黑斑原鮡肝脏的发生及相关生物学适应性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑斑原鮡(Glyptosternum maculatum)主要分布于雅鲁藏布江中游干支流,隶属于鲇形目(Siluriformes),鮡科(Sisoridae),原鮡属(Glyptosternum),是鰋鮡鱼类中的一种。该鱼除在腹腔内具有正常肝脏外,在体侧肌肉与皮肤之间还有一特殊组织,位于胸鳍基部后方的皮下与肌肉间,由一带状组织(连接带)与腹腔内肝脏相连接。经研究证实这一组织并非畸形所致,为黑斑原鮡特有组织——“腹腔外肝”。本文主要研究了黑斑原鮡早期肝脏的发生;腹腔内肝和腹腔外肝的生理生化差异;鮡科鱼类的肝脏特征及黑斑原鮡的血液学。论文主要结果如下:
     1.黑斑原鮡的肝脏首先出现在原始消化管(食道部位)的左侧,肝脏发生的过程分为三个阶段:(1)无腹腔外肝阶段;(2)出现肝脏“突起”阶段;(3)腹腔外肝出现阶段。腹腔外肝是在腹腔壁肌肉层增厚,食道和骨鳔增大的过程中,首先形成较为粗大的突起,然后该突起基部和中部逐渐变细形成连接带,而端部膨大形成腹腔外肝。经研究表明,腹腔外肝与腹腔内肝脏一样位于腹腔,故建议将“腹腔外肝”改为“副肝”(attaching liver),‘腹腔内肝脏”相应的改为“主肝’’(main liver)。
     2.黑斑原鮡主肝和副肝的结构在显微和超微水平上都基本一致。肝脏连接带的结构也与主肝和副肝的结构相似。组织学中,连接带中的静脉,动脉和胆管均比较粗大,这表明连接带是主肝和副肝进行物质活动的传输纽带。
     3.对黑斑原鮡肝脏(主肝和副肝)的三种组成成分(蛋白质、糖原、脂肪)的含量、三种代谢酶(LDH、AST、ALT)的活性、两种抗氧化酶(SOD、CAT)及总抗氧化能力进行了测定。主肝中的蛋白质含量、脂肪含量、总抗氧化能力、超氧化物歧化酶活性和过氧化氢酶活性均略高于副肝;而主肝中的糖原含量、乳酸脱氢酶活性、谷草转氨酶活性和谷丙转氨酶活性均略低于副肝,但主肝和副肝在各指标上的差异均未达到显著水平(P>0.05)。
     4.获得了β-actin、Cu-Zn SOD、Mn SOD和CAT四个基因的特异性片段,并以β-actin为参照基因得到了主肝和副肝中Cu-Zn SOD、Mn SOD和CAT mRNA的相对表达量。黑斑原鮡主肝和副肝中Cu-Zn SOD、Mn SOD和CAT mRNA表达量的差异均呈显著水平(P<0.05),主肝Cu-Zn SOD、Mn SOD和CAT mRNA的相对表达量均显著大于副肝。
     5.本研究共解剖18种(10属)鮡科鱼类,其中7种(7属)具有明显的副肝,另外的11种(4属)不具有副肝。不同属之间存在肝脏形态的差异。胚属、黑鮡属和纹胸鮡属的种类均不具有副肝,而鰋鮡鱼类均具有副肝。而同属的不同种之间也存在着肝脏形态的差异。褶鮡属的黄斑褶鮡和间褶鮡肝脏形态差别较大,黄斑褶鮡具有副肝,而间褶鮡仅具有明显的肝脏突起。副肝与主肝重量之比按从小到大的顺序依次为:黄斑褶鮡、拟鰋属<鮡属<石爬鮡属<原鮡属<鰋属<凿齿鮡属。
     6.根据鮡科鱼类的地理分布界域和副肝的相对大小与分布海拔所做的相关性分析结果(极显著正相关),可以看出随着分布海拔的升高,鮡科鱼类肝脏的发展趋势为:无副肝(魾属和黑鮡属)→出现肝脏突起(纹胸鮡属)→肝脏突起非常明显(间褶鮡)→副肝出现(黄斑褶鮡)→副肝逐渐增大(鰋鮡鱼类)。副肝是鮡科鱼类在适应高海拔,急流环境的过程中,随体形的变化形成的,它实际上是对高海拔、急流这一特殊环境的适应。
     7.根据副肝从无到有的形态特征变化,鮡科鱼类总的演化趋势为(黑鮡属,魾属,纹胸鮡属)→褶鮡属→鰋鮡鱼类。依据副肝从小到大的形态特征分析,鰋鮡鱼类在系统进化上具有以下演化趋势:拟鰋属Pseudexostoma(副肝明显小于主肝)→鮡属Pareuchiloglanis(副肝小于主肝,但较拟鰋属大)→石爬鮡属Euchiloglanis(副肝小于主肝,但较鮡属大)→原鮡属Glyptosternum(副肝小于主肝,但较石爬鮡属大)→鰋属Exostoma(副肝与主肝几乎等大)→凿齿鮡属Glaridoglanis(副肝大于主肝)。
     8.对黑斑原鮡的红细胞数(RBC)、血红蛋白含量(Hb)、红细胞脆性(Eof)、红细胞沉降率(ESR)、红细胞比容(Hct)、平均红细胞血红蛋白(MCH)、平均红细胞血红蛋白浓度(MCHC)和平均红细胞体积(MCV)等血液生理指标进行了测定,结果显示,黑斑原鮡与其他鲇形目鱼类相比,具有相似的Hct, Hb、MCH和MCHC,较低的RBC和较高的MCV。对血糖(GLU)、尿素(UREA)、肌酐(CREA)、白蛋白(ALB)、球蛋白(GLB)、白蛋白/球蛋白(A/G)、直接胆红素(DBIL)、总胆红素(TBIL)、总胆固醇(TC)、甘油三酯(TG)、总蛋白(TP)、碱性磷酸酶(ALP)、谷丙转氨酶(ALT)、谷草转氨酶(AST)等血液生化指标的测定结果表明,黑斑原鮡的AST高于其他鲇形目鱼类。
     9.利用光镜和电镜对黑斑原鮡血细胞形态与结构的研究表明,黑斑原鮡外周血中包括红细胞和五种白细胞:淋巴细胞、嗜中性粒细胞、单核细胞、血栓细胞和浆细胞。与其他鲇形目鱼类相比,黑斑原鮡血细胞的形态和结构具有特殊之处,如较大体积的红细胞、不存在嗜酸性粒细胞和嗜碱粒细胞以及存在各种形态的血栓细胞(裸核、纺锤形、蝌蚪形、卵圆形和聚集到一起的血栓细胞)。
Glyptosternum maculatum, one species of Glyptosternoids, is distributed in the mid-reaches of Yarlung Zangbo River as well as its tributaries in the Tibetan Plateau of China. G. maculatum belongs to the genus Glyptosternum (McClelland), the family Sisoridae, in the order Siluriformes. Besides the celiac liver, there is another structure called "exo-celiac liver" located between skin and muscular layer, and connected with the celiac liver by a funiform tissue, "joint belt". According to previous research, "exo-celiac liver" has been proven to be a unique normal tissue in G. maculatum. This dissertation studied the liver morphogenesis of the yolk-sac larvae, the physiological and biochemical differences between celiac liver and exo-celiac liver, the liver characteristics of sisorid catfishes, and the haematology. The main results are shown as follows:
     1. The location of the liver in G. maculatum first appeared in the left side of primary alimentary tract. The liver morphogenesis was divided into three phases:(1) no exo-celiac liver, (2) appearance of the "protrusion", and (3) appearance of exo-celiac liver. The exo-celiac liver progressively forms as the adjacent tissues grow larger (muscle of parietal peritoneum thickens, the size of bony bladder and oesophagus is enlarged). Exo-celiac liver located in the abdominal cavity just as celiac liver, so we considered that'exo-celiac liver'should be instead of'attaching liver', and the'celiac liver'should be instead of 'main liver'accordingly.
     2. The microstructure and ultrastructure of main liver and attaching liver were similar in G. maculatum. In histology, joint belt as the connecting bond of material transport between main liver and attaching liver, its vein, artery and bile duct were larger than both of them.
     3. We determined the contents of biochemical compositions, enzyme activities and total antioxidant capacity of main liver and attaching liver in G. maculatum. The contents of protein and lipid, total antioxidant capacity, activities of SOD and CAT in main liver were all slightly higher than those in attaching liver. The content of glycogen, activities of LDH, ALT and AST were all lower than those in attaching liver. However, there were no significant differences in all parameters between main liver and attaching liver (P>0.05).
     4. We obtained the specific sequences ofβ-actin、Cu-Zn SOD、Mn SOD and CAT, and determined the relative gene expression of Cu-Zn SOD, Mn SOD and CAT in main liver and attaching liver of G. maculatum by fluorescence quantitative PCR with P-actin as a control. The relative mRNA levels of Cu-Zn SOD, Mn SOD and CAT in main liver were significant higher than those in attaching liver (P< 0.05).
     5. Eighteen species (10 genera) of sisorid catfishes were dissected in this research,7 species of which possessed obvious attaching liver, whereas the other 11 species (4 genera) had no attaching liver. The differences of hepatic morphology occurred among different genera. The glyptosternoid fishes possessed attaching liver, whereas Bagarius, Gagata, and Glypothorax had no attaching liver. The hepatic heteromorphosis appeared in different species whthin the same genera. Pseudecheneis sulcatus possessed attaching liver, whereas Pseudecheneis intermedius had no attaching liver. The order of the weight ratio of attaching liver to main liver is P. sulcatus, Pseudexostoma< Pseudexostoma< Euchiloglanis< Glyptosternum< Exostoma< Glaridoglanis.
     6. The correlation analysis of the tracks of different groups and elevation of Chinese sisorids (significantly positive correlation) showed that as the elevation became higher, the hepatic characteristics of sisorids had a trend as follows:no attaching liver (Bagarius and Gagata)→appearance of the hepatic protrusion(Glypothorax)→evident protrusion (Pseudecheneis intermedius)→appearance of attaching liver (Pseudecheneis sulcatus)→larger attaching liver (Glyptosternini fishes). Attaching liver formed as the body forms of sisorids changing in the process of adapting themselves to the environment of high elevation and torrent stream, which is an acclimation to particular environment.
     7. Based on the relative size of attaching liver from small to large, the phylogeny of the glyptosternoid fishes in this research presented the following tendency of evolution: Pseudexostoma (attaching liver is obviously smaller than main liver)→Pareuchiloglanis (attaching liver is smaller than main liver, but larger than Pseudexostoma)→Euchiloglanis (attaching liver is smaller than main liver, but larger than Pareuchiloglanis)→Glyptosternum (attaching liver is smaller than main liver, but larger than Euchiloglanis)→Exostoma (attaching liver is similar to main liver)→Glaridoglanis (attaching liver is larger than main liver).
     8. Red blood cell count (RBC), haemoglobin concentration (Hb), haematocrit (Hct), crythrocyte osmotic fragility (maxEof and minEof), the erythrocyte sedimentation rate (ESR), mean cell volume (MCV), mean cellular haemoglobin content (MCH), and mean cell haemoglobin concentration (MCHC) were determined. Compared with other Siluriformes fishes, G. maculatum showed similar mean values for Hct, Hb, MCH, and MCHC and had slightly lower RBC and higher MCV. Alanine aminotransferase, aspartate aminotransferase (AST), alkaline phosphatase, total protein, albumin, globulin, albumin/globulin ratio, total bilirubin, direct bilirubin, urea, creatinine, glucose, total cholesterol, and triglyceride were assayed. The result showed that the value of AST in G. maculatum was obviously higher than that in other Siluriformes fishes.
     9. The peripheral blood cells of a sisorid catfish G. maculatum were studied by light microscope and transmission electron microscope. Erythrocytes and five types of leucocytes:lymphocytes, heterophils, monocytes, thrombocytes, and plasma cell were characterized in G.maculatum blood. The morphology and structure of blood cells of G. maculatum were basically similar to those of other Siluriformes fish species, although there were also main differences, such as larger erythrocytes than other catfishes, absence of basophils and acidophils, and various types of thrombocytes (five types:lone nucleus, fusiform, tadpole-like, oval, and in a cluster).
引文
秉志.鲤鱼组织.北京:科学出版社,1983
    蔡春芳,陈立侨.鱼类对糖的代谢.水生生物学报,2008,32:592-597
    常青,陈四清,张秀梅等.半滑舌鳎消化系统器官发生的组织学.水产学报,2005,29(4):447-453
    陈细香,金灿彪,徐吉山等.大鳍鱯消化系统胚后发育的组织学研究.西南师范大学学报(自然科学版),2002,20(2):84-94
    陈晓耘.鱼类的血液.重庆师专学报,2000,19:70-73
    成嘉,符贵红,刘芳等.重金属铅对鲫鱼乳酸脱氢酶和过氧化氢酶活性的影响.生命科学研究,2006,10:372-376
    成令忠,王一飞,钟翠平.组织胚胎学——人体发育和功能组织学.上海:上海科学技术文献出版社,2003
    程汉良,夏德全,吴婷婷.鱼类脂类代谢调控与脂肪肝.动物营养学报,2006,18:294-298
    褚新洛,郑葆珊,戴定远等.中国动物志,硬骨鱼纲,鲇形目.北京:科学出版社,1999,158-160
    褚新洛.鰋鮡鱼类的系统发育及演化谱系:包括一新属和一新亚种的描述.动物分类学报,1979,4(1):72-82
    褚新洛.褶鮡属鱼类的系统发育及二新种的记述.动物分类学报,1982,7(4):428-437
    崔惟东,冷向军,李小勤等.虾青素和角黄素对虹鳟肌肉着色和肝脏总抗氧化能力的影响.水产学报,2009,33(6):987-995
    范国燕,赵春彦,李英文.饥饿与再投喂对鳊鱼幼鱼糖代谢的影响.重庆师范大学学报(自然科学版),2010,27(5):19-32
    范瑞青,汝少国.不同渗透压下美国红鱼外周血细胞超微结构的变化.海洋科学,2000,24:48-53
    方树淼,许涛清,崔桂华.鮡属鱼类一新种.动物分类学报,1984,9(2):209-211
    葛慕湘,靳晓敏,王华彬等.几种鱼类血细胞的形态观察.水利渔业,2006,26:19-21
    关海红,匡友谊,徐伟等.哲罗鱼消化系统器官发生发育的组织学观察.动物学杂志,2007,42(2):116-123
    郭宝英.黑斑原鮡遗传多样性分析及微卫星标记的开发.[博士学位论文].武汉:华中农业大学图书馆,2009
    郭宪光,张耀光,何舜平等.16S rRNA基因序列变异与中国鮡科鱼类系统发育.科学通报,2004,49(14):1371-1379
    郭宪光.骨鳔鱼类若干类群的分子系统发育和分化时间估算.[博士学位论文].武汉:中国科学院研究生院(水生生物研究所),2006
    何福林,向建国,李常健等.水温对虹鳟血液学指标影响的初步研究.水生生物学报,2007,31:363-369
    何舜平,曹文宣,陈宜瑜.青藏高原的隆升与鰋鮡鱼类(鲇形目:鮡科)的隔离分化.中国科学C辑:生命科学,2001,31(2):185-192
    胡先成.河川沙塘鳢(Odontobutis potamophila)早期发育过程中的器官发生,营养代谢及其能量收支的研究.上海:华东师范大学,2007
    贾艳菊,陈毅峰.不同水体营养状态对(?)和鱇(?)白鱼生长性能的影响.水生生物学报,2008,32:333-338
    金丽琴.生物化学.浙江:浙江大学出版社,2007
    李长玲,曹伏君.大弹涂鱼白细胞发生的研究.中国水产科学,2001,8:10-14
    李红敬.黑斑原鮡个体生物学及种群生态研究.[博士学位论文].武汉:华中农业大学图书馆,2008
    李树深.纹胸鮡属(Glyptothorax Blyth)鱼类的系统分类、分布及演化.云南大学学报(自然科学版),1986,8:98-104
    李树深.中国纹胸鮡属(Glyptothorax Blyth)鱼类的分类研究.云南大学学报(自然科学版),1984,(2):75-89
    李霞.水产动物组织胚胎学.北京:中国农业出版社,2006
    李旭.中国鲇形目鮡科鰋鮡群鱼类的系统发育及生物地理学分析.[硕士学位论文].昆明:西南林学院图书馆,2006
    李亚南,王冀平.鱼类免疫学研究进展.动物学研究,1995,16(1):83-94
    李云龙,刘春巧.动物发育生物学.济南:山东科学技术出版社,2005
    林光华,林琼,洪一江等.兴国红鲤血细胞发生的研究.南昌大学学报(理科版),1998,22:112-119
    林光华,张丰旺.二龄鲢和鳙血液的比较研究.水生生物学报,1998,22:9-16
    林光华,张丰旺.尼罗罗非鱼血液研究.江西大学学报(自然科学版),1992,16:103-107
    林浩然.白鲢幼鱼消化器官的发育生长.中山大学学报(自然科学版),1964,1:60-72
    林浩然.鱼类生理学.广州:广东高等教育出版社,1999
    刘冰,梁婵娟.生物过氧化氢酶研究进展.中国农学通报,2005,21:223-224
    刘海平.黑斑原鮡外部形态学观察和骨骼解剖学研究.[硕士学位论文].武汉:华中农业大学图书馆,2008
    刘鸿艳.黑斑原鮡同工酶的研究.[硕士学位论文].武汉:华中农业大学图书馆,2006
    刘小玲,严安生.黄颡鱼外周血细胞的组成及其显微与超显微结构.华中农业大学学报,2006,25(6):659-663
    刘勇.蛋白质对幼建鲤生长性能,消化功能和蛋白质代谢的影响.[硕士学位论文].雅安:四川农业大学,2008
    刘志洁,宗英.野生动物血液细胞学图谱.北京:科学出版社,2002
    刘志强,刘栓.白斑狗鱼血液生理,生化指标值和血液流变学常值的研究.动物学报,1999,45:398-403
    楼允东.组织胚胎学.北京:中国农业出版社,1996
    卢彤岩,郭德文,赵吉伟等.哲罗鱼不同组织SOD, CAT, ACP和AKP活力的比较研究.水产学杂志,2010,23(4):10-13
    孟庆闻,苏锦祥,李婉端.鱼类比较解剖.北京:科学出版社,1987
    米瑞芙,陶炳春.鲢鱼败血症血液生理指标的变化.淡水渔业,1993,23:16-19
    米瑞芙,谢宝华.鲤鱼血液生化指标的测定.淡水渔业,1984:37-38
    米瑞芙.草鱼,鲤和鲢血液学指标的测定.淡水渔业,1982,10-16
    莫天培,褚新洛.中国纹胸鮡属(Glyptothorax Blyth)鱼类的分类整理.动物学研究,1986,7(4):339-350
    潘黔生,郭广全.6种有胃真骨鱼消化系统比较解剖的研究.华中农业大学学报1996, 15:463-469
    乔志刚,张建平,牛景彦等.饥饿和再投喂对鲇血液生理生化指标的影响.水生生物学报,2008,32(5):631-636
    任修海,崔建勋,余其兴.黑斑原鮡的染色体组型及NOR单倍性.遗传,1992,14(6):10-12
    沈文英,林浩然.饥饿和再投喂对草鱼鱼种生物化学组成的影响.动物学报,1999,45:404-412
    盛颖,宗春华,陈湄玥等.血清谷草转氨酶极度升高的病因学调查.胃肠病学,1997,2(4):237-238
    谭树华,罗少安,梁芳等.亚硝酸钠对鲫鱼肝脏过氧化氢酶活性的影响.淡水渔业,2005,35(5):16-18
    王瑞霞.青鱼的原始器官原基的形成和消化系统呼吸系统的发生.水产学报,1982,6(1):77-83
    王少梅,陈少莲,崔奕波.用氯仿-甲醇抽提法测定鱼体脂肪含量的研究.水生生物学报,1993,17:193-196
    王伟,李默怡,何舜平.中国鮡科鱼RAPD分析及鰋鮡鱼类单系性的初步研究.水生生物学报,2003,27(1):92-94
    温安祥,周定刚.几种不同食性鱼类部分血液生化指标的比较研究.四川动物,2005,24:518-522
    伍献文,何名巨,褚新洛.西藏地区的鮡科鱼类.海洋与湖沼,1981,12(1):74-79
    武云飞,康斌,门强等.西藏鱼类染色体多样性的研究.动物学研究,1999,20(4):258-264
    武云飞,吴翠珍.青藏高原鱼类.成都:四川科学技术出版社,1992
    西藏自治区水产局.西藏鱼类及其资源.北京:中国农业出版社,1995
    谢碧文,岳兴建,张耀光.瓦氏黄颡鱼肝和胰的组织学及超微结构.西南农业大学学报,2004,26:645-649
    谢从新,樊启学,李大鹏等.黑斑原姚的人工催产方法.中国专利,CN101518217.2009-09-02
    谢从新,李红敬,李大鹏等.黑斑原鮡特殊器官-腹腔外肝.自然科学进展,2007, 17(5):683-686
    熊冬梅.黑斑原鮡消化生理的研究.[博士学位论文].武汉:华中农业大学图书馆,2010
    熊洪林,王志坚.翘嘴鲌和大鳍鱯和斑鳜肝脏的比较解剖.西南农业大学学报,2006,28:994-998
    许品诚,曹萃禾.湖泊围养鱼类血液学指标的初步研究.水产学报,1989,13:346-352
    薛芹.黑斑原鮡线粒体DNA序列的遗传多样性分析.[硕士学位论文].武汉:华中农业大学图书馆,2005
    杨荣武.生物化学原理.北京:高等教育出版社,2006
    杨秀萍.动物生理学.北京:高等教育出版社,2002
    杨秀萍.动物生理学实验.北京:高等教育出版社,2004
    杨严鸥,余文斌,姚峰等.5种鲤科鱼类血细胞数量,大小及血清生化成分的比较.长江大学学报:农学卷,2006,3:159-160
    姚承昌.白鲟肝脏和胰脏的组织学与形态学研究.水生生物学报,1987,11:67-72
    于海瑞.大黄鱼仔稚鱼消化生理,蛋白质和蛋氨酸需要量的研究.[博士学位论文].青岛:中国海洋大学,2006
    于平,超氧化物歧化酶研究进展.生物学通报,2006,41:4-6
    余先觉,周暾,李渝成等.中国淡水鱼类染色体.北京:科学出版社,1989,161-163
    袁仕取,张永安.鳜鱼外周血细胞显微和亚显微结构的观察.水生生物学报,1998,22:39-47
    曾端,麦康森,艾庆辉.脂肪肝病变大黄鱼肝脏脂肪酸组成,代谢酶活性及抗氧化能力的研究.中国海洋大学学报,2008,38:542-546
    翟良安,倪朝辉,叶雄平.浸螺杀对鲤鱼生化和血液指标影响的研究.淡水渔业,1992,4:24-26
    张春光,邢林.西藏地区的鱼类及渔业区划.自然资源学报,1996,11(2):157-163
    张春霖,岳佐和,黄宏金.西藏南部的鱼类.动物学报,1964,16(2):272-282
    张春霖.中国鲇类志.北京:人民教育出版社,1960
    张坤生,田荟琳.过氧化氢酶的功能及研究.食品科技,2007,32:8-11
    张迺蘅.生物化学.北京:北京医科大学出版社,2000
    赵宝生,孙建富.尼罗罗非鲫(Tilapia nilotca)仔鱼前期器官发育与分化的组织学观察.大连水产学院学报,1989,4(2):21-26
    赵海涛,张其中,赵海鹏等.南方鲇幼鱼和成鱼血液指标的比较.动物学杂志,2006,41(1):94-99
    赵明蓟,苏泽古,黄文郁等.池养鲤和草鱼血液学指标的研究.水生生物学报,1979,6:453-454
    郑卫东,李大鹏.中华鲟幼鱼的血液生化特性.华中农业大学学报,2007,26(1):95-97
    周顺伍.动物生物化学.北京:化学工业出版社,2008
    周永灿,邢玉娜,冯全英.鱼类血细胞研究进展.海南大学学报(自然科学版),2003,21:171-176
    周用武,庞峻峰,周伟等.姚科褶鮡属鱼类部分线粒体DNA序列分析与分子进化.西南林学院学报,2007,27(3):45-51
    周玉,郭文场,杨振国.鱼类血细胞的研究进展.动物学杂志,2001,36(6):55-57
    周玉,郭文场,杨振国等.欧洲鳗鲡外周血细胞的显微和超微结构.动物学报,2002,48(3):393-401
    周玉,潘风光,李岩松等.达氏鳇外周血细胞的形态学研究.中国水产科学,2006,13(3):480-484
    Adham K G, Ibrahim H M, Hamed S S et al. Blood chemistry of the Nile tilapia, Oreochromis niloticus (Linnaeus,1757) under the impact of water pollution. Aquat Ecol,2002,36:549-557
    Akiyoshi H, Inoue A. Comparative histological study of teleost livers in relation to phylogeny. Zool Sci,2004,21:841-850
    An K, Shin H, Choi C. Physiological responses and expression of metallothionein (MT) and superoxide dismutase (SOD) mRNAs in olive flounder, Paralichthys olivaceus exposed to benzo[a]pyrene. Comp Biochem Phys B,2008,149:534-539
    Andenen D E, Reid S D, Moon T W et al. Metabolic effects associated with chronically elevated cortisol in rainbow trout (Oncorhynchus mykiss). Can J Fish Aquat Sci, 1991,48:1811-1817
    Asadi F, Masoudifard M, Vajhi A et al. Serum biochemical parameters of Acipenser persicus. Fish Physiol Biochem,2006,32:43-47
    Asadi F, Masoudifard M, Vajhi A et al. Serum biochemical parameters of Acipenser persicus. Fish Physiol Biochem,2006,32:43-47
    Barcellos L J G, Kreutz L C, Rodrigues L B et al. Haematological and biochemical characteristics of male jundia (Rhamdia quelen Quoy & Gaimard Pimelodidae): changes after acute stress. Aquac Res,2003,34:1465-1469
    Basha S P, Rani U A. Cadmium-induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (Tilapia). Ecotox Environ Safe,2003,56:218-221
    Bernet D, Schmidt H, Wahli T et al. Effluent from a sewage treatment works causes changes in serum chemistry of brown trout (Salmo trutta L.). Ecotox Environ Safe, 2001,48:140-147
    Bertolucci B, Vicentini C, Vicentini I et al. Light microscopy and ultrastructure of the liver of Astyanax altiparanae Garutti and Britski,2000 (Teleostei, Characidae). Acta Sci Biol Sci,2008,30:73-76
    Borges A, Scotti L V, Siqueira D R et al. Hematologic and serum biochemical values for jundia(Rhamdia quelen). Fish Physiol Biochem,2004,30:21-25
    Boulhic M, Gabaudan J. Histological study of the organogenesis of the digestive system and swim bladder of the Dover sole, Solea solea (Linnaeus 1758). Aquaculture,1992, 102:373-396
    Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem,1976,72: 248-254
    Braunbeck T. Detection of environmentally relevant concentrations of toxic organic compounds using histological and cytological parameters:substance-specificity in the reaction of rainbow trout liver? In:Mueller R, Lloyd R eds., Sublethal and chronic effects of pollutants on freshwater fish. Oxford (United Kingdom):Fishing News Books for FAO,1994.15-29
    Brusle J, Anadon G G. The structure and function of fish liver. In:Munshi, J S D, Dutta H M eds., Fish Morphology. North-Holland:Science Publishers,1996.77-93
    Burrows A S, Fletcher T C, Manning M J. Haematology of the turbot, Psetta maxima (L.): ultrastructural, cytochemical and morphological properties of peripheral blood leucocytes. JAppl Ichthyol,2001,17:77-84
    Burtis C A, Ashwood E R. Tietz Fundamentals of Clinical Chemistry. Philadelphia:W.B. Saunders Company,1996
    Cannon M S, Mollenhauer H H, Eurell T E et al. An ultrastructural study of the leukocytes of the channel catfish, Ictalurus punctatus. JMorphol,1980,164:1-23
    Car D, James H. Effect of Fasting on Fatty Acid Composition of Muscle, Liver, and Abdominal Fat in Channel Catfish Ictalurus punctatus. J World Aquacult Soc,1994, 25:126-134
    Cazenave J, Wunderlin D A, Hued A C et al. Haematological parameters in a neotropical fish, Corydoras paleatus (Jenyns,1842) (Pisces, Callichthyidae), captured from pristine and polluted water. Hydrobiologia,2005,537:25-33
    Chapman L M, Roling J A, Bingham L K et al. Construction of a subtractive library from hexavalent chromium treated winter flounder (Pseudopleuronectes americanus) reveals alterations in non-selenium glutathione peroxidases. Aquat Toxicol,2004,67: 181-194
    Coz-Rakovac R, Strunjak-Perovic I, Hacmanjek M et al. Blood chemistry and histological properties of wild and cultured sea bass (Dicentrarchus labrax) in the North Adriatic Sea. Vet Res Commun,2005,29:677-687
    Craig P M, Wood C M, McClelland G B. Oxidative stress response and gene expression with acute copper exposure in zebrafish (Danio rerio). Am J Physiol-Reg I,2007, 293:1882-1892
    Dacie J V, Lewis S M. Practical haematology.9th ed. London:Churchill Livingstone, 2001
    de Pinna M C C. A phylogenetic analysis of the Asian catfish families Sisoridae, Akysidae, and Amblycipitidae, with a hypothesis on the relationships of the neo-tropical Aspredinidae (Teleostei, Ostariophysi). Chicago:Field Museum of Natural History,1996.67-68
    Eastman J T, DeVries A L. Hepatic ultrastructural specialization in Antarctic fishes. Cell Tissue Res,1981,219:489-496
    El-Bakary N, El-Gammal H. Comparative Histological, Histochemical and Ultrastructural Studies on the Liver of Flathead Grey Mullet (Mugil cephalus) and Sea Bream (Sparus aurata). Global Vet,2010,4(6):548-2010
    Esteban M A, Munoz J, Meseguer J. Blood cells of sea bass (Dicentrarchus labrax L.). Flow cytometric and microscopic studies. Anat Rec,2000,258:80-89
    Falk-Petersen I. Comparative organ differentiation during early life stages of marine fish. Fish Shellfish Immun,2005,19:397-412
    Field H A, Ober E A, Roeser T et al. Formation of the digestive system in zebrafish. I. Liver morphogenesis. Dev Biol,2003,253:279-290
    Fishelson, L, Becker K. Development and aging of the liver and pancreas in the domestic carp, Cyprinus carpio:from embryogenesis to 15-year-old fish. Environ Biol Fish, 2001,61:85-97
    Fynn-Aikins K, Hughes S G, Vandenberg G W. Protein retention and liver aminotransferase activities in Atlantic salmon fed diets containing different energy sources. Comp Biochem Phys A,1995,111:163-170
    Gao Z X,Wang W M, Yang Y et al. Morphological studies of peripheral blood cells of the Chinese sturgeon, Acipenser sinensis. Fish Physiol Biochem,2007,33:213-222
    Ghorpade N, Mehta V, Khare M et al. Toxicity Study of Diethyl Phthalate on Freshwater Fish Cirrhina mrigala. Ecotox Environ Safe,2002,53:255-258
    Gul S, Belge-Kurutas E, Y1ld1Z E et al. Pollution correlated modifications of liver antioxidant systems and histopathology of fish (Cyprinidae) living in Seyhan Dam Lake, Turkey. Environ Int,2004,30:605-609
    Guo X G, He S P, Zhang Y G. Phylogenetic relationships of the Chinese sisorid catfishes: a nuclear intron versus mitochondrial gene approach. Hydrobiologia,2007,579: 55-68
    Guo X G, He S P, Zhang Y G. Phylogeny and biogeography of Chinese sisorid catfishes re-examined using mitochondrial cytochrome b and 16S rRNA gene sequences. Mol Phylogenet Evol,2005,35:344-362
    Guyot E, Diaz J P and Connes R. Organogenesis of the liver in sea bream. J Fish Biol, 1995,47:427'-437
    Harder W. Anatomy of Fishes, Part I. Stuttgart:E. Schweizerbart'sche Verlagsbuchhandlung,1975.159-162
    He S P. The phylogeny of the glyptosternoid fishes (Teleostei:Siluriformes, Sisoridae). Cybium,1996,20:115-159
    Hegazi M M, Attia Z I, Ashour O A. Oxidative stress and antioxidant enzymes in liver and white muscle of Nile tilapia juveniles in chronic ammonia exposure. Aquat Toxicol,2010,99:118-125
    Hinton D, Pool C. Ultrastructure of the liver in channel catfish Ictalurus punctatus (Rafinesque). J Fish Biol,1976,8:209-219.
    Hook S E, Skillman A D, Small J A et al. Gene expression patterns in rainbow trout, Oncorhynchus mykiss, exposed to a suite of model toxicants. Aquat Toxicol,2006,77: 372-385
    Hora S, Silas E. Evolution and distribution of glyptosternoid fishes of the family Sisoridae (Order:Siluroidea). Proc Nat Inst Sci India,1952,18:309-322
    Huttenhuis H B T, Taverne-Thiele A J, Grou C P O et al. Ontogeny of the common carp (Cyprinus carpio L.) innate immune system. Dev Comp Immunol,2006,30:557-574
    Jin Y, Zhang X, Shu L et al. Oxidative stress response and gene expression with atrazine exposure in adult female zebrafish (Danio rerio). Chemosphere,2010,78:846-852
    Johnson R D, OConnor M L, Kerr R M. Extreme serum elevations of aspartate aminotransferase. Am J Gastroenterol,1995,90:1244-1245
    Kang J C, Jee J H, Koo J G et al. Anti-oxidative status and hepatic enzymes following acute administration of diethyl phthalate in olive flounder Paralichthys olivaceus, a marine culture fish. Ecotox Environ Safe,2010,73:1449-1455
    Kaplan A, Ozabo L L, Ophem K E. Clinical chemistry:interpretation and techniques.3rd edn. Philadelphia:Lea and Febiger,1988
    Kashiwagi A, Kashiwagi K, Takase M et al. Comparison of catalase in diploid and haploid Rana rugosa using heat and chemical inactivation techniques. Comp Biochem Phys B,1997,118:499-503
    Kim, M.O., Phyllis, E.B.,1998. Oxidative stress in critical care:is antioxidant supplementation beneficial? J Am Diet Assoc,98:1001-1008
    Larsson, Lewander K. Metabolic effects of starvation in the eel, Anguilla anguilla L Comp Biochem Phys A,1973,44:367-374
    Li C, Ni D, Song L et al. Molecular cloning and characterization of a catalase gene from Zhikong scallop Chlamys farreri. Fish Shellfish Immun,2008,24:26-34
    Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-AACt method. Methods,2001,25:402-408
    Livingstone D R. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull,2001,42:656-666
    Livingstone D. Oxidative stress in aquatic organisms in relation to pollution and aquaculture. Re Med Vet,2003,154:427-430
    Lopez-Ruiz A, Esteban M A, Meseguer J. Blood cells of the gilthead seabream (Sparus aurata L.):Light and electron microscopic studies. Anat Rec,1992,234:161-171
    Lu Z, Sang L, Li Z et al. Catalase and superoxide dismutase activities in a Stenotrophomonas maltophilia WZ2 resistant to herbicide pollution. Ecotox Environ Safe,2009,72:136-143
    Mai K S, Yu H R, Ma H M et al. A histological study on the development of the digestive system of Pseudosciaena crocea larvae and juveniles. J Fish Biol,2005,67: 1094-1106
    Malbrouck C, Kestemont P. Effects of microcystins on fish. Environ Toxicol Chem,2006, 25:72-86
    Malbrouck C, Trausch G, Devos P et al. Hepatic accumulation and effects of microcystin-LR on juvenile goldfish Carassius auratus L. Comp Biochem Phys C, 2003,135:39-48
    Mazmancl B, Cavas T. Antioxidant enzyme activity and lipid peroxidation in liver and gill tissues of Nile tilapia (Oreochromis niloticus) following in vivo exposure to domoic acid. Toxicon,2010,55:734-738
    McDonald D G, Milligan C L. Chemical properties of the blood. In:Hoar W S, Randall D J, Farrell A P eds., Fish Physiology. San Diego:Academic Press,1992,12:55-133
    McFarland V A, Inouye L S, Lutz C H et al. Biomarkers of oxidative stress and genotoxicity in livers of field-collected brown bullhead, Ameiurus nebulosus. Arch Environ Con Tox,1999,37:236-241
    Meton I, Mediavilla D, Caseras A et al. Effect of diet composition and ration size on key enzyme activities of glycolysis-gluconeogenesis, the pentose phosphate pathway and amino acid metabolism in liver of gilthead sea bream (Sparus aurata). Brit J Nutr, 1999,82:223-232
    Mgbenka B O, Oluah N S, Arungwa A A. Erythropoietic response and hematological parameters in the catfish Clarias albopunctatus exposed to sublethal concentrations of actellic. Ecotox Environ Safe,2005,62:436-440
    Mungkornkarn P, Termtachartipongsa P. Blood parameters and structures of blood cell types studied by light and electron microscope in giant catfish (Pangasius gigas). Int congr fish biol,1994
    Munshi J S D, Dutta H M. Fish morphology:Horizon of new research. Lebanon, New Hampshire:Science Publishers Incorporated,1996.77-88
    Nagai M, Ikeda S. Carbohydrate metabolism in fish I. Effects of starvation and dietary composition on the blood glucose level and the hepatopancreatic glycogen and lipid contents in carp. Bull Jpn Soc Sci Fish,1971,37(5):404-409
    Nelson J S. Fishes of the world.4th ed. New York:John Wiley and sons,2006.172-173
    Ng H H. A phylogenetic analysis of the Asian catfish family Sisoridae (Teleostei: Siluriformes), and the evolution of epidermal characters in the group. (Ph D dissertation). Michigan:University of Michigan,2006
    Okihiro M S, Hinton D E. Partial hcpatectomy and bile duct ligation in rainbow trout (Oncorhynchus mykiss):histologic, immunohistochemical and enzyme histochemical characterization of hepatic regeneration and biliary hyperplasia. Toxicol Pathol, 2000,28:342-356
    Olsvik P A, Kristensen T, Waagb R et al. mRNA expression of antioxidant enzymes (SOD, CAT and GSH-Px) and lipid peroxidative stress in liver of Atlantic salmon (Salmo salar) exposed to hyperoxic water during smoltification. Comp Biochem Phys C,2005,141:314-323
    Orbea A, Fahimi H D, Cajaraville M P. Immunolocalization of four antioxidant enzymes in digestive glands of mollusks and crustaceans and fish liver. Histochem Cell Biol, 2000,114:393-404
    Pavlidis M, Futter W C, Katharios P et al. Blood cell profile of six Mediterranean mariculture fish species. JAppl Ichthyol,2007,23:70-73
    Peng Z G, He S P, Zhang Y G. Phylogenetic relationships of glyptosternoid fishes (Siluriformes:Sisoridae) inferred from mitochondrial cytochrome b gene sequences. Mol Phylogenet Evol,2004,31:979-987
    Peng Z G, Ho S Y W, Zhang Y G et al. Uplift of the Tibetan plateau:evidence from divergence times of glyptosternoid catfishes. Mol Phylogenet Evol,2006,39: 568-572
    Perez-Jimenez A, Guedes M J, Morales A E et al. Metabolic responses to short starvation and refeeding in Dicentrarchus labrax. Effect of dietary composition. Aquaculture, 2007,265:325-335
    Rocha E, Monteiro R, Pereira C. Liver of the brown trout, Salmo trutta (Teleostei, Salmonidae):a stereological study at light and electron microscopic levels. Ana Rec A,1997,247:317-328
    Rocha E, Monteiro R, Pereira C. The liver of the brown trout, Salmo trutta fario:a light and electron microscope study. JAnat,1994,185:241-249
    Rombout J H W M, Huttenhuis H B T, Picchietti S et al. Phylogeny and ontogeny of fish leucocytes. Fish Shellfish Immun,2005,19:441-455
    Santamaria C A, Mateo M M, Traveset R et al. Larval organogenesis in common dentex Dentex dentex L.(Sparidae):histological and histochemical aspects, Aquaculture, 2004,237:207-228
    Savage A G. The ultrastructure of the blood cells of the pike Esox lucius L. J Morphol, 1983,178:187-206
    Sheader D L, Williams T D, Lyons B P et al. Oxidative stress response of European flounder(Platichthys flesus) to cadmium determined by a custom cDNA microarray. Mar Environ Res,2006,62:33-44
    Snyder G K, Sheafor B A. Red blood cells:centerpiece in the evolution of the vertebrate circulatory system. Amer Zool,1999,39:189-198
    Teles M, Pacheco M, Santos M A. Anguilla anguilla L. liver ethoxyresorufin O-deethylation, glutathione S-tranferase, erythrocytic nuclear abnormalities, and endocrine responses to naphthalene and [beta]-naphthoflavone. Ecotox Environ Safe, 2003,55:98-107
    Valavanidis A, Vlahogianni T, Dassenakis M et al. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotox Environ Safe,2006,64:178-189
    Vicentini C, Franceschini-Vicentini I, Bombonato M et al. Morphological Study of the Liver in the Teleost Oreochromis niloticus. Int J Morphol,2005,23:211-216
    Vijayan M M, Moon T W. Acute handling stress alters hepatic glycogen metabolism in food-deprived rainbow trout(Oncorhynchus mykiss). Can J Fish Aquat Sci,1992,49: 2260-2266
    Wells R M G, Baldwinb J, Seymourc R S et al. Red blood cell function and haematology in two tropical freshwater fishes from Australia. Comp Biochem Phys A,2005,141: 87-93
    Williams T D, Gensberg K, Minchin S D et al. A DNA expression array to detect toxic stress response in European flounder(Platichthys flesus). Aquat Toxicol,2003,65: 141-157
    Woo S, Yum S, Park H S et al. Effects of heavy metals on antioxidants and stress-responsive gene expression in Javanese medaka(Oryzias javanicus). Comp Biochem Phys C,2009,149:289-299
    Yakhnenkol V M, Yakhnenkol M S. Haematological parameters of Lake Baikal oilfish (golomyanka)(Comephorus dybowskii and Comephorus baicalensis). Hydrobiologia, 2006,568(S):233-237
    Yum S, Woo S, Lee T K. Screening of ecotoxicant responsive genes and expression analysis of benzo[a]pyrene-exposed Rockfish (Sebastes schlegeli). Mol Cell Toxicol, 2006,2:114-119
    Zhou W, Zhou Y W. Phylogeny of the genus Pseudecheneis (Sisoridae) with an explanation of its distribution pattern. Zool Stud,2005,44:417-433

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700