基于子空间及双树四元数小波的人脸识别算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于人脸具有唯一性和不易复制的良好特性,并且能在非接触环境和不会对检测人打扰的情况下进行,其商业和实用的价值超过其他的生物特征技术。人脸识别近几十年来越来越受到研究者的重视,使得人脸识别技术发展迅速。
     在众多人脸识别方法中,子空间方法由于其简单、实施性好、有效性高等特点,逐渐成为近年来的热点研究之一。本文主要对人脸识别特征提取的子空间方法进行研究,并将双树四元数小波应用到人脸识别方向。论文的创新性成果如下:
     ①提出了二维局部鉴别保持投影(2DLDPP)算法。通过对二维局部保持投影(2DLPP)和可调最大间距边缘准则(MMMC)进行研究,发现2DLPP利用了局部结构信息,而MMMC则是利用了全局结构信息。为了使2DLPP方法从无监督的方法变为有监督的方法,本文首次提出了2DLDPP算法。该算法首先是将可调最大间距边缘准则(MMMC)运用到二维中,是二维可调最大间距边缘准则(2DMMMC),然后将2DMMMC引入到二维局部保持投影(2DLPP)中,并且通过构造一个参数来达到最优。2DLDPP是通过2DLPP和2DMMMC进行差的运算,来达到有监督的目的,即保持了2DMMMC的全局结构信息又利用了2DLPP的局部结构信息。所以2DLDPP最大限度地使投影后类内的距离最小化,同时类间的距离最大化。该算法在ORL人脸库和FERET人脸库上进行实验分析,结果表明,2DLDPP方法有效,且优于主成分分析(PCA),二维主成分分析(2DPCA),局部保持投影(LPP)和二维局部保持投影(2DLPP)。
     ②提出了二维双向逆拉普拉斯最大间距边缘准则算法(2DBILMMC)。本文对二维最大间距边缘准则(2DMMC)进行研究,发现2DMMC忽略了局部结构的鉴别信息,而人脸图像是有这部分信息的。为了使2DMMC能够利用上局部结构,本文首次提出2DBILMMC算法。该算法是通过基于图像矩阵的相似距离权重和不相似距离权重来计算出图像的类间拉普拉斯矩阵和图像类内拉普拉斯矩阵,得到二维拉普拉斯最大间距边缘准则,进行逆转,然后合并垂直和水平的信息得到一个复杂的特征矩阵。对二维拉普拉斯最大间距边缘准则进行逆转其实就是让基于特征空间的类内拉普拉斯矩阵与类间拉普拉斯矩阵的最小化,即同类样本距离最小化同时使异类样本最大化。2DBILMMC合并垂直和水平的信息得到一个复杂的特征矩阵,就是充分地利用了两个方向的结构信息。本文首次利用2DBILMMC方法在AR人脸库,FERET人脸库及YALE人脸库上进行实验,结果表明,2DBILMMC有效且优于MMC,2DMMC,LDA和2DLDA。
     ③提出了二维合并双向拉普拉斯逆线性判别分析算法(2DCBLIF)。该算法是通过将拉普拉斯的思想引入到二维的逆线性判别分析算法中得到二维拉普拉斯逆线性判别分析算法,然后合并垂直和水平的信息得到一个复杂的特征矩阵。2DCBLIF合并垂直和水平的信息得到一个复杂的特征矩阵,就是充分利用两个方向的结构信息。本文首次利用2DCBLIF方法在FERET人脸库,CMU PIE人脸库上进行实验,结果表明,2DCBLIF有效且优于2DLDA,2DPCA,2DMMC。
     ④提出了将双树四元数小波(QWT)用于人脸识别方向。QWT是建立在二维希尔伯特变换基础上的。每个四元小波都有一个实部,即离散小波变换和使用四元数代数构造的3个虚部。QWT有3个相位角,其中2个相位角能编码图像的局部变化,另一个相位角则可以编码纹理信息。它可以作为一种新型的分析几何图像特征的多尺度分析工具。本文首次利用QWT在人脸识别。通过在AR和FERET人脸库上的实验结果表明,用QWT处理后的图片再用2DPCA和2DLPP的识别率优于图片直接用PCA,2DPCA,LPP和2DLPP方法。这是一个可能性,即QWT可以分析文本信息丰富的人脸图像。
Face recognition has more commercial and practical values than other biometric technologies, due to contactless data acquisition and without any physical damage to the users. Because of this facts face recognition has got more attention, becomes hot research issues, and gains a great development.
     The subspace analysis-based algorithm is the leading and wide concerns among the present various face recognition algorithms. Because of their’s favorable properties, for example simple, efficient, convenient computation and effectiveness for identification. The subspace analysis-based algorithm has gradually become one of the main methods of facial feature extraction and face recognition. This thesis has mainly focused on the subspace-based feature extraction and dual-tree quaternion wavelets for face recognition algorithms. The main research work and innovations are:
     A first novel approachcalled two-dimensional locality discriminant preserving projections (2DLDPP) use to the local structure information, and modified maximum margin criterion (MMMC) use to the global structure information are proposed for face feature extraction. This two-dimensional locality preserving projections (2DLPP) and modified maximum margin criterion (MMMC). 2DLPP uses of the local structure information and MMMC. Therefore, in this thesis we introduce the new approach of the 2DLPP method from unsupervised method to a supervised method, therefore, this paper face recognition for image feature extraction as: first, this method is modified maximum margin criterion (MMMC) applied to the two-dimensional, which is two-dimensional modified maximum margin criterion (2DMMMC). Then it is introduced to the two-dimensional locality preserving projections (2DLPP). Finally, it can construct a parameter to achieve the optimum projections. 2DLDPP is conducted by 2DLPP and 2DMMMC with poor operation for the purpose of supervision. It can maintain a 2DMMMC global structural information and use of the 2DLPP local structure information. Extensive experiments are performed on ORL face database and FERET face database. The 2DLDPP method is effective and better than PCA, 2DPCA, LPP and 2DLPP, which can improve performances of face recognition .
     A second novel approach called two-dimensional bidirctional inverse laplace maximum margin criterion algorithm (2DBILMMC) is proposed for face feature extraction. We found two-dimensional maximum margin criterion (2DMMC) which ignoring the local structure identification of the local structure information. Therefore, for the first time on this thesis we proposed the advantage of the local structure of 2DMMC for this face recognition approach of image feature extraction. The 2DBILMMC can obtain the image within-class Laplacian matrix and image between-class laplacian matrix by the different weighted summation of distances based on image matrices and inverse, then combine vertical and horizontal information into a complex feature matrix. The reversal of two-dimensional laplace maximum margin criterion algorithm is actually minimum the image within-class Laplacian matrix and image between-class laplacian matrix, that is similar samples minimum and dissimilar sample maximum. 2DBILMMC combined vertical and horizontal information to a complex characteristic matrix which is full use of structural information in both directions. Extensive experiments are performed on AR face database, FERET face database and YALE face database. The 2DBILMMC method is effective and better than MMC, 2DMMC, LDA and 2DLDA, which can improve performance of face recognition .
     A third novel approach called two-dimensional combined bidirctional laplacian inverse fisher discriminate analysis method (2DCBLIF) is proposed for face feature extraction. 2DCBLIF introduces laplacian into inverse fisher discriminate analysis method, then combine vertical and horizontal information into a complex feature matrix.2DCBLIF combined vertical and horizontal information to a complex characteristic matrix is full use of structural information in both directions. Extensive experiments are performed on FERET face database and CMU PIE face database. The 2DCBLIF method is effective and better than 2DLDA,2DPCA,2DMMC,which can improve performance of face recognition
     A fourth novel approach dual-tree quaternion wavelets (QWT) is introduced for face feature extraction. QWT is the basis of the 2-D HT, 2-D analytic signal and uses the quaternion algebra. QWT has three phase angles. Two phases can encode local image shifts and the other encodes textural information. Therefore, this paper for the first time thesis introduced this face recognition approach for face feature extraction. Extensive experiments are performed on FERET face database and AR face database. The QWT method achieves better face recognition performance than PCA, 2DPCA, LPP and 2DLPP.
引文
[1] www. media. edu. cn[EB/OL]
    [2]周杰,卢春雨,张长水等.人脸自动识别方法综述[D].电子学报,2000,28(4):102-106.
    [3]张翠平,苏光大.人脸识别技术综述[J].中国图象图形学报,2005,5(11):885-894.
    [4]谭晓阳.单训练样本条件下基于自组织神经网络的鲁棒人脸识别技术研究[D].南京:南京大学,2005.
    [5]张娜,低维线性空间人脸识别方法的研究与改进[D],山东大学,2008.
    [6] F. Galton. Personal identification and description[J]. The Journal of the Anthropological Institute of Great Britain and Ireland, 1889, 18: 177-191.
    [7] F. Galton. Personal identification and description-II[J]. Nature, 1888:201-203
    [8] W. W. Bledsoe. The Model in Facial Recognition. Panoramic research Technical report[R], Panoramic Research Inc.,Palo Alto. CA. 1964.
    [9] H. Chan, W. W. Bledsoe. A Man-Machine facial recognition system: some preliminary results[R], Technical report, Panoramic Research Inc.,Cal, 1965.
    [10] T. Kanade. Picture Processing system by computer and recognition of human faces [D], PHD Dissertation. Kyoto: Kyoto University, 1973.
    [11] L. D. Harmon. The recognition of faces[J]. Sci. Am,1973, 229:71-82.
    [12] R. J. Goldstein, L. D. Harmon, A. B. Lesk. Man-machine interaction in human face identification[J]. Bell Syst.Tech Journal, 1972,51:339-427.
    [13] R. J. Baron. Mechanisms of human facial recognition [J]. Int. J. Man-machine Studies, 1981, 15:137-178.
    [14] M. Turk, A. Pentland. Eigenfaces for Recognition. Jounal of cognitive neuroscience[J], 1991, 3(1):71-86.
    [15] A. Pentland, B.Moghaddam, T.starner. View-Based and Modular Eigen-spaces for Face Recognition[C]. MIT Media Lab perceptual Computing Section Tech IEEE Conference on Computer Vision &Pattern Recoenition , 1994: 84-91.
    [16] P. N. Belhumeur, J. P. Hespanha, D. J.Kriegman. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection[J]. Computer Vision?aECCV'96, 1996: 43-58.
    [17] P. N. Belhumeur, J. P. Hespanha, D. J. Kriegman. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence, 1997, 19(7): 711-720.
    [18] J. Buhmann, M. Lades, C. von der Malsburg. Size and distortion invariant object recognition by hierarchical graph matching[C]. In: Proceedings of IEEE Intl. Joint Conference on Neural Networks. San Diego, 1990 (2): 411-416
    [19] M. Lades, J. C. Vorbruggen, J. Buhmann, et al. Distortion invariant object recognition in the dynamic link architecture[J]. IEEE Transactions on Computers, 1993, 42(3): 300-311.
    [20] L. Wiskott, J. M. Fellous, N. Kuiger, et al. Face recognition by elastic bunch graph matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 775-779.
    [21] C. L. Kotropoulos, A. Tefas, I. Pitas. Frontal face authentication using discriminating grids with morphological feature vectors[J]. IEEE Transactions on Multimedia, 2000, 2(1): 14-26.
    [22] A. Tefas, C. Kotropoulos, I. Pitas. Using support vector machines to enhance the performance of elastic graph matching for frontal face authentication[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(7): 735-746.
    [23]丁嵘,苏光大,林行刚,使用关键点信息改进弹性匹配人脸识别算法[J],电子学报,2002,30(9): 1292-1294.
    [24] P. S. Penev and J. J. Atick. Local feature analysis: A general statistical theory for object representation Network [J]. Network: computation in neural systems, 1996, 7(3): 477-500.
    [25] S. Lawrence, C. L. Giles, A. C. Tsoi, et al. Face recognition: A convolutional neural network approach[J]. IEEE Transactions on Neural Networks, 1997, 8(1): 98-113.
    [26] F. Samaria and F. Fallside. Face identification and feature extraction using hidden markov models[C]. Image Processing: Theory and Application. G Vernazza, ed., Elsevier, 1993.
    [27] A. Lanitis, C. J.Taylor, T. F.Cootes. An automatic face identification system using flexible appearance models[C]. In British Machine Vision Conference, BMVA Press, 1994, 1: 65-74.
    [28] A.Lanitis, C.Taylor, T.Cootes. A Unified Approach to Coding and Interpreting Face Images[C], Proc. Int'1 Conf. Computer Vision, 1995: 368-373.
    [29] A. Lanitis, C. J. Taylor, T. F. Cootes. Automatic interpretation and coding of face images using flexible models[J]. IEEE Transactions onPattern Analysis and Machine Intelligence, 1997, 19(7): 743-756.
    [30] T. F. Cootes, C. J. Taylor, D. H. Cooper et al. Acfive Shape Models Their Training and Application[J]. Computer Vision and Image Understanding, 61(1), 1995.
    [31] T. F. Cootes, G. J. Edwards, C. J. Taylor. Active appearance models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6): 681-685.
    [32] G. J. Edwards, T. F. Cootes, C. J. Taylor. Advances in active appearance models[C]. Proc.Int'1 Conf. Computer Vision, 1999, 1(1): 137-142
    [33] T. F. Cootes, G. Wheeler, K. Walker, et al. View-based active appearance models[J]. Image and vision computing, 2002, 20(9-10): 657-664.
    [34] M. B. Stegmann. Active appearance models: Theory, extensions and cases[D], Master thesis, Technical University of Denmark, 2000.
    [35] L. F. Chen, H. Y. M. Liao, M. T. Ko, et al. A new LDA-based face recognition system which can solve the small sample size problem[J]. Pattern Recognition, 2000, 33(10): 1713-1726.
    [36] W. Zhao, R. Chellappa, A. Krishnaswamy. Discriminant analysis of principal components for face recognition[C]. Proc. of Inter. Conf. On Auto. Face and Gesture Recognition, 1998: 336-341.
    [37] W. Y. Zhao and R. Chellappa. SFS based view synthesis for robust face recognition[C], Proceeding of the 4th International Conference on Face and Gesture Recognition, Grenoble, France, 2000:285-292.
    [38] C. Liu and H. Wechsler. A shape and texture based enhanced Fisher classifier for face recognition[J]. IEEE Transactions on Image Processing Image Processing, 2001, 10(4): 598-608.
    [39] C. Liu and H. Wechsler. Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition[J]. IEEE Transactions on Image Processing, 2002, 11(4): 467-476.
    [40] S. C. Chen, D. H. Li. Modified linear discriminant analysis. Pattern Recognition,2005,38(3):441-443.
    [41] M. H. Yang, N. Ahuja, D. Kriegman. Face recognition using kernel eigenfaces[C]. Int. Con# on Image Processing, 2000, 1(1): 37-40.
    [42] M. H. Yang. Kernel eigenfaces vs. kernel fisherfaces: Face recognition using kernel methods[C]. Proc. Int'1Conf. Automatic Face and Gesture Recognition, 2002:215-210.
    [43] Q.S. Liu, R. Huang, H. Q.Lu, et al. Face recognition using kernel based fisher discriminant analysis[C]. Proc. Int'1 Con# Automatic Face and Gesture Recognition, 2002: 197-201.
    [44]刘青山.人脸跟踪与识别的研究[D].北京:中科院自动化所博士学位论文,2003.
    [45] J. Yang, D. Zhang, A. F. Frangi. Two-dimensional PCA: a new approach to appearance-based face representation and recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131-137.
    [46] M. Li and B. Yuan. 2DLDA: A statistical linear discriminant analysis for image matrix[J]. Pattern Recognition Letters, 2005, 26(5): 527-532.
    [47] P. Comon. Independent component analysis, a new concept?[J]. Signal processing, 1994,36(3): 287-314.
    [48] K. Jonsson, J. Matas, J. Kittler, et al. Learning support vectors for face verification and recognition[C]. Proceeding of the 4th International Conference on Face and Gesture Recognition, Grenoble, France, 2000:208-213.
    [49] G. Guo, S. Z. Li, K. Chan. Face recognition by support vector machines[C], Proc.of the 4th Int. Conf. on Auto. Face and Gesture Recog, Grenob1e, 2003:196-201.
    [50] P. J. Phillips. Support vector machines applied to face recognition[J]. Advances in Neural Information Processing Systems, 1999: 803-809.
    [51] Y. Freund and R. E.Schapire. A desicion theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997,55(1):119-139.
    [52] R. Meir and G. R tsch. An introduction to boosting and leveraging[J]. Advanced Lectures on Machine Learning. LNAI 2600,2003: 118-183.
    [53] P. Viola and M. J. Jones. Robust real-time face detection[J]. International Journal of Computer Vision, 2004, 57(2): 137-154.
    [54] J. Lu, K. N.Plataniotis, A. N.Venetsanopoulos, et al. Ensemble-based discriminant learning with boosting for face recognition[J]. Neural Networks, IEEE Transactions on Neural Networks , 2006, 17(1): 166-178.
    [55] J P. Yang, S. Shan, W. Gao, et al. Face recognition using adaboosted gabor features[C]. Proceeding of the 6t1' International converence on face and gesture recognition, Korea, 2004: 356-361.
    [56]张文超,山世光,张洪明,陈杰,陈熙森,高文.基于局部Gabor变化直方图序列的人脸描述与识别[J].软件学报,2006,17(12): 2508-2517.
    [57] X. Huang, S. Z. Li, Y. Wang. Jensen-shannon boosting learning for object recognition[C]. International conference on computer vision and pattern recognition, 2005.
    [58] A. S. Georghiades, D. J. Kriegman, P. N. Belhurneur. Illumination cones for recognition under variable lighting: Faces[C]. Proc. of IEEE CVP, 1998: 52-58.
    [59] A. S. Georghiades, P. N. Belhumeur, D. J. Kriegman. From few to many: Illumination cone models for face recognition under variable lighting and pose[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6): 643-660.
    [60] A. Shashua and T. Riklin Raviv. The quotient image: Class-based rerendering and recognition with varying illuminations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(2): 129-139.
    [61] R. Basri and D. W. Jacobs. Lambertian reflectance and linear subspaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003: 218-233.
    [62] V. Blanz and T. Vetter. A morphable model for the synthesis of 3D faces[C]. SIG'GRAPH'99, 1999: 187-194.
    [63] S. Romdhani, V. Blanz, T. Vetter. Face identification by fitting a 3D morphable model using linear shape and texture error functions[J]. Computer Vision?aECCV 2002, 2006: 3-19.
    [64] V. Blanz, S. Romdhani, T. Vetter. Face identification across different poses and illuminations with a 3d morphable model[C]. Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition 2002:202-207.
    [65] V. Blanz and T. Vetter. Face Recognition Based on Fitting a 3D Morphable Mode1[J], TPAMI, 2003, 25(9):1063-1075.
    [66] F. S. Samaria and A. C. Harter. Parameterisation of a stochastic model for human face identification[C]. Proceedings of the 2nd IEEE Workshop on Applications of Computer Vision, 1994: 138-142.
    [67] A. M. Martinez and A. C. Kak. PCA versus IDA[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(2): 228-233.
    [68] A. R. Martinez, R. BenaVente. The AR face database. Technical Report 24, Computer Vision Center (CVC) Technical Report[R], Barcelona, Spain, June 1998.
    [69] P. J. Phillips, H. Moon, S. A. Rizvi, et al. The FERET evaluation methodology for face recognition algorithms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2000, 22(10): 1090-1104.
    [70] T. Sim, S. Baker, M. Bsat. The CMU pose, illumination, and expression database[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003: 1615-1618.
    [71] P. J. Phillips, H. Wechsler, J. Huang, et al. The FERET database and evaluation procedure for face recognition algorithms[J]. Image and vision computing, 1998, 16(5): 295-306.
    [72] P. J. Phillips, P. J.Grother, R. J. Micheals, et al. Face recognition vendor test 2002: Evaluation report[C]. Technical Report, NISTIR 6965, National Institute of Standards and Technology, 2003: 44.
    [73] D. Blackburn, M. Bone and P. J. Phillips. Face recognition vendor test 2000. Tech. Rep. http://www. Frvt. org, 2001.
    [74] S. Yu, K. Yu, V. Tresp, et al. Supervised probabilistic principal component analysis[C]. Proc of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphia, USA, 2006: 464-473.
    [75] http://www. frvt. org/FRVT2002/Default. htm[EB/OL].
    [76] M. D. Kelly. Visual identification of people by computer[R]. Tech. rep. AI-130, Stanford, CA,1970.
    [77] A. Samal and P. A. Iyengar. Automatic recognition and analysis of human faces and facial expressions: A survey[J]. Pattern Recognition, 1992, 25(1): 65-77.
    [78] http://www.by1w51.cn/post/728. htm1[EB/OL], 2008-4-4.
    [79] R. Brunelli and T. Poggio. Face recognition: Features versus templates[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(10): 1042-1052.
    [80] Y. S. Birchfield. An elliptical head tracker[C]. 31st Asilonmar Conference on Signals, Systems and Computers 1997, 2(2): 1710-1714
    [81] A. L. Yuille. Deformable templates for face recognition[J]. Journal of Cognitive Neuroscience, 1991, 3(1): 59-70.
    [82] A. L. Yuille, P. W. Hallinan, D. S. Cohen. Feature extraction from faces using deformable templates[J]. International Journal of Computer Vision, 1992, 8(2): 99-111.
    [83] B. Moghaddam. Principal manifolds and probabilistic subspaces for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence2002, 24(6):780-788.
    [84] B. Moghaddam, T. Jebara, A. Pentland. Bayesian face recognition[J]. Pattern recognition, 2000, 33(11): 1771-1782.
    [85] L. Zhao and Y. H. Yang. Theoretical analysis of illumination in PCA-based vision systems[J]. Pattern recognition, 1999, 32(4): 547-564.
    [86] A. Xu, X. Jin, Y. Jiang, et al. Complete two-dimensional PCA for face recognition[J]. Pattern Recognition, IEEE Pro. on ICPR, 2006, 3: 481-484.
    [87] S. Chen, D. Zhang, Z. H. Zhou. Enhanced (PC) 2A for face recognition with one training image per person[J]. Pattern Recognition Letters, 2004, 25(10): 1173-1181.
    [88] K. Tan and S. Chen. Adaptively weighted sub-pattern PCA for face recognition[J]. Neurocomputing, 2005, 64: 505-511.
    [89] J. Ye, R. Janardan, Q. Li. Two-dimensional linear discriminant analysis[J]. Advances in Neural Information Processing Systems, 2004, 17: 1569-1576.
    [90] H. Kong, E. Teoh, J. Wang, et al. Two dimensional fisher discriminant analysis: Forget about small sample size problem[C]. ICASSP, 2005: 761-764.
    [91] S. Chen, Y. Zhu, D. Zhang, et al. Feature extraction approaches based on matrix pattern: MatPCA and MatFLDA[J]. Pattern Recognition Letters, 2005, 26(8): 1157-1167.
    [92] Q. X. Gao, L. Zhang, D. Zhang. Face recognition using FLDA with single training image per person[J]. Applied Mathematics and Computation, 2008, 205(2): 726-734.
    [93] H. Peng and D. Zhang. Dual eigenspace method for human face recognition[J]. Electronics Letters, 1997, 33(4): 283-284.
    [94] D. L. Swets and J. J. Weng. Using discriminant eigenfeatures for image retrieval[J]. IEEETransactions on Pattern Analysis and Machine Intelligence, 1996, 18(8): 831-836.
    [95] L. Luo, M. Swamy, E. I. Plotkin. A modified PCA algorithm for face recognition[C]. Canadian Conference on Electrical and Computer Engineering, 2003, 1: 57-60
    [96] K. H. Lin, K. M. Lam, W. C. Siu. A new approach using modified Hausdorff distances with eigenface for human face recognition[C]. 7th International Conference on Control, Automation, 2002, 2: 980-984.
    [97] B. K. Gunturk, A. U. Batur, Y. Altunbasak, et al. Eigenface-domain super-resolution for face recognition[J]. Image Processing, IEEE Transactions on Image Processing, 2003, 12(5): 597-606.
    [98] R. Cappelli, D. Maio, D. Maltoni. Multispace KL for pattern representation and classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001: 977-996.
    [99] C. Conde, A. Ruiz, E. Cabello. PCA vs low resolution images in face verification[C]. 12th International Conference on Image Analysis and Processing, 2003: 63-67.
    [100] T. Shakunaga, F. Sakaue, K. Shigenari. Robust face recognition by combining projection based image correction and decomposed eigenface[C]. Sixth IEEE International Conference on Automatic Face and Gesture Recognition. Proceedings 2004:241-247.
    [101] W. W. Yu, X. L. Teng, C.Q. Liu, Fce recognitionusing discriminant locality preserving projections. Image and Vision Computing, 2006, 24(3) 239-248.
    [102] B. A. Draper, K. Baek, M. S. Bartlett, et al. Recognizing faces with PCA and ICA[J]. Computer Vision and Image Understanding, 2003, 91(1-2): 115-137.
    [103] R. A. Fisher. The statistical utilization of multiple measurements[J]. Annals of Human Genetics, 1938, 8(4): 376-386.
    [104] S. Shan, B. Cao, W. Gao, et al. Extended Fisherface for face recognition from a single example image per person[C]. Proceedings of IEEE International Symposium on Circuits and Systems, 2002, 2: II-81-84
    [105] J. Yang, D. Zhang, X. Yong. Two-dimensional discriminant transform for face recognition[J]. Pattern Recognition, 2005, 38(7): 1125-1129.
    [106] D. Luo, C. Ding, H. Huang. Symmetric two dimensional linear discriminant analysis (2DLDA)[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2009 :2820-2827.
    [107] J. F. Chen, B. Z. Yuan. Face manifold analysis based on LFA[J]. IEEE Transactions on Image and Signal Processing, 2008, 580-583.
    [108] D. Cai, X. He, J. Han. Semi-supervised discriminant analysis[EB/OL]. [2007-10-14].
    [109] M. Sugiyama, T. Id, S. Nakajima, et al. Semi-supervised local Fisher discriminant analysis for dimensionality reduction[J]. Advances in Knowledge Discovery and Data Mining, 2008: 333-344.
    [110] D. Zhang, Z. H. Zhou, S. Chen. Semi-supervised dimensionality reduction[EBIOL]. [2007_7_31]
    [111] J. Yang, D. Zhang, B. Niu. Globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(4): 650-664.
    [112] J. Ham, D. Lee, L. Saul. Semisupervised alignment of manifolds[EB/OL]. 2005, 10: 120-127.
    [113] R. Huang, Q. Liu, H. Lu, et al. Solving the small sample size problem of LDA[C]. International Conference on Pattern Recognition . 2002, 3:29-32.
    [114]李进,罗义平,刘海华等.基于改进零空间的人脸识别研究[J],计算机工程,2009. 35 (9 ). 198-200.
    [115] H. Cevikalp, M. Neamtu, M. Wilkes, et al. Discriminative common vectors for face recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(1): 4-13.
    [116] Y. He, L. Zhao, C. Zou. Face recognition using common faces method[J]. Pattern recognition, 2006, 39(11): 2218-2222.
    [117] D. Q. Dai, P. C. Yuen. Regularized discriminant analysis and its application to face recognition[J]. Pattern recognition, 2003, 36(3): 845-848.
    [118] I. Pima, M. Aladjem. Regularized discriminant analysis for face recognition[J]. Pattern recognition, 2004, 37(9): 1945-1948.
    [119] J. P.Ye, R. Janardan, C. H. Park, et al. An optimization criterion for generalized discriminant analysis on undersampled problems[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(8): 982-994.
    [120] P. Howland and H. Park. Generalizing discriminant analysis using the generalized singular value decomposition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(8): 995-1006.
    [121] K. Liu, Y. Q. Cheng, J. Y. Yang, et al. An efficient algorithm for Foley-Sammon optimal set of discriminant vectors by algebraic method[J]. International Journal of Pattern Recognition and Artificial Intelligence, 1992, 6(5): 817-829.
    [122] S. Noushath, G. H Kumar, P. Shivakumara. Diagonal Fisher linear discriminant analysis for efficient face recognition. Neurocomputing, 69(13-15) August 2006, 69(13-15):1711-1716
    [123] J.Yang, D.Y.Yang, Why can LDA be performed in PCA transformed space? [J].Pattern Recognition 2003, 36(2): 563-566.
    [124] J. Liu, S. Chen, X. Tan. A study on three linear discriminant analysis based methods in small sample size problem[J]. Pattern Recognition, 2008, 41(1): 102-116.
    [125] H. F. Li. Jiang , K. S. ZHANG. Efficient and Robust Feature Extraction by Maximum Margin Criterion[J]. Proceedings of Advances in Neural Information Processing Systems, 2004, 16: 97-104
    [126] H. F. Li, T. Jiang, K. S. Zhang. Efficient and Robust Feature Extraction by Maximum Margin Criterion[J]. IEEE Transactions on Neural Networks , 2006, 17(1): 157-165.
    [127] C. I. Liu. Enhanced independent component analysis and its application to content based face image retrieval[J]. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, 34(2): 1117-1127.
    [128] S. Z. Li, X. G. Lu, X. Hou, et al. Learning multiview face subspaces and facial pose estimation using independent component analysis[J]. Image Processing, IEEE Transactions on Image Processing, 2005, 14(6): 705-712.
    [129] M. A. O. Vasilescu and D. Terzopoulos. Multilinear independent components analysis[J]. IEEE Computer Society Conference on Computer Vision and Patttern Recognition, 2005, 1:547-553.
    [130] M. Rajapakse and L. Wyse. NMF vs ICA for face recognition[J]. Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis, 2003, 2:605-610.
    [131] D. Deniz, M. Castrillon, M.Hernandez, "Face recognition using Independent component enatysis and support vector machines[C]," Proceedings of International Conference on Audio and Video-based Person Authentication, Lecture Notes, 2001:59-64.
    [132] C. J. Liu and H. Wechsler. Comparative assessment of independent component analysis (ICA) for face recognition[C]. Proceedings of International Conference on Audio and Video based Biometric Person Authentication, 1999.
    [133] K. Baek, B. A. Draper, J. R. Beveridge, et al. PCA vs. ICA: A comparison on the FERET data set[J]. Proceedings of International Conference on Computer Vision, Pattern Recognition and Image Processing, 2002: 824-827.
    [134] M. S. Bartlett, H. M. Lades, T. J. Sejnowski. Independent component representations for face recognition[C]. Proceedings of SPIE, 1998, 2399 (3): 528-539.
    [135] M. S. Bartlett, J. R. Movellan, T. J. Sejnowski. Face recognition by independent component analysis[J]. IEEE Transactions on Neural Networks, 2002, 13(6): 1450-1464.
    [136] A. Hyvrinen and E. Oja. Independent component analysis: algorithms and applications[J].Neural networks, 2000, 13(4-5): 411-430.
    [137] J. F. Cardoso. High-order contrasts for independent component analysis[J]. Neural computation, 1999, 11(1): 157-192.
    [138]曾生根,朱宁波,包哗,等.一种改进的快速独立分量分析算法及其在图象分离中的应用[J].中国图象图形学报,2003, 8(10 ): 1159-1165.
    [139]杨竹青,李勇,胡德文.独立成分分析方法综述[J].自动化学报,2002, 28 (5)762-772.
    [140] A. V. Nefian and M. H. Hayes Hidden Markov models for face recognition[C]. Proceedings of the IEEE International Conference on Image Processing. 1998, 5: 2721-2724
    [141] A. Hyvrinen. Survey on independent component analysis[J]. Neural Computing Surveys, 1999, 2(4): 94-128.
    [142] A. Hyvarinen. Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Transactions on Neural Networks, 1999, 10(3): 626-634.
    [143]徐毅凉,土波,李弼程.基于改进的独立分量分析的人脸识别方法[J].数据采集与处理,2006, 21(2):181-187.
    [144] I. Dagher and R. Nachar. Face recognition using IPCA-ICA algorithm[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006(6): 996-1000.
    [145] N. Kwak. Feature extraction for classification problems and its application to face recognition[J]. Pattern recognition, 2008, 41(5): 1701-1717.
    [146] J. Cheng, Q. Liu, H. Lu, et al. Ensemble learning for independent component analysis[J]. Pattern recognition, 2006, 39(1): 81-88.
    [147] L.Wiskott. Phantom Faces for Face Analysis [J]. Pattern Recognition, 1997,30 (6):837-846.
    [148] C. Kotropoulos and I. Pitas. Face authentication based on morphological grid matching[C]. IEEE inter. Conf. on Image Processing, 1997: 105-108.
    [149] S.Zafeiriou, A.Tefas, I. Pitas.The discriminant elastic graph matching algorithm applied to frontal face verification.Pattern Recognition,2001,40(10):2798-2810
    [150]尹宝才,张壮,孙艳丰,土成章.基于二维形变模型的多姿态人脸识别[J].北京工业大学学报,2007, 33 (3):320-325.
    [151]山世光,高文等.基于纹理分布和变形模板的面部特征提取[J].软件学报,2001, 12 (4) : 570-577.
    [152] H. C. Shin, J. H. Park, S. D. Kim. Combination of warping robust elastic graph matching and kernel-based projection discriminant analysis for face recognition[J]. IEEE Transactions on Multimedia , 2007, 9(6): 1125-1136.
    [153] X. D. Xie and K. M. Lam. Elastic shape-texture matching for human face recognition[J]. Pattern Recognition, 2008, 41(1): 396-405.
    [154] H. Shin, S. D. Kim, H. C. Choi. Generalized elastic graph matching for face recognition[J]. Pattern Recognition Letters, 2007, 28(9): 1077-1082.
    [155]罗四维,赵连伟.流形学习研究综述[C] ,中国科技论文在线, http://www.Paper edu.cn,2005-12-12.
    [156] H. S. Seung and D. D. Lee. The manifold ways of perception[J]. Science, 2000, 290(5500): 2268-2269.
    [157] J. B. Tenenbaum, V. Silva, J. C. Langford. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319.
    [158] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326
    [159]孟德宇,徐宗本,戴明伟一种新的有监督流形学习方法[J].计算机研究与发展.2007,44(12):2072-2077.
    [160] X. He, S. Yan, Hu, P. Niyogi et al. Face recognition using Laplacian faces[J], IEEETrans. Pattern Anal. Mach. Intell. 2005,27 (3):328-340.
    [161] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6): 1373-1396.
    [162]祝磊,朱善安.KSLPP:新的人脸识别算法[J].浙江大学学报(工学版)2007, 41 (7) ;1066-1069.
    [163] Y. Xu, F. X. Song, G. Feng, et al. A novel local preserving projection scheme for use with face recognition. Expert Systems with Applications, 2010, 37(9):6718-6721
    [164] J. Z. Wang, B. X Zhang, S. Y. Wang, et al. An adaptively weighted sub-pattern locality preserving projection for face recognition.Journal of Network and Computer Applications, Volume 33, Issue 3, May 2010, 323-332
    [165] L. K. Saul and S. T. Roweis. Think globally, fit locally: unsupervised learning of low dimensional manifolds[J]. The Journal of Machine Learning Research, 2003, 4: 119-155.
    [166] M.Belkin. Problems of Learning on Manifolds[D]. Ph. D. thesis, University Microfilms International, 2003.
    [167] M. Belkin and P. Niyogi. Using manifold structure for partially labeled classification[J]. Advances in Neural Information Processing Systems. 2003, 15:929-936.
    [168] T. F. Cox, M. A. Cox. Multidimensional scaling[M]. Second Edition, U: Charpman&Hall/CRC, 2000.
    [169] D. L. Donoho and C. Grimes. When does isomap recover the natural parameterization of families of articulated images?[M]. Dept. of Statistics Technical Report , Stanford University, 2002.
    [170]徐蓉,姜峰,姚鸿勋,流形学习概述[J],智能系统学报,2006,1(1):44-51.
    [171] F. C. Wu, Z. Y. Hu. The LLE and a linear mapping. Pattern Recognition, 2006, 39(9)(1799-1804).
    [172]黄启宏,刘钊.流形学习中非线性维数约简方法概述[J].计算机应用研究.2007,24(11):19-25.
    [173]尹峻松,肖健,周宗潭,非线性流形学习方法的分析与应用[J],自然科学进展,2007,17(8):1015-1025.
    [174] K. Lawrence, S. Roweis. An introduction to locally linear embedding[R]. Technical Report, Gats by Computational Neuro-science Unit, UCL, 2001.
    [175] J. P. Zhang, H. X. Shen, Z. H. Zhou. Unified locally linear embedding and linear discriminant analysis algorithm (ULLELDA) for face recognition[J]. Advances in Biometric Person Authentication, 2005: 1-16.
    [176] D. De Ridder, M. Loog, M. J. T. Reinders. Local fisher embedding[C]. 17thICPR. Cambridge, UK, 2004. 2: 295-298 Vol. 2.
    [177] F. R. K. Chung. Spectral graph theory[M]. Amer Mathematical Society, 1997.
    [178]曹顺茂,叶世伟一种改进的局部线性嵌入算法[J].计算机仿真,2007 24 (5):87-90.
    [179] B. Li, C. H. Zheng, D. S. Huang. Locally linear discriminant embedding: An efficient method for face recognition[J]. Pattern recognition, 2008, 41(12): 3813-3821.
    [180] Y. L. Zhang, J. Zhuang, X. Li. Local Linear Embedding in Dimensionality Reduction Based on Small World Principle[C]. 2008 International Conference on Computer Science and Software Engineering, 2008, 4: 394-398.
    [181] P. Y. Han, A. T. B. Jin, W. E. Kiong. Neighbourhood Discriminant Locally Linear Embedding in Face Recognition[C]. The Fifth International Conference on Computer Graphics,imaging and Visualiacation 2008: 223-228.
    [182] Y. Z. Pan, S. S. Ge, A. A. Mamun. Weighted locally linear embedding for dimension reduction[J]. IEEE Transactions on Pattern recognition, 2009, 42(5): 798-811.
    [183] N. Mekuz, C. Bauckhage, J. K. Tsotsos. Face recognition with weighted locally linear embedding[C]. Proceedings of the Second Canadian Conference on Computer and Robot Vision(CRV'OS). 2005.
    [184] Z. Y. Zhang and L. X. Zhao. Probability-based locally linear embedding for classification[C]. 4th International Conference on Fuzzy Systems and Knowledge Discovery 2007, 3: 243-247.
    [185] X. Yang, H. Fu, H. Zha, et al. Semi-supervised nonlinear dimensionality reduction[C]. Proceedings of the 23rd International Conference on Machine Learning, Piitsburgh, PA, 2006: 1065-1072.
    [186] Q. You, N. Zheng, S. Du, et al. Neighborhood discriminant projection for face recognition[C]. the 18th International Conference on Pattern recognition, 2006, 2: 532-535.
    [187] V. D. Silva, J. B. Tenenbaum. Global versus local methods in nonlinear dimensionalty reduction[G]. In :Advances in IVIPS15. Cambridge, MA:MIT Press, 2002.705-712.
    [188]邵超,黄厚宽,赵连伟.P-Isomap一种新的对邻域大小不甚敏感的数据可视化方法[J].电子学报,2006 (8): 1497-1501.
    [189]周红,吴炜等.流形学习中的算法研究[J].计算机应用研究,2007 24 ( 7):214-217.
    [190] Z. Y. Zhang and H.Y. Zha. Linear low-rank approximation and nonlinear dimensionality reduction[J]. Science in China Series A: Mathematics, 2004, 47(6): 908-920.
    [191] Z. Y. Zhang and H.Y. Zha. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment[J]. Journal of Shanghai University (English Edition), 2004, 8(4): 406-424.
    [192] D. L. Donoho, G. C. Grimes. Hessian eigenmaps: New locally linear embedding techniques for high-dimensional data[J]. Proceedings of the National Academy of Sciences, 2003, 100(10): 5591-5596.
    [193] L.I.Yang, W.G. Gong, X.H. Gu et al. Null space discriminant locality preserving projections for face recognition. Neurocomputing, 2008, 71(16-18):3644-3649.
    [194] W. W. Yu, X. L. Teng, C. Q. Liu. Face recognition using discriminant locality preserving projections[J]. Image and Vision Computing, 2006, 24(3): 239-248.
    [195] K. Lu, J. D. Zhao, Y. Wu, X. F. He. Relevance feedbacks algorithm based on locality preserving projections[J]. Journal of Computer-Aided Design & Computer Graphics, 2007, 19(1):2024 (in Chinese with English abstract).
    [196] J. B. Li, J. S. Pan, S. C. Chu. Kernel class-wise locality preserving projection[J]. Information Sciences, 2008, 178(7): 1825-1835.
    [197] Z.I.Zheng, F.Yang, W.Tan et al. Gabor feature-based face recognition using supervised locality preserving projection. Signal Processing, 2007,87(10) 2473-2483.
    [198] D. Cai, X. He, J. Han, H. Zhang, Orthogonal Laplacianfaces for face recognition[J], IEEE Transaction on Image Processing. 2006, 15 (11):3608–3614.
    [199] B. Schlkopf, A. Smola, K. R. Mǔller. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5): 1299-1319.
    [200] D. Hu, G. Feng, Z. Zhou. Two-dimensional locality preserving projections (2DLPP) with its application to palmprint recognition[J]. Pattern Recognition, 2007, 40(1): 339-342.
    [201] S. Chen, H. Zhao, M. Kong, et al. 2D-LPP: A two-dimensional extension of locality preserving projections[J]. Neurocomputing, 2007, 70(4-6): 912-921.
    [202] Y. Xu, G. Feng, Y. N. Zhao. One improvement to two-dimensional locality preserving projection method for use with face recognition. Neurocomputing, 2009, 73(1-3)245-249
    [203] H. X. Wang, S. B. Chen, Z. Hu. Image recognition using weighted two-dimensional maximum margin criterion[J]. Proc. Third International Conference on Natural Computation, ICNC 2007: 582-586.
    [204] J. Gui, W. Jia, L. Zhu, et al. Locality preserving discriminant projections for face and palmprint recognition[J]. Neurocomputing, 2010, 73(13-15): 2696-2707.
    [205] R.Chellappa, S.Sirohey, C.L.Wilson et al. Human and machine recognition of faces: a survey[R], Technical Report CAR-TR-731, CS-TR-3339, University of Maryland, August 1994.
    [206] W. Zhao, R. Chellappa, P. J. Phillips et al. Face recognition: a literature survey[J], ACM Comput. Surv. 2003, 35 (4) 399–459.
    [207] H.Yu, J.YANG. A direct LDA algorithm for high-dimensional data with application to face recognition [J]. Pattern Recognition, 2001, 34:2067-2070.
    [208]J.G. Wang, E. Sung, W. Y. Yau. Incremental two-dimensional linear discriminant analysis with applications to face recognition. Journal of Network and Computer Applications. 2010, 33(3): 314-322
    [209] Y. Jin and Q. Ruan. Face recognition using assembled matrix distance metric based 2DLDA algorithm[C]. Proceedings of 2006 8th International Conference on Signal Processing, 2006.
    [210] D. Zhang and Z. H. Zhou. (2D) 2PCA: Two-directional two-dimensional PCA for efficient face representation and recognition[J]. Neurocomputing, 2005, 69(1-3): 224-231.
    [211] S. Noushath, G. H. Kumar, P. Shivakumara. (2D) 2LDA: An efficient approach for face recognition[J]. Pattern recognition, 2006, 39(7): 1396-1400.
    [212] W. Yu, Z. Wang, W. Chen. A new framework to combine vertical and horizontal information for face recognition[J]. Neurocomputing, 2009, 72(4-6): 1084-1091.
    [213] B. Li, D. S. Huang, C. Wang, K. H. Liu, Feature extraction using constrained maximum variance mapping[J], Pattern Recognition 2008, 41:3287-3294.
    [214] W. K. Yang, J. G.Wang, M. Ren, et al. Feature extraction based on Laplacian bidirectional maximum margin criterion[J]. Pattern recognition, 2009, 42(11): 2327-2334.
    [215]陈伏兵,陈秀宏,张生亮.基于模块2DPCA的人脸识别方法[J].中国图象图形学报, 2006,11(4):580-585.
    [216] X. S. Zhuang and D. Q. Dai. Inverse Fisher discriminate criteria for small sample size problem and its application to face recognition[J]. Pattern recognition, 2005, 38(11): 2192-2194.
    [217] P. Nicholl and A. Amira. DWT/PCA face recognition using automatic coefficient selection[C]. in 4th IEEE International Symposium on Electronic Design, Test & Application,2008:390-393.
    [218] H. K. Ekenel and B. Sankur. Multiresolution face recognition[J]. Image and vision computing, 2005, 23(5): 469-477.
    [219] C. Chakrabarti and C. Mumford. Efficient realizations of encoders and decoders based on the 2-D discrete wavelet transform[J]. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 1999, 7(3): 289-298.
    [220] M. H. Sheu, M. D. Shieh, S. W. Liu. A VLSI architecture design with lower hardware cost and less memory for separable 2-D discrete wavelet transform[C]. IEEE International Symposium on Circuits and Systems 1998, 5: 457-460 vol. 5.
    [221] N.G. Kingsbury. The dual-tree complex wavelet transform: a new efficient tool for image restoration and enhancement[C]. Proc. European Signal Processing Conf, 1998: 319-322.
    [222] N. G. Kingsbury, (1999). "Shift invariant properties of the Dual-Tree Complex Wavelet Transform"[C], Proceedings. IEEE Conf: on Acoustics, Speech and Signal Processing, Phoenix, AZ, 1999, 3:1221-1224.
    [223] Y. G. Peng, X. D. Xie, W. L. Xu, et al. Face recognition using anisotropic dual-tree complex wavelet packets[C]. In:2008 19th International Conference on Pattern Recognition, ICPR 2008. 2008: 1-4.
    [224] G. Y. Zhang, S. Y. Peng, H. M. Li. Combination of dual-tree complex wavelet and svm for face recognition[C].In: Proceedings of the 7th International Conference on Machine Learning and Cybernetics, ICMLC, 2008, 5: 2815-2819.
    [225] A. Eleyan, H. Demirel, H. Ozkaramanli. Face recognition using dual-tree wavelet transform[C]. In:Proceedings of the 8th IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2008: 7-11.
    [226] T. Bülow,“Hypercomplex spectral signal representations for the processing and analysis of images[D],”Ph. D. dissertation, Christian Albrechts Univ., Kiel, Germany, 1999.
    [227] W. L. Chan, H. Choi, R. G. Baraniuk. Coherent multiscale image processing using dual-tree quaternion wavelets[J]. Image Processing, IEEE Transactions on, 2008, 17(7): 1069-1082.
    [228] M. K. Vetterli, J. Kovacevic. Wavelets and Subband Coding[J]. Englewood Cliffs, NJ: Prentice-Hall, 1995.
    [229] T. Bülow, G.Sommer.“A novel approach to the 2-D analytic signal[J],”presented at the CAIP, Ljubljana, Slovenia, 1999.
    [230]徐永红,赵艳茹,洪文学等.基于四元数小波幅值相位表示及分块投票策略的人脸识别方法[J].计算机应用研究,2010,10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700