesq System. J. Diff. Equa.,233 (2007),199-220.
    [2]H. ABIDI, T.HMIDI and S. KERAANI, On the global regularity of axisymmetric Navier-Stokes-Boussinesq system, Discrete Contin. Dyn. Syst.,29 (2011),737-756.
    [3]H. ABIDI, T. HMIDI and S. KERAANI, On the global well-posedness for the axisymmetric Euler equations, Math. Ann.,347 (2010),15-41.
    [4]A. ADHIKARI, C. CAO and J. Wu, The 2-D Boussinesq equations with vertiacal viscosity and vertical diffusivity, J. Differential Equations.249 (2010),1078-1088.
    [5]A. ADHIKARI,C. CAO and J. Wu, Global regularity results for the 2-D Boussinesq equations with vertical disspation, J. Differential Equations.251 (2011),1637-1655.
    [6]H. BAHOURI, J.-Y. CHEMIN and R. DANOHIN, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften 343, Springer-Verlag, (2011).
    [7]J.-T. BEALE, T. KATO and A.J. MAJDA, Remarks on the breakdoown of smooth solutions for the 3D Euler equations, Commun. Math. Phys.94 (1984).61-66.
    [8]I. BEJENARU and T. TAO, Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrodinger equation, J. Funct. Anal.,233 (2006),228-259.
    [9]J. BEN AMEUR and R. DANCHIN, Limite non visqueuse pour les fluids incompressibles axisymetriques. Nonlinear partial differential equations and their apllations. College de France seminar (Pairs, France,1997-1998), vol. XIV, Stud. Math. Appl., vol.31, North-Holland, Amsterdam (2002),29-55.
    [10]J. BERGH and J. LOFSTROM Interpolation Spaces, an Introduction, Springer-Verlag. New York,1976.
    [11]P. BILER, Local and global solvability of parabolic systems modelling chemotaxis. Adv. Math. Sci. Appl.8 (1998),715-743.
    [12]P. BILER, A note on the paper of Y. Naito,33-40, in:Self-Similar Solutions in Nonlinear PDE, Banach Center Publications 74, Polish Acad. Sci., Warsaw,2006.
    [13]P. BILER and W. A. WOYCZYNSKI, Global and exploding solutions for nonlocal quadratic evolution problems, SIAM J. Appl. Math.59 (1998),845-869.
    [14]P. BILER and G. Wu, Two-dimensional chemotaxis models with fractional diffusion, Math. Methods Appl. Sciences 32 (2009),112-126.
    [15]Y. BRENIER, Optimal Transport, Convection, Magnetic Relaxation and Generalized Boussinesq equations, J. nonlinear science,19, (2009),547-570.
    [16]J. BOURGAIN and N. PAVLOVI'C, Ill-posedness of the Navier-Stokes equations in a crit-ical space in 3D, J. Funct. Anal.,255 (2008),2233-2247.
    [17]A. P. CALDERON and A. ZYGMUND, On existence of certain singular integral, Acta Math.88 (1952),85.
    [18]V. CALVEZ and L. CORRIAS, The parabolic-parabolic Keller-Segel model in M2, Commun. Math.Sci.,6(2) (2008),417-447.
    [19]M. CANNONE, Harmonic analysis tools for solving the incompressible Navier-Stokes equations,161-244, in:Handbook of Mathematical Fluid Dynamics, vol. Ⅲ, S. J. Fried-lander, D. Serre, eds., Elsevier,2004.
    [20]M. CANNONE, Q. CHEN and C. MIAO, A losing estimate for the ideal MHD equations with application to Blowup Crterion, SIAM J. Math. Anal.38 (2007),1847-1859.
    [21]C. CAO and E. S. TITI, Global regularity criterion for the 3-D Navier-Stokes equations involving one entry of the velocity gradient tensor, Arch. Ration. Mech. Anal.202 (2011), 919-932.
    [22]C. CAO and E. S. TITI, Regularity criteria for the three-dimensional Navier-Stokes equa-tions, Indiana Univ. Math. J.57 (2008),2643-2662.
    [23]C. CAO and J. WU, Global regularity for the 2-D MHD equations with mixed partial disspation and magnetic diffusion, Advances in Math.,226 (2011),1803-1822.
    [24]C. CAO and J. Wu, Global regularity results for the 2-D anisotropic Boussinesq equations with vertical disspation, Arch. Ration. Mech. Anal.208 (2013),985-1004.
    [25]D. CHAE, Global regularity for the 2-D Boussinesq equations with partial viscous terms, Advances in Math.,203, (2006),497-513.
    [26]D. CHAE and J. Wu, The 2D Boussinesq equations with logarithmically supercritical velocities, Advances in Math.230 (2012),1618-1645.
    [27]J.-Y. CHEMIN, Perfect Incompressible Fluids, Oxford University Press,1998.
    [28]J.-Y. CHEMIN, B. DESJARDINS, I. GALLAGHER and E. GRENIER, Fluids with anistrophic viscosity, Modelisation Mathematique et Analyse Numerique,34 (2000),315-335.
    [29]J.-Y. CHEMIN, B. DESJARDINS, I. GALLAGHER and E. GRENIER, Mathematical Geo-physics:An Introduction to Rotating Fluids and to the Navier-Stokes Equations, Oxford Unversity Press, (2006).
    [30]Q. CHEN, C. MIAO and Z. ZHANG, The Beale-Kato-Majda Crierion for the 3D Magneto-Hydrodynamics equations, Commun. Math. Phys.275 (2007),861-872.
    [31]Q. CHEN, C. MIAO and Z. ZHANG, On the regularity criterion of weak solution for the 3D viscous Magneto-Hydrodynamics equations, Commun. Math. Phys.284 (2008), 919-930.
    [32]Q. CHEN, C. MIAO and Z. ZHANG, Global well-posedness for the compressible Navier-Stokes equations with the highly oscillating initial velocity, Comm. Pure Appl. Math., LⅩⅢ (2010),1173-1224.
    [33]Q. CHEN, C. MIAO and Z. ZHANG, Well-posedness in critical spaces for the compress-ible Navier-Stokes equations with density dependent viscosities, Revista Matematica Iberoamericana.,26 (2010),915-946.
    [34]A. CHESKIDOV and R. SHVYDKOY, A unifield approach to regularity problems for the 3D Navier-Stokes and Euler equations:the use of Kolmogorov's disspation rangle, arⅩⅳ: 1102.1944v2 [math.AP].
    [35]P. CONSTANTIN, A few results and open problems regarding incompressible fluids, Notices Amer. Math. Soc.42 (1995),658-663.
    [36]P. CONSTANTIN and C. FEFFERMAN, Directions of voricity and the problem of global regularity for the Navier-Stokes equations, Indiana Univ. Math. J.42 (1993).775-778.
    [37]P. CONSTANTIN and V. VICOL, Nonlinear maximum principles for dissipative linear nonlocal operators and applications, Geom. Funct. Anal.22 (2012),1289-1321.
    [38]R. DANCHIN, Global existence in critical spaces for flows of compressible viscous and heat-conductive gaes, Arch. Rational Mech. Anal.,160 (2001),1-39.
    [39]R. DANCHIN and M. PAICU, Global well-posedness issues for the inviscid Boussinesq system with Yudovich's type data, Commun. Math. phys.290, (2009),1-14.
    [40]R. DANCHIN and M. PAICU, Les theorrhes de Leray et de Fujita-Kato pour le systeme de Boussinesq partiellement visqueux, Bull. Soc. Math. France.136 (2008),261-309.
    [41]R. DANCHIN and M. PAICU, Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces, Phys. D:Nolinear Phenomena,237 (2008),1444-1460.
    [42]R. DANCHIN and M. PAICU, Global existence results for the anisotropic Boussinesq sys-tem in dimension two, Math. Models and Methods Appl. Sci.,21 (2011),421-457.
    [43]R. DANCHIN, Axisymmetric incompressible flows with bounded vorticity, Russian Math., Surveys,62 (2007),73-94.
    [44]P. DEGOND, Mathematical modelling of microelectronics semiconductor devices, some current topics on nonlinear conservation laws, AMS/IP Stud. Adv. Math.,15. Provi-dence, RI:Amer. Math. Sco., (2007),77-110.
    [45]P. DEGOND, S. JIN and J. LIU, Mach-number uniform asymptotic-preserving gauge schemes for compressible flows, Bull. Inst. Math. Acad. Sin. (N.S.)2 (2007),851-892.
    [46]R. J. DIPERNA and P. L. LIONS, Ordinary differnential equations, transport theory and Sobolev spaces, Inventiones mathematicae,98 (1989),511-547.
    [47]D. DONATELLI and P. MARCATI, A quasineutral type limit for the Navier-Stokes-Poisson system with large data, Nonlinearity,21 (2008),135-148.
    [48]D. DONATELLI, Local and global existence for the coupled Navier-Stokes-Poisson problem, Quart. Appl. Math,61 (2003),345-361.
    [49]B. DUCOMET, E. FEIREISL, H. PETZELTOVA and I. STRASKRABA, Global in time weak solution for compressible barotropic self-gravitating fluids, Discrete Continous Dynamical System,11 (2004),113-130.
    [50]B. DUCOMET, Some stability results for reactive Navier-Stokes-Poisson system, Evolu-tion equations:existence, regularity and singularities (Warsaw,1998),83-118, Banach Center Pibl.,52, Polish Acad. Sci., Warsaw, (2000).
    [51]B. DUCOMET and A, ZLOTNIK,Stabilization and stability for the spherically symmetric Navier-Stokes-Poisson system, Appl. Math. Lett,18 (2005),1190-1198.
    [52]B. DUCOMT and E. FEIRESISL, On the dynamics of gaseous stars, Arch. Ration. Mech. Anal,174 (2004),221-266.
    [53]C. HAO and H. Li, Global Existence for compressible Navier-Stokes-Poisson equations in three and higher dimensions, J. Differential Equations,246 (2009),4791-4812.
    [54]T. HMIDI, Low Mach number limit for the isentropic Euler system with axisymmetric initial data, Journal of the Institute of Mathematics of Jussieu,12 (2013),335-389.
    [55]T. HMIDI and F. ROUSSET, Global well-posedness for the Euler-Boussinesq system with axisymmetric data, J. Functional Analysis,260 (2011),745-796.
    [56]T. HMIDI and F. ROUSSET, Global well-posedness for the Navier-Stokes-Boussinesq sys-tem with axisymmetric data, Ann. I. H. Poincaee-AN..27 (2010),1227-1246.
    [57]T. HMIDI and S. KERAANI, On the global well-posedness of the Boussinesq system with zero viscosity, Indiana Univ. Math. Journal.58 (2009),1591-1618.
    [58]T. HMIDI and S. KERAANI. Incompressible viscous flows in borderline Besov space, Arch. Ration. Mech. Anal.189 (2008),283-300.
    [59]T. HMIDI, S. KERAANI and F. ROUSSET, Global well-posedness for Euler-Boussinesq system with critical disspation, Comm, Partical Differential Equations,36 (2011),420-445
    [60]T. HMIDI, S. KERAANI and F. ROUSSET, Global well-posedness for Boussinesq-Navier-Stokes system with critical disspation, J. Differential Equations,249 (2010),2147-2174.
    [61]T. HMIDI and M. ZERGUINE, On the global well-posedness of the Euler-Boussinesq system with Fractional dissipation, Math.239, (2010),1387-1401.
    [62]D. HOFF and K. ZUMBRUM, Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow, Indiana Univ. Math. J.44 (1995),603-676.
    [63]E. HOPF, Uber die anfang swetaufgabe fur die hydrodynamischer gruandgleichungan, Math. Nach.4 (1951),213-231.
    [64]T. Hou and C. LI, Global well-posedness of the viscous Boussinesq equations, Discrete and Cont. Dyn. Syst.,12 (2005),1-12.
    [65]L. ISKAURIAZA, G. A. SEREEGIN and V. SHVERAK,∞-solutions of Navier-Stokes equations and backward uniquiness, Russ. Math. Surv.58 (2003),211-250.
    [66]T. IWABUCHI, Global well-posedness for Keller-Segel system in Besov type spaces, J. Math. Anal. Appl.,379 (2011),930-948.
    [67]Q. JIU, C. MIAO, J. Wu and Z. ZHANG, The 2D incompressible Boussinesq equations with general critical dissipation, arXiv:1208.2678v1. [math. AP].
    [68]Q. Jiu and X. ZHENG, Global well-posedness of the compressible Euler with damping in Besov spaces, Math. Meth. Appl. Sci.,35 (2012),1570-1586.
    [69]O. A. LADYZHENSKAYA, Unique solvability in large of a three-dimensional Cauchy prob-lem for the Navier-Stokes equations in the presence of axial symmetry, Zapisky Nauch-nych Sem. LOMI,7 (1968),155-177.
    [70]O. A. LADYZHENSKYA, The Boundary Value Problems of Mathematical Physics, Springer, Berlin,1985.
    [71]P. G. LEMARIE, Recent Developments in the Navier-Stokes Problem, CRC Press, (2002).
    [72]J.LERAY, Sur le mouvement d'um liquide visqieux emlissant I'space, Acta. Math.63 (1934),193-248.
    [73]H. LI, A. MATSUMURA and G. ZHANG, Optimal decay rate of the compressible Navier-Stokes-Poisson system in R3, Arch Ration Mech Anal,196 (2010),681-713.
    [74]Y. LIN, Global well-posedness of compressible Navier-Stokes-Poisson system in multi-dimensions. Accepted by Acta Mathematicae Applicatae Sinica.
    [75]Y. LIN, C. HAO and H. LI, Global well-posedness of compressible bipolar Navier-Stokes-Poisson equations, Acta Math. Sin.,28 (2012),925-940.
    [76]A. MAJDA and A. L. BERTOAZZI, Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics, vol.27, Cambridge University Press, Cambridge,2002.
    [77]C. MIAO, Time-space estimates of solutions to general semilinear parabolic equations, Tokyo J. Math.24 (2001),245-276.
    [78]C. MIAO, Harmonic Analysis with Application to Partial Differential Equations,2nd edition, Science Press, Beijing,2004.
    [79]C. MIAO and Y. Gu, Space-time estimates for parabolic type operator and application to nonlinear parabolic equations, J. Partial Differential Equations 11 (1998),301-312.
    [80]C. MIAO and B. YUAN, Solutions to some nonlinear parabolic equations in pseudomea-sure spaces, Math. Nachr.280 (2007),171-186.
    [81]C. MIAO and L. XUE, On the golbal well-posedness of a class of Boussinesq-Navier-Stokes systems, Nonlinear Differ. Equ. Appl.,18 (2011),707-735.
    [82]C. MIAO, J. WU and Z. ZHANG, Littlewood-Paley Theory and Applications to Fluid Dynamics. Equations, Monographs on Modern pure mathematics, No.142. Science Press, Beijing, (2012).
    [83]C. MIAO and B. ZHANG, The Cauchy problem for semilinear parabolic equations in Besov spaces, Houston J. Math.30 (2004),829-878.
    [84]C. MIAO and X. ZHENG, On the global well-posedness for the Boussinesq system with horizontal dissipation, Comm. Math. Phys. DOI:10.1007/s00220-013-1721-2.
    [85]C. MIAO and X. ZHENG, A unified regularity criterion for the tridimensional Navier-Stokes equations in term of one velocity component, submitted for publication.
    [86]C. MIAO and X. ZHENG, Global well-posedness for axisymmetric Boussinesq system with horizontal viscosity, arXiv:1212.4222v2. [math. AP].
    [87]Y. NAITO, T. SUZUKI and K. YOSHIDA, Self-similar solutions to a parabolic system modeling chemotaxis, J. Differential Equations 184 (2002),386-421
    [88]Y. NAITO, Asymptotically self-similar solutions for the parabolic systems modelling chemotaxis,149-160, Self-Similar Solutions in Nonlinear PDE, Banach Center Pub-lications,74, Polish Acad. Sci., Warsaw,2006.
    [89]J. PEDLOSKY, Geophysical Fluid Dynsmics, Springer Verlag, New-York, (1987).
    [90]M. POKORNY and Y. ZHOU, On the regularity of the solutions of the Navier-Stokes equations via one velocity component, Nonlinearity.23 (2010),1097-1107.
    [91]G. PRODI, Un teorema di unicitd per le equazioni di Navier-Stokes, Ann. Mat. Pura. Appl.48 (1959),173-182.
    [92]A. RACZYNSKI, Stability property of the two-dimensional Keller-Segel model, Asymp-totic Analysis 61 (2009),35-59.
    [93]T. RUNST and W. SICKEL, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, de Gruyter Series in Nonlinear Analysis and Applications,3, Walter de Gruyter & Co., Berlin,1996.
    [94]J. SERRIN, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal.9 (1962),187-191.
    [95]T. SHIROTA and T. YANAGISAWA, Note on global existence for axially symmetric solu-tions of the Euler system. Proc. Japan Acad. Ser. A Math. Sci.,70 (1994),299-304.
    [96]E. M. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, New Jersey,1970.
    [97]S. SULAIMAN, Global existence and uniqueness for a non linear Boussinesq system in dimension two, J. Math. Phys.,51 (2010), http://dx.doi.Org/10.1063/1.3485038.
    [98]H. TRIEBEL, Theory of Function Spaces Ⅱ, Birkhauser Verlag, Berlin,84,1992.
    [99]M. R. UKHOVSKII and V. I. YUDOVIOH, Axially symmetric flows of ideal and viscous fluids filling the whole space, Prikl. Mat. Meh.,32 (1968),59-69.
    [100]C. WANG and Z. ZHANG, Globall well-posedness for the 2-D Boussinesq system with the temperature-dependent viscosity and thermal diffusivity, Advances in Math.,288 (2011), 43-62.
    [101]G. Wu and L.XUE, Golbal well-posedness for the 2D inviscid Benard system with fractional diffusivity and Yodovich's data, J. Differential Equations,253 (2012),100-125.
    [102]G. Wu and J. YUAN, Well-posedness of the Cauchy problem for the fractional power dissipative equation in critical Besov spaces, J. Math. Anal. Appl.340 (2008),1326-1335.
    [103]G. Wu and X. ZHENG, On the well-posedness for Keller-Segel system with fractional diffusion, Math. Meth. Appl. Sci.,34 (2011),1739-1750.
    [104]G. Wu and X. ZHENG, Global well-posedness for the two-dimensional nonlinear Boussi-nesq equations with vertical dissipation, submitted for publication.
    [105]F. XU, Q. ZHANG and X. ZHANG, Regularity Criteria of the 3D Boussinesq Equations in the Morrey-Campanato Space, Acta Appl Math,121 (2012),231-240.
    [106]L. XUE and X. ZHENG, Note on a 2D slightly supercritical Quasi-Geostrophic equation, J. Differential Equations,253 (2012),795-813.
    [107]T. YONEDA, Ill-posedness of the 3D-Navier-Stokes equations in a generalized Besov space near BMO-1, J. Funct. Anal.,258 (2010),3376-3387.
    [108]V. I. YUDOVICH, Non-stationary flows of an ideal incompressible fluid, Akademija Nauk SSSR. Zurnal Vycislitel'noi Matematiki i Matematiceskoi Fiziki,3 (1963),1032-1066.
    [109]V. I. YUDOVICH, Some bounds for solutions of elliptic equations, Mat. Sb.59, (1962), 229-244; English transl. in Amer. Math. Soc. Transl. (2) 56, (1966).
    [110]X. ZHENG, Global well-posedness for the compressible Navier-Stokes-Poisson system in the LP framework, Nonlinear Analysis:TMA 75 (2012),4156-4175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700