小鼠腭裂相关基因mcprl的分布及真核转染的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
mcpr1基因是本室的李鑫博士等借助分了生物学的消减杂交技术从维甲酸诱导的C57BL/6N近交系小鼠腭裂组织中克隆到的一个新基因,于2002年初被GenBank收录,登录号为AY074887。国际基因命名委员会批准将获得的新基因命名为mcpr1(Mouse Cleft Palate—Related genel)。经Genbank的ORF工具分析推测第200到598碱基之间有完整的编码132个氨基酸的开放读框。同时克隆到的差异表达基因还有fau基因等。mcpr1基因是未知功能基因,而fau基因与腭裂发生的关系也未有报道,所以,在本研究工作中,我们对这两个基因进行了初步的表达分布的实验研究,并且构建了acpr1基因的荧光真核表达载体,建立并筛选出了稳定表达融合蛋白的COS7-MCPR1细胞株,对其功能做了初步的研究分析。本研究分为七个方面:
     1.从出生后C57BL/6N近交系小鼠的多种脏器组织:腭部,脑,心脏,肝脏,肺脏,脾脏,肠组织中,提取总RNA,利用RT-PCR技术,结果发现mcpr1和fau基因在多种正常组织中均有表达。这些基因在正常组织中的广泛性表达提示它们在这些组织的正常发育中有着非常重要的作用;
     2.应用原位杂交的方法检测mcpr1和fau基因在与颅面部发育相关的外胚间充质细胞中的表达情况。原位杂交结果显示,mcpr1和fau基因的mRNA在体外培养的腭突未分化外胚间充质细胞的胞浆内有阳性表达,提示基因在腭突的正常发育中有着重要的生物学意义;
     3.应用原位杂交的方法检测mcpr1和fau基因在维甲酸诱导的小鼠腭裂模型和正常小鼠的腭突部位的表达差异。原位杂交结果显示,mcpr1和fau基因的mRNA在正常胚胎小鼠的腭突组织与由维甲酸诱导的腭裂胚胎小鼠的腭突组织在12天到15天均表达,用图像分析方法获得基因在两组中表达的灰度值,进行统计学分析。由统计学结果可知,与正常组相比较,腭裂组中基因mRNA的表达显著性增加。
    
     第四军医大学硕十学位论文
    4.应用基因重组技术,通过尸CR方法,扩增mcprl基因的外显子片段,
    使之克隆入荧光真核表达载体pEGFP一N3的多克隆位点中。并且通过酶
    切鉴定,PCR鉴定,测序,显示已经成功构建了m叩r1基因的荧光真核表
    达载体,解决了mcprl基因转染的准备工作,为下一步研究mcPrl基因
    的功能奠定了基础,为探讨该基因与愕裂的关系提供了必要的条件。
    5.将成功构建的真核表达载体用脂质体2000瞬时转染到COS7细胞系中
    进行蛋白的亚细胞定位。本实验结果显示,转染细胞在转染后24小时已
    经可以观察到在细胞浆中有绿色荧光的表达,但是在48小时,表达最为
    强烈。
    6.在这一部分实验中,通过G418筛选出了稳定表达融合蛋白的
    COS7一MCPRI细胞株。转染的细胞可以观察到绿色荧光蛋白的表达,并且
    应用SDS一pAGE也进行了相应的鉴定。稳定表达蛋白的细胞株的成功构建,
    为进一步制备MCPRI蛋白的抗体,研究MCPRI蛋白的功能,探讨其在鳄
    裂中的致病机理奠定基础。
    7.应用MTT方法检测COS7一MCPRI细胞株上清液中的MCPRI融合蛋白对
    外胚间充质细胞增殖分化的影响。结果数据显示,MCPRI融合蛋白抑制了
    外胚间充质细胞的增殖。所以推测本蛋白可能分泌到上清液中发挥功能,
    这与生物学软件的分析结果一致。但是,这需要进一步的工作来验证这
    一点,并且进而明确对细胞分化的具体影响。
mcprl gene (mouse cleft palate-related gene 1) is a novel gene (Gene bank access number:AY074887) .which was screened by PCR subtractive hybridization method, and highly expressed in mouse cleft palate tissues induced by retinoic acid. On the basis of sequence, mcprl was predicted encoding a protein comprised of 132 amino acids. But we still know few about the distribution and function of this gene/protein, one of the obscles is lack of MCPR1 protein and specific antibody, fau gene is also one of the different expressing genes. The purpose of present study was to detect the expression of these two genes, analysis their basic function and explore the relationship between genes and cleft palate. It will be helpful to prevent the common craniofacial congenital malformations if mechanism of the cleft palate developing is understood well. The studies include seven parts:
    1. This study was undertaken to detect the expression of the mcprl and fau gene in palatal process, brain, heart, liver, lung tissues etc. of normal C57BL/6N strain mouse. The mRNA was extracted respectively directly from these tissues and detectd the expression level by RT-PCR. The result showed that genes were expressed in many tissue of the normal mouse. So it was concluded that the extensive expression of genes in tissue was significant in development of normal tissue.
    2. The object of this study was to observe the expression of the mcprl and fau gene in cells derived from undifferentiating ectodermic palatal mesenchyme of C57BL/6N strain mouse. The expression of mcprl and fau gene in the cells was tested by in situ
    
    
    
    hybridization. The result showed that genes were expressed in undifferentiating ectodermic palatal mesenchyme cells of the normal mouse. So it was concluded that there was the significance of mcprl and fau gene during developing of the palatal process in C57BL/6N strain mouse.
    3. The purpose of this investigation was to observe the expression of mcprl and fau gene in the formation of cleft palate of mice and to explore the relationship between genes and the formation of cleft palate. The expression of genes in embryonic palatine process tissues in the experimental group induced by retinoic acid and control group was detected by in situ hybridization. The data showed that the expressional level of genes was higher in the experimental group than in the control group. It suggested that the genes played an important role to maintain the growth and development of tissues of mice. The high level expression of such genes was related to the occurrence of cleft palate.
    4. The aim of this study was to amplify the mcprl gene and construct a high effective expressing vector containing mcprl cDNA. mcprl encoding region cDNA gene was amplified by PCR from the plasmid T-easy/ mcprl, then PCR product was inserted into a high effective fluorescent eukaryotic expressed vector pEGFP桸3. The positive recombinant was identified by PCR analysis, EcoRI and BamHI restriction analysis, and Sequence analysis. The result showed that a 400bp DNA fragment was amplified from the recombinant. Sequence analysis and restriction digest demonstrated that the mcprl gene was successfully inserted into pEGFP桸3 plasmid. So the fluorescent eukaryotic expressed vector pEGFP桸3/mcprl were successfully reconstructed. It would be useful for further studing the function of mcprl gene.
    5. In this study an attempt was made to express pEGFP-N3- mcpr1 fusion protein and to examine intercellular localization of MCPR1.
    
    pEGFP-N3- mcpr1 expression plasmid was transfected into COS7 by lipofectin reagent. After 48 hours, the location of the fusion protein in cells was observed under the fluorescent microscope. So it was concluded that MCPR1 localizes in the cytoplasm. The work provides the basis for study of the biochemical and physiological functions of mcprl.
    6. In this part, by stable transfection technique, the open reading fream of mcpr1 were sucessfully introduced into continous cell line COS7. After 1 month of G418 treatment, all survived cells and it' s decedents(for a
引文
1. Groen LA, Shaw GM, Wasserman CR, Tolarova MM. Racial and ethnic variations in the prevalence of orofacial cleft in California, 1983-1992. Am. J. Med. Genet, 1998,79: 42-47
    2. rolarova MM, Cervenka J. Classification and birth prevalence of orofacial cleft. Am. J. Med. Gent, 1998,75: 126-137
    3. Murray LC. Face facts:.genes, environment, and clefts. AmJ Hum Genet, 57: 227-232
    4.王艳萍.梁娟.吴艳乔.周光萱.朱军.缪蕾.肖坤则.1988~1992年中国非综合征性唇腭裂发生率的动态变化.现代预防医学,2001,28(1):40—42
    5. Jones, M.C. Etiology of facial clefts: prospective evaluation of 428 patients. Cleft Palate J, 1988, 25: 16-20
    6. Lidral AC, Romitti PA, Basart AM, Doetschman T, Leysens NJ, Daack-Hirsch S, Semina EV, Johnson LR, Machida J, Burds A, Parnell TJ, Rubenstein JL, Murray JC. Association of MSXI and TGFB3 with nonsyndromic clefting in humans. Am J Hum Genet, 1998, 63(2): 557-68
    7. Brewer CH, Holloway S, Zawalnyski P, Schinzel A, Fitzpatrick D. A chromsomal deletion map of human malformations. Am. J. Hum. Genet, 1998, 63: 1153-1159
    8. Clementi M, Tenconi R, Forabosco P, Calzolari E, Milan M. Inheritance of cleft palate in Italy. Evidence for a major autosomal recessive locus. Hum Genet, 1997, 100(2): 204-9
    9. D. F. Wyszynski, T.H. Beaty, N.E. Maestri. Genetics of nonsyndromic oral clefts revisited. Cleft Palate Craniofac. J, 1996,33: 406- 417
    10. Gajdos V, Bahuau M, Robert-Gnansia E, Francannet C, Cordier S, Bonaiti-Pellie C. Genetics of nonsyndromic cleft lip with or without cleft palate: is there a Mendelian sub-entity? Ann Genet, 2004,47(1): 29-39
    
    
    11. C.O. Carter, K. Evans, R. Coffey, J.A. Roberts, A. Buck, M.F. Roberts. A three-generation family study of cleft lip with or without cleft palate. J. Med. Genet, 1982,19: 246-261
    12. M. Melnick, D. Bixler, P. Fogh-Andersen, P.M. Conneally. Cleft lip±cleft palate: an overview of the literature and an analysis of Danish cases born between 1941 and 1968. Am. J. Hum. Genet, 1980,6: 83 -97
    13. M. Clementi, R. Tenconi, A. Collihs, E. Calzolari, M. Milan. Complex segregation analysis in a sample of consecutive newborns with cleft lip with or without cleft palate in Italy. Hum. Hered, 1995,54: 157 - 164
    14. M.L. Marazita, A.M. Goldstein, S.L. Smalley, M.A. Spence. Cleft lip with or without cleft palate: reanalysis of a three-generation family study from England. Genet. Epidemiol, 1986,3: 335 - 342
    15. M.L. Marazita, D.-N. Hu, M.A. Spence, Y.-E. Liu, M. Melnick. Cleft lip with or without cleft palate in Shanghai, China: evidence for an autosomal major locus. Am. J. Hum. Genet, 1992,51: 648-653
    16. L.J. Nemana, M.L. Marazita, M. Melnick. Genetic analysis of cleft lip with or without cleft palate in Madras, India. Am. J. Med. Genet, 1992,42: 5-9
    17. A.K. Ray, L.L. Field, M.L. Marazita, Nonsyndromic cleft lip and palate in West Bengal, India: evidence for an autosomal major locus. Am. J. Hum. Genet, 1993,52: 1006-1011
    18. Mitchell LE. Transforming growth factor alpha locus and nonsyndromic cleft lip with or without cleft palate: a reappraisal. Genet Epidemiol, 1997,14: 231-240
    19. Lidral AC, Romitti PA, Basart AM, Doetschman T, Leysens NJ, Daack HS, Semina EV, Johnson LR, Machida J, Burds A, Parnell TJ, Rubenstein JL, Murray JC. Association of MSXl and TGFB3 with nonsyndromic clefting in humans. Am.J. Hum. Genet, 1998,63: 557-568
    
    
    20. C. Houdayer, C. Bonati-Pellié, C. Reguy, V. Soupre, M.G. Dondon, B. Karcenty, L. Bürglen, E. Cougouraux, R. Couderc, M.P. Vasquez, M. Bahuau. Possible relationship between the vanderWoude Syndrome (vWS) and nonsyndromic cleft lip with or without cleft palate (NSCL/P).Am. J. Med. Genet, 2001, 104: 86-92
    21. T. Zucchero, M. Cooper, D. Caprau, L. Ribiero, Y. Suzuki, K. Yoshiura, K. Christensen, L. Moreno, M. Johnson, L. Field, Y. Lin, A. Ray, B. Maher, T. Goldstein, A. Lidral, S. Kondo, B. Scutte, M. Marazita, J.C. Murray. IRF6 is a major modifier for nonsyndromic cleft lip with or without cleft palate. Am. J. Hum. Genet, 2003,73 (Suppl): 162
    22. Schutte BC, Basart AM, Watanabe Y, Laffin JJ, Coppage K, Bjork BC, Daack-Hirsch S, Patil S, Dixon MJ, Murray JC. Microdeletions at chromosome bands 1q32-q41 as a cause of Van der Woude syndrome. Am J Med Oenet, 1999,84(2): 145-50
    23. OattaV, Scarciolla O, Cupaioli M, PalkaC, ChiesaPL, Stuppia L. A novel mutation of the IRF6 gene in an Italian family with Van der Woude syndrome. Murat Res. 2004 Mar 22;547(1-2): 49-53
    24. Ghassibe M, Revencu N, Bayer B, Gillerot Y, Vanwijck R, Verellen-Dumoulin C, Vikkula M. Six families with van der Woude and/or popliteal pterygium syndrome: all with a mutation in the IRF6 gene. J Med Genet, 2004 Feb;41(2): el5
    25. Ghassibe M, Revencu N, Bayer B, Gillerot Y, Vanwijck R, Verellen-Dumoulin C, Vikkula M. Gene symbol: IRF6. Disease: Van der Woude syndrome. Hum Genet, 2003 Nov;113(6): 558
    26. Marazita, M.L., Goldstein, A.M., Smalley, S.L. and Spence, M.A. Cleft lip with or without cleft palate: reanalysis of a three-generation family study from England. Genet. Epidemiol, 1986,3: 335-342
    27. Mitchell, L.E. Genetic epidemiology of birth defects: nonsyndromic cleft lip and neural tube defects. Epidemiol. Rev,
    
    1997,19: 61-68
    28. Mitchell, L.E. and Risch, N. Mode of inheritance of nonsyndromic cleft lip with or without cleft palate: a reanalysis. Am. J. Hum. Genet, 1992,51: 323-332
    29. Thomson G. Mapping disease genes: family-based association studies. Am J Hum Genet, 1995 Aug;57(2): 487-98
    30. Umbach DM, Weinberg CR. Designing and analysing case-control studies to exploit independence of genotype and exposure. Stat Medl 1997 Aug 15;16(15): 1731-43
    31. Houzelstein D, Cohen A, Buckingham ME, Robert B. Insertional mutation of the mouse MSX1 homeobox gene by an nlacZ reporter gene. Mech. Dev, 1997,65: 123-133
    32. Kaartiinen V, Cui XM, Heisterkamp N, Groffen J, Shuler CF. Transforming growth factor-beta3 regulates transdifferentiation of medial edge epithelium during palatal fusion and associated degradation of the basement membrane. Dev. Dyn, 1997,209: 255-260
    33. Sun D, Vanderburg CR, Odierna GS, Hay ED. TGFbeta3 promotes transformation of chicken palate medial edge epithelium to mesenchyme in vitro. Development, 1998,125: 95-105
    34. Condie BG, Bain G, Gottlieb DI, Capecchi MR. Cleft palate in mice with a targeted mutation in the gamma-aminobutyric acid-producing enzyme g]utamic acid decarboxylase 67. Proc Natl Acad Sci U S A, 1997 Oct 14;94(21): 11451-5
    35.金岩编著.口腔颌面组织胚胎学.西安:陕西科学技术出版社,2002.4.72-80
    36. Limbird, L.E. and Taylor, P. Endocrine disruptors signal the need for receptor models and mechanisms to inform policy. Cell, 1998,93: 157-163
    37. Crews, S.T. Control of cell lineage-specific development and transcription by bHLH-PAS proteins. Genes Dev, 1998, 12: 607-620
    38. Cembrano, J.R.J., Vera, J.S.d., Joaquino, J.B., Ng, E.F.,
    
    Tongson, T.L., Manalo, P.D., Fernandez, G.C. andEncarnacion, R.C. Familial risk of recurrence of clefts of the lip and palate. Philipp. J. Surg. Surg. Spec, 1995,50: 37-40
    39. Chung, C.S., Mi, M.P. and Beechert, A.M. Genetic epidemiology of cleft lip with or without cleft palate in the population of Hawaii. Genet. Epidemiol, 1987,4: 415-423
    40. Shaw GM, Lammer EJ. Maternal periconceptional alcohol consumption and risk for orofacial clefts. J Pediatr, 1999, 134(3): 298-303
    41. N.E. Maestri, T.H. Beaty, J. Hetmanki, E.A. Smith, I. McIntosh, D.F. Wyszynski, K.Y. Liang, D.L. Duffy, C. VanderKolk. Application of transmission disequilibrium tests to nonsyndromic oral clefts: including candidate genes and environmental exposures in the model. Am. J. Med. Genet, 1997,73: 337-344
    42. L.E. Mitchell, J.C. Murray, S. O' Brien, K. Christensen. Retinoic acid receptor alpha gene variants, multivitamin use, and liver intake as risk factors for oral clefts: a population-based case-control study in Denmark, 1991 - 1994, Am. J. Epidemiol, 2003,158: 69 - 76
    43. P.A. Romitti, A.C. Lidral, R.G. Munger, S. Daack-Hirsch, T.L. Burns, J.C. Murray. Candidate genes for nonsyndromic cleft lip and palate and maternal smoking and alcohol consumption: evaluation of genotypeenvironment interactions from a population-based case-control study of orofacial clefts. Teratology, 1999,59: 39 - 50
    44. G.M. Shaw, C.R. Wasserman,. J.C. Murrau, E.J. Lammer. Infant TGF-alpha genotype, orofacial clefts, and maternal periconceptional multivitamin use. Cleft Palate Craniofac. J, 1998,35: 366 -370
    45. Degitz SJ, Francis BM, Foley GL. Mesenchymal changes associated with retinoic acid induced cleft palate in CD-1 mice. J. Craniofac
    
    Genet. Dev. Biol,1998,18: 88-99
    46. Abbott BD, Probst MR, Perdew GH, Buckalew AR. AH receptor ARNT glucocorticoid receptor, EGF receptor, EGF, TGF alpha, TGF beta 1, TGF beta 2 and TGF beta 3 expression in human embryonic palate and effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD). Teratology, 1998,58: 30-43
    47. Evans TRJ, Kaye SB. Retinoids: present role and future potential. Br. J Cancer, 1999, 80: 1-8
    48. TimothyN, Stephanie HD, Jian Z, et al. Ap-2-null cells disrupt morphogenesis of the eye, face, and limbs in chimeric mice. Pro. Nat] Acad. Sci, 1998;95: 13714-13719
    49. L. Jara, R. Blanco, I. Chiffelle, H. Palomino, H. Carreo. Evidence for an association between RFLPs at the transforming growth factor alpha (locus) and nonsyndromic cleft lip/palate in a South American population. Am. J. Hum. Genet, 1995,56: 339-341
    50. L. Jara, R. B1anco, I. Chiffelle, H. Palomino, H. Carreo. Association between alleles of the transforming growth factor alpha locus and cleft lip and palate in the Chilean population. Am. J. Med. Genet, 1995,57: 548-551
    51. G.M. Shaw, C.R. Wasserman, E.J. Lammer, C.D. O' Malley, J.C. Murray, A.M. Basart, M.M. Tolarova. Orofacial clefts, parental cigarette smoking, and transforming growth factor-alpha gene variants. Am. J. Hum. Genet, 1998,58: 551-561
    52. D. Shaw, A. Ray, M. Marazita, L. Field. Further evidence of a relationship between the retinoic acid receptor alpha locus and nonsyndromic cleft lip with or without cleft palate (CL±P). Am. J. Hum. Genet, 1993,53: 1156-1157
    53. G. Chenevix-Trench, K. Jones, A.C. 6reen, D.L. Duffy, N.G. Martin. Cleft lip with or without cleft palate: associations with transforming growth factor alpha and retinoic acid receptor loci. Am. J. Hum. Genet, 1992,51: 1377-1385
    
    
    54. G. Chenevix-Trench, K. Jones, A. Green, N. Martin. Further evidence for an association between genetic variation in transforming growth factor-alpha with cleft lip and palate. Am. J. Hum. Genet, 1991,48: 1012-1013
    55. C. Stoll, J.F. Oian, J. Feingold, P. Sauvage, E. May. Genetic variation in transforming growth factor alpha: possible association of BamHI polymorphism with bilateral sporadic cleft lip and palate. Hum. Genet, 1993,92: 81-82
    56. A. Tanabe, S. raketani,Y. Endo-Ichikawa, R. rokunaga, Y. Ogawa, M. Hiramoto. Analysis of the candidate genes responsible for non-syndromic cleft lip and palate in Japanese people. Clin. Sci, (Load.) 2000,99: 105-111
    57. M. D. Fallin, J. B. Hetmanski, J. Park, A.F. Scott, R. Ingersoll, H.A. Fuernkranz, I. McIntosh, T.H. Beaty. Family-based analysis of MXX1 haplotypes for association with oral clefts. Genet. Epidemiol, 2003,25: 168- 175
    58. A.C. Lidral, J.C. Murray, K.H. Buetow, A.M. Basart, H. Schearer, R. Shiang, A. Naval, E. Layda, K. Magee, W. Magee. Studies of the candidate genes TGF82, MSX1, TGFA, and TGFB3 in the etiology of cleft lip and palate in the Philippines. Cleft Palate Craniofac. J, 1997,34: 1 - 6
    59. A.R. Viera, I.M. Orioli, E.E. Castilla, M.E. Cooper, M.L. Marazita, J.C. Murray. MSX1 and TGFB3 contribute to clefting in South America. J. Dent. Res, 2003,82: 289 -292
    60. Mitchell, L.E., Healey, S.C. and Chenevix-Trench, G. Evidence for an association between nonsyndromic cleft lip with or without cleft palate and a gene located on the long arm of chromosome 4. Am. J. Hum. Genet, 1995,57: 1130-1136
    61. Carinci, F., Pezzetti, F., Scapoli, L., Padula, E., Baciliero, U., Curioni, C. and rognon, M. Nonsyndromic cleft lip and palate: evidence of linkage toamicrosatellite marker on 6p23. Am. J. Hum.
    
    Genet, 1995,56: 337-339
    62. Scapoli, L., Pezzetti, F., Carinci, F., Martinelli, M., Carinci, P. and Tognon, M. Evidence of linkage to 6p23 and genetic heterogeneity in nonsyndromic cleft lip with or without cleft palate. Genomics, 1997,43: 216-220
    63. G. Chenevix-Trench, K. Jones, A.C. Green, D.L. Duffy, N.G. Martin. Cleft lip with or without cleft palate: associations with transforming growth factor alpha and retinoic acid receptor loci. Am. J. Hum. Genet, 1992,51: 1377-1385
    64. Vintiner, G.M., Lo, K.K., Holder, S.E., Winter, R.M. and Malcolm, S. Exclusion of candidate genes fromarole in cleft lip with or without cleft palate: linkage and association studies. J. Med. Genet, 1993,30: 773-778
    65. Wyszynski, D.F., Maestri, N., McIntosh, I., Smith, E.A., Lewanda, A.F., Garcia-Delgado, C., Vinageras-Guarneros, E., Wulfsberg, E. and Beaty, T.H. Evidence for an association between markers on chromosome 19q and non-syndromic cleft lip with or without cleft palate in two groups of multiplex families. Hum. Genet, 1997,99: 22-26
    66. Stein, J., Mulliken, J.B., Stal, S., Gasser, D.L., Malcolm, S., Winter, R., Blanton, S.H., Amos, C., Seemanova, E. and Hecht, J.r. Nonsyndromic cleft lip with or without cleft palate: evidence of linkage to BCL3 in 17 multigenerational families. Am. J. Hum. Genet, 1995,57: 257-272
    67. Berk, M., Desai, S.Y., Heyman, H.C. and Colmenares, C. Mice lacking the ski proto-oncogene have defects in neurulation, craniofacial patterning, and skeletal muscle development. Genes Dev, 1997, 11: 2029-2039
    68. Kurihara, Y., Kurihara, H., Suzuki, H., Kodama, T., Maemura, K., Nagai, R., Oda, H., Kuwaki, T., Cao, W.H., Kamada, N. et al. Elevated blood pressure and craniofacial abnormalities in mice
    
    deficient in endothelin-1. Nature, 1994,368: 703-710
    69. Qiu, M., Bulfone, A., Ghattas, I., Meneses, J.J., Christensen, L., Sharpe, P.T., Presley, R., Pedersen, R.A. and Rubenstein, J.L. Role of the Dlx homeobox genes in proximodistal patterning of the branchial arches: mutations of Dlx-1, Dlx-2, and Dlx-1 and -2 alter morphogenesis of proximal skeletal and soft tissue structures derived from the first and second arches. Dev. Biol, 1997,185: 165-184
    70. Semina, E.V., Reiter, R., Leysens, N.J., Alward, W.L., Small, K.W., Datson, N.A., Siegel-Bartelt, J., Bierke-Nelson, D., Bitoun, P., Zabel, B.U., Carey, J.C. and Murray, J.C. Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nature Genet, 1996,14: 392-399
    71. Peters, H., Neubuser, A., Kratochwil, K. and Balling, R. Paxg-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev, 1998, 12: 2735-2747
    72. Nottoli, T., Hagopian-Donaldson, S., Zhang, J., Perkins, A. and Williams, T. AP-2-null cells disrupt morphogenesis of the eye, face, and limbs in chimeric mice. Proc. Natl Acad. Sci. USA, 1998,95: 13714-13719
    73. De Felice, M., Ovitt, C., Biffali, E., Rodriguez-Mallon, A., Arra, C., Anastassiadis, K., Macchia, P.E., Mattei, M.G., Mariano, A., Scholer, H., Macchia, V. and Di Lauro, R. A mouse model for hereditary thyroid dysgenesis and cleft palate. Nature Genet, 1998,19: 395-398
    74. Clifton-Bligh, R.J., Wentworth, J.M., Heinz, P., Crisp, M.S., John, R., Lazarus, J.H., Ludgate, M. andChatterjee, V.K. Mutation of the gene encoding human TTF-2 associated with thyroid agenesis, cleft palate and choanal atresia. Nature Genet, 1998,19: 399-401
    
    
    75. Francis WP, Ladher R, Barlow A, Graveson A. Signalling interactions during facial development. Mech. Dev, 1998,75: 3-28
    76. Schorle H, Meier P, Buchert M, Jaenisch R, Mitchell. Transcription factor AP-2 essential for cranial closure and craniofacial development. Nature, 1996,381: 235-238
    77. Juriloff, P.M. andMah, D.G. The major locus formultifactorial nonsyndromic cleft lip maps to mouse chromosome 11. Mamm. Genome, 1995,6: 63-69
    78. Juriloff, P.M. Genetic analysis of the construction of the AEJ. A congenic strain indicates that nonsyndromic CL (P) in the mouse is caused by two loci with epistatic interaction. J.. Craniofac. Genet. Dev. Biol, 1995,15: 1-12
    79. Diehl, S.R. and Erickson, R.P. Genome scan for teratogen-induced clefting susceptibility loci in the mouse: evidence of both allelic and locus heterogeneity distinguishing cleft lip and cleft palate. Proc. Natl Acad. Sci. USA, 1997,94: 5231-5236
    80. Martinez-Alvarez C, Blanco MJ, Perez R, Rabadan MA, Aparicio M, Resel E, Martinez T, Nieto MA. Snail family members and cell survival in physiological and pathological cleft palates. Dev Biol,2004 Jan 1;265(1): 207-18
    81. Wang T, Tamakoshi T, Uezato T, Shu F, Kanzaki-Kato N, Fu Y, Koseki H, Yoshida N, Sugiyama T, Miura N. Forkhead transcription factor Foxf2 (LUN)-deficient mice exhibit abnormal development of secondary palate. Dev Biol, 2003 Jul 1;259(1): 83-94
    82. Hagiwara N, Katarova Z, Siracusa LD, Brilliant MH. Nonneuronal expression of the GABA(A) beta3 subunit gene is required for normal palate development in mice. Dev Biol, 2003 Feb 1;254(1): 93-101
    83. Brewer S, Feng W, Huang J, Sullivan S, Williams T. Wntl-Cre-mediated deletion of AP-2alpha causes multiple neural crest-related defects. Dev Biol, 2004 Mar 1;267(1): 135-52
    
    
    84.李鑫.金岩.岳文.刘源.王新文.小鼠腭裂相关基因的克隆及基因表达的意义.中国临床康复,2003,6:940-942.
    85. Kas K, Michiels L, Merregaert J. Genomic structure and expression of the human fau gene: encoding the ribosomalprotein $30 fused to a ubiquitin-like protein. Biochem Biophys Res Commun, 1992,187(2): 927-33
    86.吕红兵.金岩.李媛.赵宇BALB/C胎鼠面突未分化外胚间充质细胞的休外培养.实用口腔医学杂志.1999,1:49-50
    87. Sugaya S, Fujita K, Kikuchi A. Inhibition of tumor growth by direct intratumoral gene transfer of herpes simplex virus thymidine kinase gene with DNA-liposome complexes. Hum Gene Ther, 1996 Jan 20;7(2): 223-30
    88. Soderqvist H, Imreh G, Kihlmark M. Intracellular distribution of an integral nuclear pore membrane protein fused to green fluorescent protein--localization of a targeting domain. Eur J Biochem. 1997 Dec 15;250(3): 808-13
    89. Misteli T, Spector DL. Application of the green fluorescent protein in cell biology and biotechnology. Nature Biotechnol, 1997;15: 961
    90. Rowland RR, Kervin R, Kuckleburg C, Sperlich A, Benfield DA. The localization of porcine reproductive and respiratory syndrome virus nucleocapsid protein to the nucleolus of infected cells and identification of a potential nucleolar localization signal sequence. Virus Res, 1999,64(1): 1-12
    91. Crameri A, Whitehorn EA, rate E, Stemmer WP. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol, 1996 Mar;14(3): 315-9
    92. Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res, 1984 Jan 25;12(2): 857-72
    93. Ward ES, Gussow DH, Griffiths AD et al. Binding activity of
    
    a repertoire of single immunoglogulin variable domain secreted from Escherichia Coli. Nature, 1989,341: 544-546
    94. Davis L, Kuehl M, Battey J. Basic methods in molecular biology (2nd edition) [M]. Norwalk, Connecticut: Appleton & Lange, 1993: 237-245,612-624

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700