OFDM系统信道估计技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)作为一种多载波并行传输技术,具有高效的频谱利用率、优良的抗多径衰落能力和简单的系统硬件结构,是未来移动通信系统最有竞争力的候选方案。在OFDM系统中,实时、准确的信道估计是进行信号相干检测的必要条件,也与自适应链路和多天线传输等关键技术的实现密切相关。因此本论文重点研究OFDM系统的信道估计技术,包括导频辅助信道估计和盲信道估计两类方法。
     针对最小均方误差(Minimum Mean Square Error, MMSE)信道估计存在的先验统计特性未知和运算量大的问题,提出一种自适应的低秩(Low-Rank Adaptive, LRA)信道估计算法。该算法在通信过程中可以自适应地跟踪相关矩阵的主特征空间和系统信噪比变化,不需要信道统计特性的先验知识。通过低秩自适应滤波对MMSE估计低秩建模,避免了繁琐的矩阵求逆运算,使LRA算法复杂度较低。理论分析表明,LRA算法迭代收敛后的性能逼近于统计特性匹配时的MMSE估计。LRA算法还具有很强的适用性,不但可以对一维的频域或者时域MMSE信道估计进行改进,而且可以扩展运用到时频二维的导频辅助信道估计中。通过仿真验证了LRA算法的优异性能:在信道统计特性未知的条件下,LRA算法相比其他算法具有不同程度的性能增益。
     以Alamouti编码的两发射天线STC-OFDM系统为平台,提出一种基于子空间分解的多信道盲估计算法。该算法利用STC-OFDM系统的后缀补零(Zero-Padding, ZP)时域保护间隔和虚载波(Virtual Carriers, VC)频域保护间隔引入的结构性冗余进行多信道盲估计,保证了信道的盲可辨识性不受信道零点分布和符号映射方式的影响。可辨识性分析证明了多信道的盲估计结果只存在一个标量的模糊度。通过在系统中插入少量导频构成半盲算法,可以消除盲估计结果的模糊度。借助矩阵特征分析的一阶扰动理论,推导了子空间多信道盲估计的均方误差(Mean Square Error, MSE)性能。仿真验证了子空间多信道盲估计的可辨识性和MSE性能,并且指出半盲信道估计可以在数据传输速率更高的条件下,获得比训练序列信道估计更好的性能。
     原有的基于信息符号有限字符集特性的信道盲可辨识充分条件过于严格,在不满足该条件的情况下,信道仍有可能可以被辨识。提出并证明了信道盲可辨识的充分必要条件,该条件拓宽了原有充分条件的适用范围,包含了所有可辨识的情况。在此基础上,又提出一种频域最小距离(Frequency-domain Minimum Distance, FMD)算法。该算法通过对信道频率响应的多相分解和分段搜索,可以辨识出信道频率响应在所有子载波上的相位模糊度。只要系统和信道参数满足信道盲可辨识的充分必要条件,FMD算法均可使用,因此适用范围比现有算法广泛。仿真结果表明FMD算法可以在降低计算复杂度的同时具有更好的信道估计精度。
     利用信息符号的有限字符集特性,提出一种基于矩阵开方(computing Roots of Matrices, RM)的盲信道估计算法。该算法避免了常规算法的循环搜索,通过在时域上对一个Toeplitz下三角矩阵开方运算实现信道解卷积,可以得到信道估计的闭合解。其复杂度远远低于常规搜索类的算法,所需乘法次数仅与信道阶数的平方成正比,但信道估计性能却接近于搜索算法的最优性能。基于RM算法中的代价函数,又提出一种自适应矩阵开方(Adaptive computing Roots of Matrices, ARM)盲信道估计算法。该算法通过最陡下降方法将代价函数最小化,可以进一步提高RM算法的信道估计准确性。仿真结果表明在信道阶数较大,搜索类的算法无法处理的情况下,RM算法仍然可以得到较好的信道估计结果,而ARM算法可以有效地消除低信噪比条件下,噪声干扰对RM算法的不利影响。
Orthogonal frequency division multiplexing (OFDM) is a promising candidate for next-generation high-speed mobile multimedia communication systems due to its high spectral efficiency, robustness to multipath-fading channel and simple hardware implementation. In OFDM systems, a real-time and accurate channel estimation is not only crucial for coherent detection, but also indispensable for adaptive link and multiple-input and multiple-output (MIMO) transmission. This thesis focuses on channel estimation for OFDM systems, including pilots symbol assisted methods and blind methods.
     A low-rank adaptive (LRA) channel estimator is proposed in order to simultaneously reduce the computation complexity of minimum mean square error (MMSE) channel estimator and minimize its performance loss due to mismatch of the estimator-to-channel statistics. This algorithm adaptively tracks the noise power change and the principal eigenspace of time-average channel correlation matrix, and models the MMSE channel estimator by a low-rank adaptive filter. Therefore, the LRA has much lower computation complexity than the MMSE. Theoretical analysis indicates that without prior information of channel statistics, the LRA converges to the solution of statistics-matched MMSE estimation asymptotically. Moreover, LRA not only improves the one-dimensional (1-D) channel estimation, but also can be generalized to 2-D pilot-symbols assisted channel estimation. Simulation results show the effectiveness of LRA, as well as its improvement over other techniques when channel statistics information is unknown.
     A subspace based blind channel estimation algorithm is proposed for an Alamouti coded STC-OFDM system with 2 transmit antennas. This algorithm makes use of the redundancy introduced by zero-padding and virtual carriers,therefore channel identifiability is guaranteed regardless of channel zero locations and underlying symbol constellations. Identifiability analysis shows that multiple channels can be identified simultaneously up to one scalar ambiguity. With a small quantity of pilots, a semi-blind estimator can be established to resolve this scalar ambiguity. The subspace blind estimate’s mean square error (MSE) is obtained based on the first order perturbation theory. Simulation results testify the theoretical MSE and indicate that the semi-blind estimator is more accurate and more efficient than the training-based one.
     For OFDM systems, the necessary and sufficient conditions are proposed and proved for blind channel identifiability based on the finite alphabet property of information symbols. The existing sufficient condition is too strict while the proposed conditions are looser which can be applied in all cases of channel identifiability. Based on these new conditions, a novel minimum distance algorithm implementing in frequency domain (FMD) is proposed for blind channel estimation. By polyphase decomposition, the channel frequency response sequence is divided into several subsequences, and phase ambiguities of each subcarrier can be resolved by exhaustive searching only L elements in one subsequence, where L is the channel order. The applicability of FMD algorithm is more general than the existing ones because FMD algorithm can be utilized as long as parameters of the channel and the OFDM system satisfy the proposed conditions. Simulation results show that the FMD algorithm is accurate for channel estimation and has a low computation complexity.
     A novel blind channel estimator based on computing roots of matrices (RM) is proposed for OFDM systems. This algorithm exploits the finite alphabet property of information symbols and implements channel deconvolution by computing the Jth principle root of a low-triangular Toeplitz matrix. Therefore, RM algorithm has a computation complexity proportional to the square order of channel impulse response, which is much lower than searching algorithms in previous works, and RM is able to function in the case of large channel order that is intractable by searching algorithms. Moreover, an adaptive RM (ARM) algorithm is proposed to adjust RM estimator by steepest descent method. Simulation results indicate that RM algorithm has great accuracy comparable to the optimal exhaustive search, and ARM improves the estimation performance of RM considerably in low SNR condition.
引文
[1] Recommendation ITU-RM.1645:Vision frame work and over all objectives of the future development of IMT-2000 and of systems beyond IMT-2000.
    [2] S.Ohmori, Y.Yamao, N.Nakajima, The future generations of mobile communications based on broadband access technologies, IEEE Commun. Mag., 2000, 38(12): 134–142.
    [3] Y. Kim, B. J. Jeong, J. Chung, C. S. Hwang, et al., Beyond 3G: vision, requirements, and enabling technologies, IEEE Comm. Mag., 2003, 41(3): 120–124.
    [4] N. Natarajan, On systems beyond 3G: requirements and approaches, Proc. IEEE ICCT’03, Apr. 2003: 1305–1309.
    [5] J. A. C. Bingham. Multicarrier modulation for data transmitsion: An idea whose time has come. IEEE Commun. Mag., 1990, 28(5): 5-14.
    [6] Z. D. Wang, G. B. Giannakis. Wireless multicarrier communications– Where Fourier meets Shannon, IEEE Signal Process. Mag., 2000, 17(3): 29-48.
    [7] U. Berthold, F. K. Jondral, S. Brandes, et al., OFDM-based overlay systems: A promising approach for enhancing spectral efficiency. IEEE Commun. Mag., 2007, 45(12): 52-58.
    [8] R. W. Chang, Synthesis of band-limited orthogonal signals for multichannel data transmission, Bell Syst. Tech. J., Dec. 1966: 1775-1796.
    [9] S. B. Weinstein, P. M. Ebert, Data transmission by frequency division multiplexing using the discrete Fourier transform, IEEE Trans. Commun., 1971, COM-19(10): 628–634.
    [10] ETSI, Digital video broadcasting: framing structure, channel coding, and modulation for digital terrestrial television, EN 300-744, Aug. 1997.
    [11] ETSI, Radio broadcasting systems; digital audio broadcasting to mobile, portable and fixed receivers, ETS 300-401 ed. 2, May. 1997.
    [12] P.S.Chow, J.C Tu,. J.M.Cioffi, Performance evaluation of a multichannel transceiver system for ADSL and VHDSL services, IEEE J. Select. Areas Commun., 1991, 9(6): 909 -919.
    [13] IEEE 802.11a, 1999 supplement to IEEE standard for information technology and telecommunications and information exchange between systems– part II: LAN MAC and PHY specifications: high speed physical layer in the 5GHz band, Sep. 1999.
    [14] ETSI, Broadband radio access networks (BRAN); HIPERLAN type 2 technical specification part I-physical layer, DTS/BRAN030003-1.
    [15] I. Koffman, V. Roman, Broadband wireless access solutions based on OFDM aceess in IEEE802.16, IEEE Commun. Mag., 2002, 40(4): 96-103.
    [16] A. Doufexi, S. Armour, A. Nix et al., Design considerations and initial physical layer performance results for a space time coded OFDM 4G cellular network, in Proc. IEEE PIMRC, Sep. 2002: 192-196.
    [17] J. Chuang and N. Sollenberger, Beyond 3G: wideband wireless data access based on OFDM and dynamic packet assignment, IEEE Comm. Mag., 2000, 38(7): 78-87.
    [18] N. Chen, Jianhua Zhang, Ping Zhang, Improved channel estimation based on parametric channel approximation modeling for OFDM systems, IEEE Trans. Broadcasting, 2008, 54(2): 217– 225.
    [19] M. Han, T. Yu, J. Kim, et al. OFDM channel estimation with jammed pilot detector under narrow-band jamming, IEEE Trans. Vehic. Technol., 2008, 57(3): 1934– 1939.
    [20] K. Hung, D.W. Lin, Optimal delay estimation for phase-rotated linearly interpolative channel estimation in OFDM and OFDMA systems, IEEE Signal Process. Lett., 2008, 15: 349– 352.
    [21] K. Kwak, S. Lee, J. Kim, et al., A new DFT-based channel estimation approach for OFDM with virtual subcarriers by leakage estimation, IEEE Trans. Wireless Commun., 2008, 7(6): 2004– 2008.
    [22] J. Bruno, L. Marc, D. Gabriel, et al., Full synchronization method for OFDM/OQAM and OFDM/QAM modulations. ISSSTA '08, Aug. 2008: 344– 348.
    [23] J.-Y. Yu, C.-C. Chung, C.-Y. Lee, A symbol-rate timing synchronization method for low power wireless OFDM systems, IEEE Trans. Circuits and Systems II: Express Briefs, 2008, 55(9): 922– 926.
    [24] H. Zhou, A.V. Malipatil, Y.-F. Huang, OFDM carrier synchronization based on time-domain channel estimates, IEEE Trans. Wireless Commun., 2008, 7(8): 2988– 2999.
    [25] Y. Guo, G. Liu; J. Ge, A novel time and frequency synchronization scheme for OFDM systems, IEEE Trans. Consumer Electronics, 2008, 54(2): 321– 325.
    [26] L. Wang, C. Tellambura, Cross-entropy-based sign-selection algorithms for peak-to-average power ratio reduction of OFDM systems, IEEE Trans. Signal Process., 2008, 56(10) Part 1:, 4990– 4994.
    [27] K. D. Wong, M.-O. Pun, H.V. Poor, The continuous-time peak-to-average power ratio of OFDM signals using complex modulation schemes, IEEE Trans. Commun., 2008, 56(9): 1390– 1393.
    [28] W. Chen, C. Tellambura, A novel complementary sequence and PMEPR reduction in OFDM, Canadian Journal of Electrical and Computer Engineering, 2008, 33(1): 45– 51.
    [29] S. Cha, M. Park, S. Lee, A new PAPR reduction technique for OFDM systems using advanced peak windowing method, IEEE Trans. Consumer Electronics, 2008, 54(2): 405– 410.
    [30] Q. Yang, W. Shieh,; Y. Ma, Bit and power loading for coherent optical OFDM, IEEE Photonics Technology Letters, 2008, 20(15): 1305– 1307.
    [31] E. H. Choi, W. Choi, J. G. Andrews, Power loading using order mapping in OFDM systems with limited feedback, IEEE Signal Process. Lett., 2008, 15: 545– 548.
    [32] H. Kim, J. Kim, S. Yang, et al., An effective MIMO–OFDM system for IEEE 802.22 WRAN channels, IEEE Trans. Circuits and Systems II: Express Briefs, 2008, 55(8): 821– 825.
    [33] G. Zheng; K.-K. Wong; T.-S. Ng, Throughput maximization in linear multiuser MIMO–OFDM downlink systems, IEEE Trans. Vehic. Technol., 2008, 57(3): 1993– 1998.
    [34] J. Armstrong, Analysis of new and existing methods of reducing intercarrier interference due to carrier frequency offset in OFDM, IEEE Trans. Commun., 1999, 47(3): 365-369.
    [35] C. Muschallik, Improving an OFDM reception using an adaptive Nyquist windowing, IEEE Trans. Consumer Electron., 1996, 42(3): 259-269.
    [36] S. Zhou, G. B. Giannakis, Single-carrier space-time block coded transmissions over frequency-selective fading channels, IEEE Trans. Inform. Theory, 2003, 49(1): 164-179.
    [37] B. Muquet, Z. Wang, G. Giannakis, M. de Courville, P. Duhamel, Cyclic prefixing or zero padding for wireless multicarrier transmission? IEEE Trans. Commun., 2002, 50(12): 2136-2147.
    [38] P. A. Bello, Characterization of randomly time variant linear channels, IEEE Trans. Commun., 1963, CS-11(12): 300-393.
    [39] J. Sykora, Tapped delay line model of linear randomly time-variant WSSUS channel, IEE Elec. Lett. 2000, 36(19): 1656-1657.
    [40] E. Biglieri, J. Proakis and S. Shamai, Fading channels: information-theoretic and communications aspects, IEEE Trans. Inform. Theory, 1998, 44(6): 2619-2692.
    [41] James Cavers, Mobile channel characteristics, Kluwer Academic Publishers, 2000: 61-83.
    [42]张贤达,保铮,通信信号处理,国防工业出版社, 2000: 60-67, 226-229。
    [43] J. G. Proakis,数字通信,第三版,电子工业出版社, 2001: 373-387.
    [44] S. Osvaldo, B. Yeheskal, S. Umberto. Pilot-based channel estimation for OFDM systems by tracking the delay-subspace. IEEE Trans. Wireless Comm., 2004, 3 (1): 315-325.
    [45] R. Negi, J. Cioffi, Pilot tone selection for channel estimation in a mobile OFDM system, IEEE Trans. Consumer Electron., 1998, 44(8): 1122–1128.
    [46] J. H. Manton, Optimal training sequence and pilot tones for OFDM systems, IEEE Commun. Lett., 2001, 5(4): 151-153.
    [47] I. Barhumi, G. Leus, M. Moonen, Optimal training sequences for channel estimation in MIMO OFDM systems in mobile wireless channels, in International Zurich Seminar on Broadband Communications, Access, Transmission, Networking, 2002: 44-1~44-6.
    [48] M. Dong, L. Tong, Optimal design and placement of pilot symbols for channel estimation, IEEE Trans. signal process., 2002, 50(12): 3055–3069.
    [49] Ahmad R. S. Bahai,B. R. Saltzbegr, Multi-carrier digital communication theory and application of OFDM, Kluwer Academie/Plenum Publisher, NewYork, 1999.
    [50] M. Morelli, U. Mengali, A comparison of pilot-aided channel estimation methods for OFDM systems, IEEE Trans. Signal Process., 2001, 49(12): 3065-3073.
    [51] S. Coleri, M. Ergen, A. Puri, et al., Channel estimation techniques based on pilot arrangement in OFDM systems, IEEE Trans. Broadcasting, 2002, 48(3): 223-229.
    [52] S. G. Kang, Y. M. Ha, E. K. Joo, A comparative investigation on channel estimation algorithms for OFDM in mobile communications, IEEE Trans. Broadcasting, 2003, 49(2): 142-149.
    [53]终学俭,罗涛, OFDM移动通信技术原理与应用,北京:人民邮电出版社, 2003: 123-131.
    [54] H. Meyr, M. Moeneclaey, S. A. Fechtel, Digital communication receivers-synchronization, channel estimation and signal processing, John Weily & Sons, INC, 1998: 739-762.
    [55] Y. Zhao, A.Huang, A novel channel estimation method for OFDM mobile communication systems based on pilot signals and transform-domain processing, in Proc. VTC, May 1997: 2089-2093.
    [56] B. Yang, K. B. Letaief, R. S. Cheng, et al., Windowed DFT based Pilot-symbol-aided channel estimation for OFDM systems in multipath fading channels, in Proc. VTC, May 2000: 1480-1484.
    [57] M. J. Fenrandez-GetinoGareia, J. M. Paez-Borrallo, S. Zazo, DFT based channel estimation in 2D-Pilot-symbol-aided OFDM wireless systems, in Proc. VTC, May 2001: 810-814.
    [58] L. Tong, G. Xu, T. Kailath, Blind identifyication based on second-order statistics: A time domain approach, IEEE Trans. Inf. Theory, 1994, 40(2): 340-349.
    [59] R. W. Heath, G. B. Giannakis, Exploiting input cyclostationarity for blind channel identification in OFDM system, IEEE Trans. Signal Process., 1999, 47(3): 848-856.
    [60] X. Cai, A. N. Akansu, A subspace method for blind channel identification in OFDM systems. Proc. Int. Conf. Commun., 2000(2): 929-933.
    [61] B. Muquet, M. Courville, P. Duhamel, Subspace-based blind and semi-blind channel estimation for OFDM systems, IEEE Trans. Signal Process., 2002, 50(7): 1699-1712.
    [62] C. Li, S. Roy. Subspace-based blind channel estimation for OFDM by exploiting virtual carriers. IEEE Trans. Wireless Commun., 2003, 2(1): 141-150.
    [63] S. Roy, C. Li, A subspace blind channel estimation method for OFDM systems without cyclic prefix. IEEE Trans. Wireless Commun., 2002, 1(4): 572-579.
    [64] Y. Zeng, T. S. Ng, A proof of the identification of a subspace-based blind channel estimation of OFDM systems, IEEE Signal Process. Letter, 2004, 11(9): 756-759.
    [65] F. Gao, W. Wu, Y. Zeng, A. Nallanathan, A novel blind channel estimation for CP-based MIMO OFDM systems, in Proc. ICC, 2007, pp. 2586-2591.
    [66] S. Zhou, B. Muquet, G. B. Giannakis, Subspace-based (simi-)blind channel estimation for block precoded space-time OFDM, IEEE Trans. Signal Process., 2002, 50(5): 1215-1228.
    [67] Z. Ding, D. B. Ward, Subspace Approach to blind and semi-blind channel estimation for space-time block codes, IEEE Trans. Wireless Commun., vol. 4, no. 2, pp .357-362, Mar. 2005.
    [68] B. Muquet, M. de Courville, Blind and semi-blind channel identification method using second order statistics for OFDM systems, in Proc. ICASSP, Mar. 1999: 2745-2748.
    [69] F. D. Backx, T. T. V. Vinhoza, R. Sampaio-Neto, Blind channel estimation for zero-padded OFDM systems based on correlation matching, in Proc. VTC, Oct. 2007: 1308-1311.
    [70] A. P. Petropulu, R. Zhang, R. Lin, Blind OFDM channel estimation through simple linear precoding, IEEE Trans. Wireless Commun., 2004, 3(2): 647-655.
    [71] F. Gao, A. Nallanathan, Blind channel estimation for OFDM systems via a generalized precoding, IEEE Trans. Veh. Technol., 2007, 56(3): 1155-1164.
    [72] R. Lin, A. P. Petropulu, Linear precoding assisted blind channel estimation for OFDM systems, IEEE Trans. Veh. Technol., 2005, 54(3): 983-995.
    [73] F. Gao, A. Nallanathan, Blind channel estimation for MIMO OFDM systems via nonredundant linear precoding, IEEE Trans. Signal Process., 2007, 55(2): 784-789.
    [74] S. Yatawatta, A. P. Petropulu, Blind channel estimation in MIMO OFDM systems with multiuser interference, IEEE Trans. Signal Process., 2006, 54(3): 1054-1068.
    [75] T. Cui, C.Tellambura. Joint data detection and channel estimation for OFDM systems, IEEE Trans. Commun., 2006, 54(4): 670-679.
    [76] V. Mignone, A. Morello, M. Visintin, CD3-OFDM: a new channel estimation method to improve the spectrum effieiency in digital terrestrial television systems, International Broadeasting Convention 95, 1995: 122-128.
    [77] M. Munster, L. Hanzo, Decision-directed channel estimation for multi-user OFDM environments,in Proc. VTC, May 2001: 2417-242.
    [78] A. Chini, Y. Wu, M. Ei-Tanany, S. Mahmoud, Filtered decision feedback channel estimation for OFDM-based DTV terrestrial broadcasting system, IEEE Trans. Broadcasting, 1998, 44(1): 2-11.
    [79] M. Bossert, A. Donder, V. Zyablow, Improved channel estimation with decision feedback for OFDM systems, Electronics Letters, 1998, 34(l): 1064-1065.
    [80] M. Ito, S. Suyama, K. Fukawa, et al., An OFDM receiver with decision-directed channel estimation for the scattered pilot scheme in fast fading environment, in Proc. VTC, May 2003: 368-372.
    [81] F. Sanzi, S. Jelting, J. Speidel, A comparative study of iterative channel estimators for mobile OFDM systems, IEEE Trans. Wireless Commun., 2003, 2(9): 849-859.
    [82] M. C. Necker, G. L. Stuber, Totally blind channel estimation for OFDM on fast varying mobile radio channels, IEEE Trans. Wireless Commun., 2004, 3(5): 1514-1525.
    [83] F. Sanzi, M. C. Necker, Totally blind APP channel estimation for mobile OFDM systems, IEEE Communications Letters, 2003, 7(11): 517–519.
    [84] X. G. Doukopoulos, G. V. Moustakides, Blind adaptive channel estimation in OFDM systems, IEEE Trans. Wireless Commun., 2006, 5(7): 1716-1725.
    [85] T. Y. Al-naffouri, D. Toumpakaris, A. Bahai, An adaptive semi-blind algorithm for channel identification in OFDM, in Proc. Asilomar 35th Conference on Signals, Systems andComputers, Nov. 2001: 921-925.
    [86] J. Du, Q. Peng, Y. Li, Adaptive blind equalizeation for MIMO-OFDM wireless communication systems, in Proc. ICC, Apr. 2003: 1086-1090.
    [87] L. Ye, J. C. Leonard, S. Nelsonr. Robust channel estimation for OFDM systems with rapid dispersive fading channels. IEEE Trans. Commun., 1998, 46 (7): 902-914.
    [88] E. Ove, S. Magnus, J. J. Van de beek, et al. OFDM channel estimation by singular value decomposition. IEEE Trans. Commun., 1998, 46 (7): 931-939.
    [89] M. K. Steven. Fundamentals of statistical signal processing: estimation theory. 1st edition, USA NJ, Prentice Hall, 1993, 344-365.
    [90] S. Peter. Low-rank adaptive filter. IEEE Trans. Signal Process., 1996, 44 (12): 2932-2947.
    [91] G. W. Stewart, Methods of simultaneous iteration for calculateing eigenvectors of matrices. Numerical Analysis II, J. H. Miller, Ed. New York: Academic, 1975: 169-185.
    [92] H. Peter. A statistical discrete-time model for the WSSUS multipath channel. IEEE Trans. Veh. Tech., 1992, 41 (4): 461-468.
    [93]张贤达,矩阵分析与应用,第一版,北京:清华大学出版社, 2004: 169-171.
    [94] P. Schniter. Low-complexity equalization of OFDM in doubly selective channels. IEEE Trans. Signal Process., 2004, 52 (4): 1002-1011.
    [95]熊大国,随机过程理论与应用,北京,国防工业出版社, 1991, 134-145.
    [96] E. Moulines, P. Duhamel, J. Cardoso, et al., Subspace method for the blind identifyication of multichannel FIR filters, IEEE Trans. Signal Process., 1995, 43(2): 516-525.
    [97] D. T. Slock, Blind fractional-spaced equalization, perfect reconstruction filter banks, and multichannel prediction, Proc. ICASSP-94, 1994(4): 585-588.
    [98] Y. Li, Z. Ding, Blind channel identification based on second order cyclistationary statistics, Proc. ICASSP-93, 1993(4): 81-84.
    [99] Y. Li, C. C. Justin, Transmitter diversity for OFDM systems and its impact on high-rate data wireless networks. IEEE journal on Selected Areas in Communications, 1999, 17 (7): 1233-1243.
    [100] D. Agrawal, V. Tarokh, A. Naguib, et al. Space-time coded OFDM for high data-rate wireless communication over wideband, in Proc. IEEE VTC’98, vol. 3, Ottawa, Ont., Canada, May 1998: 2232-2236.
    [101] H. B?lcskei, A. Paulraj, Space-frequency coded broadband OFDM systems, in Proc. ofWireless Commun. Networking Conf., Chicago, IL, Sep., 2000: 1–6.
    [102] Z. Liu, Y. Xin, G. B. Giannakis, Space-time-frequency coded OFDM over frequency-selective fading channels, IEEE Trans. Signal Process., 2002, 50(10): 2465-2476.
    [103] S. M. Alamouti. A simple transmit diversity technique for wireless communications, IEEE journal on Selected Areas in Communications, 1998, 16 (10): 1451-1458.
    [104] B. Vincent, C. Olivier, Eric M, et al. On the performance of semi-blind subspace-based channel estimation, IEEE Tran. Signal Process., 2000, 48 (6): 1750-1759.
    [105] F. Li, H. Liu, R. J. Vaccaro, Performance analysis for DOA estimation algorithms: unification, simplification, and observation, IEEE Tran. Aerosp. Electron. Syst., 1993, 29 (10): 1170-1184.
    [106] J. Medbo, H. Andersson, P. Schramm, et al.. ETSI, document 3ERI085B Channel models for HIPERLAN/2 in different indoor scenarios. 1998.
    [107] E. de Carcahlho, D. T. M. Slock, Cramer-Rao bounds for semi-blind, blind and training sequence based channel estimation, Proc. SPAWC Conf., Paris, France, 1997: 129-132.
    [108] B. M. Sadler, R. J. Kozick, T. Moore, Bounds on bearing and symbol estimation with side information, IEEE Trans. Signal Process., 2001, 49(4): 822-834.
    [109] S. Talwar, M. Viberg, A. Paulraj, Blind separation of synchronous co-channel digital signal using an antanna array–part I: algorithms, IEEE Trans. Signal Process., 1996, 44(5): 1184-1197.
    [110] A. J. van de Veen, S. Talwar, A. Paulraj, A subspace approach to blind space-time signal processing for wireless communication systems, IEEE Trans. Signal Process., 1997, 45(1): 173-190.
    [111] D. H. Pham, J. H. Manton, A fast algorithm for single block finite alphabet based channel identification, Proc. ICICS-PCM, Singapore, 2003: 597-601.
    [112] J. D. Terry, D. B. Williams, Conergence analysis of finite alphabet beamformers for digital cochannel signals, IEEE Trans. Commun. 2003, 51(6): 929-939.
    [113] T. Li, Finite-alphabet information and multivariante blind deconvolution and identifyication of linear systems, IEEE Trans. Inform. Theory, 2003, 49(1): 330-337.
    [114] S. S. Abeysekera, Y. Ye, Blind multipath channel estimation using second order statistics and the finite alphabet property, Proc. ICCCAS, China, 2005: 739-743.
    [115] S. Zhou, G. B. Giannakis, A. Scaglione, Long codes for generalized FH-OFDMA throughunknown multipath channels, IEEE Trans Commun, 2001, 49(4): 721-733.
    [116] S. Zhou, G. B. Giannakis, Finite-Alphabet based channel estimation for OFDM and related multicarrier systems, IEEE Trans. Commun., 2001, 49(8): 1042-1414.
    [117] G. Xu, H. Liu, L. Tong, A least-squares approach to blind channel identification. IEEE Trans Signal Process, 1995, 43(12): 2982-2993, Dec. 1995.
    [118] S. Song, A. S. Singer. Blind OFDM channel estimation using FIR constrains: reduced complexity and identifiability, IEEE Trans. Inf. Theory, 2007, 53(3): 1136-1148.
    [119]戴华,矩阵论,第一版,北京:科学出版社, 2001: 104-110.
    [120] D. A. Bini, N. J. Higham, Beatrice Meini. Algorithms for the matrix pth root, Numerical Algorithms, 2005, 39(4): 349-378.
    [121] M.I. Smith, A Schur algorithm for computing matrix pth roots, SIAM J. Matrix Anal. Appl. 24(4) (2003) 971–989.
    [122] W.D. Hoskins and D.J. Walton, A faster, more stable method for computing the pth roots of positive definite matrices, Linear Algebra Appl. 26, 1979: 139-163.
    [123] P. Benner, R. Byers, V. Mehrmann and H. Xu, A unified deflating subspace approach for classes of polynomial and rational matrix equations, Preprint SFB393/00-05, Zentrum für Technomathematik, Universit?t Bremen, Bremen, Germany, Jan. 2000.
    [124] L.-S. Shieh, Y. T. Tsay and R. E. Yates, Computation of the principal nth roots of complex matrices, IEEE Trans. Automat. Control, 1985, 30(6): 606–608.
    [125] A. Bjorck, S. Hammerling, A Schur method for the square root of a matrix, Linear Algebra Appl., 52/53, 1983: 127-140.
    [126] Broadband Radio Access Networks (BRAN). ETSI TS 101 475 HIPERLAN Type 2; Physical (PHY) layer, Sophia Antipolis Cedex– France, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700