大豆对疫病的抗性评价、抗病基因挖掘及候选基因分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由大豆疫霉(Phytophthora sojae Kaufmann&Gerdermann)引起的大豆疫病(Phytophthora rootrot,PRR)是毁灭性大豆病害之一,严重影响大豆产量和品质。因此,发掘和作图大豆抗疫病新基因对防治该病害和抗病育种具有重要的意义。
     本研究通过接种不同毒力的大豆疫霉菌株对34个大豆品种(系)可能携带的抗病基因分析,利用与Rps1座位连锁的分子标记进行标记基因鉴定,并利用TRAP标记分析了这些品种(系)的多样性;作图和精细定位了2个广谱抗性大豆品种豫豆29和皖豆15抗疫病基因。主要结果如下:
     1.利用下胚轴创伤接种法鉴定了30个豫豆系列品种(系)及其4个原始亲本对26个不同毒力的大豆疫霉菌株的抗性,应用基因对基因理论对品种(系)进行了抗疫病基因推导。结果表明,34个大豆品种(系)分别抗3个或3个以上大豆疫霉菌株,并产生34种不同的反应型。通过与一套含有单个已知抗病基因大豆品种(系)反应型比较发现,品种周豆17的反应型与含有Rps5品系L85–3059的反应型一致,可能携带抗病基因Rps5;郑77249可能携带抗病基因Rps3a或Rps3a+5抗病基因组合。其它32个大豆品种(系)反应型与已知的抗病基因或抗病基因组合反应型不同。因此,推测这32个大豆品种(系)可能携带新的抗病基因或抗病基因组合。聚类分析表明,当相似系数为0.65时,34个大豆品种(系)、17个鉴别寄主和感病品种Williams共聚为10组。本研究结果表明,河南地区培育的豫豆系列品种(系)对大豆疫霉的抗性具有极其丰富的多样性。这些具有广谱抗性的大豆品种(系)为有效地控制大豆疫病提供了新的抗源。
     2.利用靶位区域扩增多态性(Target Region Amplified Polymorphism, TRAP)标记对34个品种(系)、17个鉴别寄主和感病品种Williams的遗传多样性进行了分析。32对TRAP标记扩增34个品种(系)共产生251个位点,平均每对引物产生7.84个位点,每个位点均具有多态性,多态性位点比例占100%。基于TRAP标记分析,这34个品种(系)间的遗传相似性位于0.20-0.94,平均相似性为0.57。UPGMA聚类分析,在相似系数为0.57时,52个大豆品种(系)分为9个组。通过与抗性鉴定聚类结果分析表明,大豆对疫病的抗性与TRAP标记聚类结果无关。
     3.豫豆29是一个对大豆疫霉具有广谱抗性的大豆品种。接种25个不同毒力的大豆疫霉菌株进行抗性分析表明,豫豆29产生的反应型不同于携带已知单个抗病基因的鉴别寄主的反应型。以豫豆29为父本,感病品种吉科豆2号为母本,杂交产生的214个F2:3家系作为作图群体对豫豆29进行抗大豆疫病基因分析。抗性遗传分析表明,F2:3群体中纯合抗病、杂合和纯合感病家系分离比符合1:2:1的分离比,表明豫豆29对大豆疫霉的抗性由一个显性单基因控制,暂时命名为RpsYD29。利用SSR标记,基因RpsYD29被定位在了大豆基因组第3号染色体上(Molecularlinkage group N, MLG N),位于引物SattWM82–50和Satt1k4b之间,与两个标记的遗传距离分别为0.5和0.2cM。对定位区域内的基因序列分析表明,具有NBS-LRR结构的基因Glyma03g04030.1和Glyma03g04080.1可能是RpsYD29基因的参照候选基因。经候选基因克隆测序和序列分析表明,豫豆29和吉科豆2号的两个候选基因在核苷酸和编码的预测氨基酸序列上均存在差异。这些差异可能是造成豫豆29和吉科豆2号抗、感差异的原因。根据抗性鉴定和分子鉴定结果,可知RpsYD29基因可能是Rps1座位上一个新的等位基因或与Rps1座位紧密连锁的基因。
     4.利用与Rps1座位紧密连锁的分子标记Satt530和Sat_186,和与RpsYD29基因紧密连锁的分子标记SattWM82–50和Satt1k4b,对34份大豆品种(系)进行了分子标记基因型分析。发现这4对引物共产生31种标记基因型。这34份大豆品种(系)在这4个位点具有丰富多样性。分子标记基因型分析表明,豫豆23、豫豆24和周豆11可能携带RpsYD25基因;郑77249、郑84285、郑120、郑90007和郑92116可能携带RpsYD29基因;豫豆12、豫豆22和赤黄豆可能携带Rps1a/1d基因;豫豆15可能携带Rps1b基因;齐黄1号、郑7104、山东四角齐、郑135、豫豆13和郑85558可能携带Rps1c/1k基因。
     5.以大豆品种皖豆15为父本,感病品种Williams为母本杂交产生的102个F2:3家系作为作图群体对皖豆15的抗大豆疫病基因进行分析。抗性遗传分析表明,F2:3群体中纯合抗病、杂合和纯合感病家系分离比符合1:2:1的分离比,表明皖豆15对大豆疫霉菌株PsMC1的抗性由一个显性单基因控制。连锁分析表明,皖豆15携带的抗病基因被定位在了大豆第17号染色体上(MLGD2),位于引物Sattwd15–24/25和Sattwd15–47之间,与这两个引物之间的遗传距离分别为0.5和0.8cM。同时还获得与抗病基因共分离的两对引物Sattwd15–28和Sattwd15–32。这是首次在该染色体上发现和定位的大豆抗病基因,因此将该基因命名为Rps10。对定位区域内的基因序列分析表明,具有丝氨酸/苏氨酸(Ser/Thr)蛋白激酶结构的基因Gly17g28950.1和Gly17g28970.1可能是Rps10的参照候选基因。经侯选基因克隆测序分析,皖豆15和Williams的两个候选基因在核苷酸和编码的氨基酸序列上均存在差异。这些差异可能是造成皖豆15和Williams对大豆疫霉菌株抗、感差异的原因。
Phytophthora root rot (PRR) caused by Phytophthora sojae Kaufmann&Gerdemann, is one of themost destructive diseases on soybean (Glycine max (L.) Merr.), and could result in a total yield loss and thelower quality. So, it is meaningful for the disease control and the resistant breeding to further study on thePhytophthora resistance.
     The34soybean cultivars (lines) were employed to characterize the Phytophthora resistance andpostulate the Phytophthora resistance gene. Then the genetic relationship of the cultivar (lines) was analyzedusing the TRAP (Target Region Amplified Polymorphism) markers. Based on the result of the Phytophthoraresistance, the inheritance, mapping and the candidate gene(s) of the Rps gene(s) in soybean cultivarYudou29with broad spevtrum resistance was further analysis. In addition, the pyhtophthpra resistance ofsoybean cultivar Wandou15was also analyzed as well as the Yudou29. The main conclusions are as follows:
     1. The objective of this study was to characterize the Phytophthora resistance in34soybean cultivars(lines) by inoculating26P.sojae isolates with different virulence phenotypes. The34soybean cultivars (lines)showed resistance to between3and26isolates, and34reaction types were produced. The reaction typesproduced on the cultivars were compared with those produced by the same isolates on the differential lines topostulate which Rps gene were present. The gene Rps5and Rps3a or gene combination Rps3a+5werepostulated to be present in Zhoudou17and Zheng77249, respectively. And the other32cultivars/linescharacterized novel reaction types, of which were different from the known Rps genes or two-genecombinations. The cluster analysis of the reaction types revealed10groups among the34soybean cultivars(lines),17differentials and the cultivar Williams at the similarity coefficient0.654. This study indicated thatPhytophthora resistance was extremely diverse in this region. The cultivars (lines) with broad spectrumresistance could provide effective sources of resistance for the control of PRR in the future.
     2. This study investigated the genetic diversity and relationships among the34soybean cultivars(lines),17differential lines carrying a single Rps gene and the susceptible cultivar Williams using thetarget region amplification polymorphism (TRAP) marker technique. Thirty-two primer combinationsgenerated a total of251polymorphic loci, of which each had the polymorphisms. The average numberof polymorphic locus for each primer combination was7.84. The pairwise genetic similarity coefficientsbased on the TRAP markers ranged from0.20to0.94with a mean of0.57, indicating that there issubstantial genetic variability in these soybean cultivars/lines. Cluster analysis using the UPGMAmethod, grouped the52cultivars (lines) into9classes. There is no relationship among the resistanceanalysis and the TRAP markers analysis of the34soybean cultivars (lines).
     3. The soybean cultivar Yudou29is resistant to many P.sojae isolates in China. In response to25P.sojae isolates, Yudou29displayed a new resistance reaction pattern distinct from those of differentialscarrying known Rps genes. The genetic basis of the resistance in Yudou29was elucidated through aninheritance study and molecular mapping. A population of214F2:3families from a cross between Jikedou2(PRR susceptible) and Yudou29was used for Rps gene mapping. The segregation fit a1:2:1ratio for resistance: segregation: susceptibility within this population, indicating that resistance in Yudou29iscontrolled by a single dominant gene. This gene was temporarily named RpsYD29and mapped on soybeanchromosome03(molecular linkage group N; MLG N) flanked by SSR markers SattWM82-50and Satt1k4bat a genetic distance of0.5and0.2cM, respectively. Two nucleotide binding site-leucine rich repeat(NBS-LRR) type genes Glyma03g04030.1and Glyma03g04080.1were detected in the204.8kb regionbetween SattWM82-50and Satt1k4b, which were might be the referenced candidate genes of RpsYD29. Andthe differences in genomic sequence and the putative amino acid sequence, respectively, were identifiedwithin each candidate gene between Yudou29and Jikedou2, which might cause the resistance/susceptibltityin both cultivars. Based on the phenotype reactions and the physical position on soybean chromosome03,RpsYD29might be a novel allele at, or a novel gene tightly-linked to, the Rps1locus.
     4. The molecular marker phenotype of the34soybean cultivars (lines) were analyzed using thetightly-linked molecualr markers Satt530and Sat_186with Rps1locus, SattWM82–50and Satt1k4bwith RpsYD29gene. Thirty-one marker phenotypes were generated using these four primers, indicatingthat34soybean cultivars (lines) had the high diversity at these four loci. The results of the molecularmarker phenotype showed that Yudou23, Yudou24and Zhoudou11might carry RpsYD25gene;Zheng7729, Zheng84285, Zheng120, Zheng90007and Zheng92116might carry RpsYD29gene;Yudou12, Yudou22and Chihuangdou might carry Rps1a/1d gene; Yudou15might carry Rps1b gene.And Qihuang1, Zheng7104, Shandongsijiaoqi, Zheng135, Yudou13and Zheng85558might carryRps1c/1k gene.
     5. Resistance to Phytophthora sojae isolate PsMC1was evaluated in102F2:3families derived froma cross between the resistant soybean cultivar Wandou15and the susceptible cultivar Williams andgenotyped using simple sequence repeat (SSR) markers. The segregation ratio of resistant, segregating,and susceptible phenotypes in the population suggested that the resistance in Wandou15was dominantand monogenic. Twenty-six polymorphic SSR markers were identified on soybean chromosome17(MLG D2), which were linked to the resistance gene based on bulked segregation analysis (BSA).Markers Sattwd15–24/25and Sattwd15–47flanked the resistance gene at a distance of0.5and0.8cM,respectively. Two cosegregating markers, Sattwd15–28and Sattwd15–32, were also screened in thisregion. This is the first Rps resistance gene mapped on chromosome17, which is designated as Rps10.Eight putative genes were found in the mapped region between markers Sattwd15–24/25andSattwd15–47, of which two gene models Gly17g28950.1and Gly17g28970.1might be the referencedcandidate genes of Rps10. The candidate genes encoding serine/threonine (Ser/Thr) protein kinases inWandou15and Williams were identified and sequenced.And the differences in genomic sequence andthe putative amino acid sequence, respectively, were identified within each candidate gene betweenWandou15and Williams. This novel gene Rps10and the linked markers should be useful in developingsoybean cultivars with durable resistance to P.sojae.
引文
1.白玉路,孙权,张春宇,崔娜,林凤,徐世昌,章振羽,高阳,徐晓丹.美国西北部59个小麦品种(系)抗条锈病基因分子检测及对中国条锈菌系抗性鉴定.中国农业科学2010,43(6):1147–1155
    2.曹世勤,骆惠生,武翠平,金社林,王晓鸣,朱振东,贾秋珍,黄瑾,张勃,尚勋武.甘肃省主要小麦生产品种(系)及抗源材料抗白粉病基因推导分析.作物学报2010,36(12):2107–2115
    3.陈庆河,翁启勇,王源超,郑小波.福建省大豆疫病病原菌鉴定及其核糖体DNA–ITS序列分析.植物病理学报2004,34:112–116
    4.陈晓玲,朱振东,王晓鸣,肖炎农,武晓菲.大豆品种(系)抗疫霉根腐病基因推导.中国农业科学2008,41(4):1227–1234
    5.陈晓玲.大豆疫霉根腐病抗病基因及分子鉴定.武汉:华中农业大学2006
    6.崔章林,盖钧镒,邱家驯,等.中国大豆育成品种及其系谱分析(1923–1995).北京,中国农业出版社1998,24–30
    7.杜青,朱振东,肖炎农,王晓鸣,武小菲.用SSR标记分析抗疫霉根腐病大豆品种(系)的遗传多样性.植物遗传资源学报2007,8(3):253–260
    8.范爱颖,王晓鸣,方小平,武小菲,朱振东.大豆品种豫豆25抗疫霉根腐病基因的鉴定.作物学报2009,35(10):18441850
    9.韩晓增,何志鸿,张增敏.大豆主要病虫害防治技术.大豆通报1998,6:5–6
    10.郝中娜,文景芝,李永刚.大豆疫霉根腐病病菌单游动孢子的毒性遗传与变异.植物病理学报2003,33(4):347–352
    11.李宝英,马淑梅,张举梅.聚氨基葡聚糖防治大豆根腐病的初步研究.大豆科学1997,16(3):269–270
    12.李俊山.大豆品种皖豆15的选育及栽培技术.安徽农学通报2007,13(17):108
    13.李永孝主编.山东大豆.济南:山东科学技术出版社1999,359–361
    14.李洪杰,王晓鸣,宋凤景,伍翠平,武小菲,张宁,周阳,张学勇.中国小麦品种对白粉病的抗性反应与抗病基因检测.作物学报2011,37(6):943–954
    15.柳李旺,龚义勤,黄浩,朱献文.新型分子标记SRAP与TRAP及其应用.遗传.2004,26(5):777–781
    16.吕慧颖,许修宏,杨庆凯.大豆疫霉根腐病菌生物学特性的初步研究.中国油料作物学报2000,22(3):75–76
    17.吕慧颖,袁晓丽等.东北三省大豆种质资源对大豆疫霉根腐病的抗性表现.中国油料作物学报,2001,23(4):16–18
    18.马淑梅,李宝英.大豆疫霉根腐病生理小种鉴定结果初报.大豆科学1999(2):151–153.
    19.马淑梅,丁俊杰,郑天琪,顾鑫.黑龙江省大豆疫霉根腐病生理小种鉴定结果.大豆科学2005,24(4):260–262
    20.马忠友,孙林静,刁金男,苏京平,刘学军,王春敏,王胜军,闫双勇.水稻抗白叶枯病基因Xa21的分子标记检测.天津农业科学2007,13(3):7–15
    21.沈崇饶,苏彦纯.中国大豆疫霉病菌的发现及初步研究.植物病理学报1991,21:298
    22.隋喆,黄静,马振川,施晓璐,谢晶,文景芝.吉林、辽宁大豆品种(系)对大豆疫病的抗病基因鉴定.中国油料作物学报2010,32(1):94–98
    23.唐庆华,崔林开,李德龙,戴婷婷,阴伟晓,董莎萌,邢邯,郑小波,王源超.黄淮地区大豆种质资源对疫霉根腐病的抗病性评价.中国农业科学2010,43(1):2246–2252
    24.王华,李国英,战勇,王朴,张萍.新疆大豆疫霉根腐病疫病鉴定初报.新疆农业科学2006,43:106–108
    25.王金龙,徐冉.山东省大豆杂交育成品种(系)遗传基础分析.山东农业科学2000,6:38–39
    26.王子迎,王源超,张正光,郑小波.中国和美国大豆疫霉群体遗传结构的ISSR分析.生物多样性2007,15:215–223
    27.文景芝,陈宏宇.大豆疫霉菌致病性分化研究.中国油料作物学报2002,24(1):63–66
    28.文自翔.中国栽培和野生大豆的遗传多样性、群体分化和演化及其育种性状QTL的关联分析.南京:南京农业大学2008
    29.魏新燕,杨文香、刘大群、孔俊英.150个小麦品种(系)抗叶绣基因Lr35分子检测.中国农业科学2004,37(12):1951–1954
    30.武晓玲,周斌,孙石,赵晋铭,陈受宜,盖钧镒,邢邯.大豆对大豆疫霉菌株Pm14抗性的遗传分析及基因定位.中国农业科学2011,44(3):456–460
    31.夏长剑,张吉清,王晓鸣,武小菲,刘章雄,朱振东.大豆资源抗疫霉根腐病基因分析.中国油料作物学报2011a,33(4):396–401
    32.夏长剑,张吉清,王晓鸣,刘章雄,朱振东.美国引进大豆资源抗疫霉根腐病基因分析.作物学报2011b,37(7):1167–1174
    33.夏长剑.大豆抗疫霉根腐病基因分析与大豆品种皖豆15抗疫霉根腐病基因作图.北京:中国农业科学院.2011
    34.许修宏.大豆疫霉根腐病菌生理小种鉴定及抗源筛选研究.东北农业大学博士学位论文,2000
    35.徐冉,王彩洁,王金龙,陈存来.国外种质在山东大豆育种中的遗传贡献分析.山东农业科学2003,1:10–15
    36.姚海燕,王晓鸣,武小菲,肖炎农,朱振东.大豆品种早熟18抗疫霉根腐病基因的SSR分子标记.植物遗传资源学报2010,11(2):213–217
    37.于安亮,徐鹏飞,王金生,张淑珍,吴俊江,李文滨,陈维元,李宁辉,范素杰,王欣,姜良宇.大豆品种绥农10抗疫霉根腐病遗传分析及抗病基因的SSR标记.中国油料作物学报2010,32(4):462–466
    38.袁军海,刘太国,陈万权.中国47个小麦新品种(系)苗期抗叶锈基因推导.中国农业科学2007,40(9):1925–1935
    39.张军,赵团结,盖钧镒.中国大豆育成品种群体遗传结构分化和亚群特异性分析.中国农业科学2009,42(6):1901–1910
    40.张淑珍,吴俊江,徐鹏飞,李文滨,左豫虎,邱丽娟,常汝镇,陈晨,王金生,于安亮,靳立梅.黑龙江省大豆疫霉根腐病菌毒力类型及15号小种的首次报道.中国油料作物学报2008,30(2):229–234
    41.朱振东,王晓鸣,田玉兰,武晓菲.防治大豆疫霉根腐病的药剂筛选.农药学学报1999,1(3)39–44
    42.朱振东,王晓鸣,常汝镇,马淑梅,武晓菲,田玉兰.黑龙江省大豆疫霉菌生理小种鉴定及大豆种质的抗性评价.中国农业科学2000,33(1):62–67
    43.朱振东.大豆疫霉根腐病的发生和防治研究进展.植保技术与推广2002,22(7):40–42
    44.朱振东,霍云龙,王晓鸣,黄俊斌,武晓菲.大豆疫霉根腐病抗源筛选.植物遗传资源学报2006,7(1):24–30
    45.朱振东,霍云龙,王晓鸣,黄俊斌,武小菲.一个抗大豆疫霉根腐病新基因的分子鉴定.作物学报2007,33(1):154–157
    46.朱振东,王化波,王晓鸣,常汝镇,武小菲.中国大豆疫霉菌分布及毒力多样性研究.中国农业科学2003,36(7):793–799
    47. Abney T.S., Melgar J.C., Richards T.L., Scott D.H., Grogan J., Young J. New races ofPhytophthora sojae with Rps1-d virulence. Plant Dis1997,81:653–655
    48. Anderson T.R., Buzzell R.I. Inheritance and linkage of the Rps7gene for resistance toPhytophthora rot of soybean. Plant Dis1992,76:958–959
    49. Allen G.C., Flores–Vergara M.A., Krasynanski S., Kumar S., Thompson W.F. A modified protocolfor rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc2006,1:2320–2325
    50. Alwala S., Suman A., Arro J.A., Veremis J.C., Kimbeng C.A.Target Region AmplificationPolymorphism (TRAP) for assessing genetic diversity in sugarcane germplasm collections. CropSci2006,46:448–455
    51. Athow K.L., Laviolette F.A., Mueller E.H., Wilcox J.R. A new major gene for resistance toPhytophthora megasperma var. sojae in soybean. Phytopathology1980,70:977–980
    52. Athow K.L., Laviolette F.A. Rps6, a major gene for resistance to Phytophthora megaspermaf.sp.glycinea in soybean. Phytopathology1982,72:1564–1567
    53. Becraft P.W., Stinard P.S. McCarty D.R. CRINKLY4–a TNFR-like receptor kinase involved inmaize epidermal differentiation. Science1996,273:1406–1409
    54. Bent A.F., Kunkel B.N., Dahlbeck D., Brown K.L., Schmidt R., Giraudat J., Leung J., StaskawiczB.J. RPS2of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes.Science1994,23,265(5180):1856–1860
    55. Bendahmane A., Kanyuka K., Baulcombe D.C. The Rx gene from potato controls separate virusresistance and cell death responses. Plant Cell1999,11:781–792
    56. Bernard R.L., Smith P.E., Kaufmann M.J., Schmitthenner A.F. Inheritance of resistance toPhytophthora root rot and stem rot in the soybean. Agron J1957,49:391
    57. Bernard R.L., Cremeens C.R. An allele at the Rps1locus from the variety Kingwa. Soybean GenetNewsl.1981,8:40–42
    58. Bhat R.G., McBlain B.A., Schmitthenner A.F. Development of pure lines of Phytophthora sojaeraces. Phytopathology1993,83:474–477
    59. Bhattacharyya M.K., Narayanan N.N., Gao H., Santra D.K., Salimath S.S., Kasuga T., Liu Y.,Espinosa B., Ellison L., Marek L. Identification of a large cluster of coiled coil–nucleotide bindingsite–leucine rich repeat–type genes from the Rps1region containing Phytophthora resistance genesin soybean. Theor Appl Genet.2005,111:75–86
    60. Bittner-Eddy P.D., Crute I.R., Holub E.B., Beynon J.L. RPP13is a simple locus in Arabidopsisthaliana for alleles that specify downy mildew resistance to different avirulence determinants inPeronospora parasitica. Plant J2000,21:177–188
    61. Biezen E.A., Freddie C.T, Kahn K., Parker J.E., Jones J.D. Arabidopsis RPP4is a member of theRPP5multigene family of TIR–NB–LRR genes and confers downy mildew resistance throughmultiple signalling components. Plant J2002,29:439–451
    62. Bostjan K., Johann D. The leucine-rich repeat: a versatile binding motif. TBS1994,19:415–421
    63. Botella M.A., Parker J.E., Frost L.N. Three genes of the Ara9bidopsis RPP1complex resistancelocus recognize distinct Per9onospora parasitica avirulence determinants. Plant cell1998,10:1847–1860
    64. Boyes D.C., Nam J., Dangl J.L. The Arabidopsis thaliana RPM1disease resistance gene product isa peripheral plasma membrane protein that is degraded coincident with the hypersensitive response.Proc Natl Acad Sci1998,95(26):15849–15854
    65. Brommonschenkel S.H., Frary A., Frary A., Tanksley S.D. The broad-spectrum tospovirusresistance gene Sw-5of tomato is a homolog of the root-knot nematode resistance gene Mi. MolPlant Microbe In2000,13:1130–1138
    66. Brueggeman R., Rostoks N., Kudrna D., Kilian A., Han F., Chen J., Druka A., Steffenson B. Thebarley stem rust-resistance gene Rpg1is a novel disease-resistance gene with homology to receptorkinases. Proc Natl Acad Sci2002,99:9328–9333
    67. Bryan G.T., Wu K.S., Farrall L., Jia Y., Hershey H.P., McAdams S.A., Faulk K.N., Donaldson G.K.,Tarchini R., Valent B. A single amino acid difference distinguishes resistant and susceptible allelesof the rice blast resistance gene Pi-ta. Plant Cell2000,12:2033–2046
    68. Buschges R., Hollricher K. The barley mlo gene: A novel control element of plant pathogenresistance. Cell1997,88:695–705
    69. Buzzell R.I., Anderson T.R. Another major gene for resistance to Phytophthora megaspermavar.sojae in soybean. Soybean Genet Newsl1981,18:30–33
    70. Buzzell R.I., Anderson T.R. Inheritance and race reaction of a new soybean Rps1allele. Plant Dis1992,76:600–601
    71. Cai D., Kleine M., Kifle S. Positional cloning of a gene for nematode resistance in sugar beet.Science1997,275:832–834
    72. Chen X.W., Shang J.J., Chen D.X., Lei C.L., Zou Y., Zhai W.X., Liu G.Z., Xu J.H., Ling Z.Z., CaoG., Ma B.T., Wang Y.P., Zhao X.F., Li S.G., Zhu L.H. A B-lectin receptor kinase gene conferringrice blast resistance. Plant J2006,46:794–804
    73. Chu Z.H., Yuan M., Yao J.L., Ge X.J., Yuan B., Xu C.G., Li X.H., Fu B.Y., Li Z.K., Bennetzen J.L.,Zhang Q.F., Wang S.P. Promoter mutations of an essential gene for pollen development result indisease resistance in rice. Genes Dev2006,20(10):1250–1255
    74. Collins N., Drake J., Ayliffe M., Sun Q., Ellis J., Hulbert S., Pryor T. Molecular characterization ofthe maize Rp1-D rust resistance haplotype and its mutants. Plant Cell1999,11:1365–1376
    75. Collakova E., Goyer A., Naponelli V., Krassovskaya I., Gregory J.F., Hanson A.D., Shachar-Hill Y.Arabidopsis10-formyl tetrahydrofolate deformylases are essential for photorespiration. Plant Cell2008,20:1818–1832
    76. Cooper A., Woods-Tor K., Sjolander J.D., Jones E.B., Holub. Arabidopsis downy mildewresistance gene RPP27encodes a receptor-like protein similar to CLAVATA2and tomato Cf-9.Plant Physiol2004,135:1100–1112
    77. Cooley M.B., Pathirana S., Wu H.J., Kachroo P., Klessig D.F. Members of the ArabidopsisHRT/RPP8family of resistance genes confer resistance to both viral and oomycete pathogens.Plant Cell2000,12:663–676
    78. Concibido V.C., Diers B.W., Arelli P.R. A decade of QTL mapping for cyst nematode resistance insoybean. Crop Sci2004,44:1121–1131
    79. Cui K.L., Yin W.X., Tang Q.H., Dong S.M., Zheng X.B., Zhang Z.G., Wang Y.C. Distribution,pathotypes, and metalaxyl sensitivity of Phytophthora sojae from Heilongjiang and Fujianprovinces in China. Plant Dis2010,94:881–884
    80. DemirbasA., Rector B.G., Lohnes D.G., Fioritto R.J., Graef G.L., Cregan P.B., Shoemaker R.C.,Specht J.E. Simple sequence repeat markers linked to the soybean Rps genes for Phytophthoraresistance. Crop Sci2001,41:1220–1227.
    81. Diener A.C., Ausubel F.M. Resistance to Fusarium oxyaporum, a dominant Arabidopsisdisease-resistance gene, is not race specific. Genetics2005,171:305–321
    82. Dixon M.S., Jones D.A., Keddie J.S., Thomas C.M., Harrison K., Jones J.D. The tomato Cf–2disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell1996,84(3):451–459
    83. Dixon M.S., Hatzixanthis K., Jones D.A., Harrison K., Jones JD. The tomato Cf–5diseaseresistance gene and six homologs show pronounced allelic variation in leucine rich repeat copynumber. Plant Cell1998,10:1915–1925
    84. Dorrance A.E., McClure S.A., deSilva A. Pathogenic diversity of Phytophthora sojae in Ohiosoybean fields. Plant Dis2003,87:139–146
    85. Dorrance A.E., Robertson A.E., Cianzo S., Giesler L.J., Grau C.R., Draper M.A., Tenuta A.U.,Anderson T.R. Integrated management strategies for Phytophthora sojae combining host resistanceand seed treatments. Plant Dis2009,93:875–882
    86. Ellis J.G., Lawrence G.J., Luck J.E., Dodds P.N. Identification of regions in alleles of the flax rustresistance gene L that determine differences in gene–for–gene specificity. Plant Cell1999,11:495–506
    87. Erwin C.D., Ribeiro O.K. Phytophthora Diseases Worldwide.1996, St Paul, MN, USA: APS Press
    88. Farias–Neto A.F., Hashmi R., Schmidt M.E., Carlson S.R., Hart–man G.L., Li S., Nelson R.L.,Diers B.W. Mapping and conformation of a sudden death syndrome resistance QTL on linkagegroup D2from the soybean genotypes ‘PI567374’ and ‘Ripley’. Mol Breeding2007,20:53–62
    89. Feng D.X., Bittner-Eddy P., Beynon J., Marco Y. Resistance to Ralstonia solanacearum inArabidopsis thaliana is conferred by the recessive RRS1–R gene, a member of a novel family ofresistance genes. Proc Natl Acad Sci2002,99:2404–2409
    90. Flor H.H. Host parasite interaction in flax rust–its genetics and other implications. Phytopathology1955,45:680–685
    91. Gao H., Narayanan N.N., Ellison L., Bhattacharyya M.K. Two classes of highly similar coiledcoil–nucleotide binding–leucine rich repeat genes isolated from the Rps1–k locus encodePhytophthora resistance in soybean. Mol Plant Microbe In2005,18:1035–1045
    92. Gao H., Bhattacharyya M.K. The soybean–phytophthora resistance locus Rps1–k encompassescoiled coil–nucleotide binding–leucine rich repeat–like genes and repetitive sequences. BMC PlantBiol2008,8:1–14
    93. Gassmann W., Hinsch M.E., Staskawicz B.J. The Arabidopsis RPS4bacterial–resistance gene is amember of the TIR–NBS–LRR family of disease–resistance genes. Plant J1999,20:265–277
    94. Goodwin S.B. The population genetics of Phytophthora. Phytopathology1997,87:462–473
    95. Gordon S.G., St Martin S.K., Dorrance A.E. Rps8maps to a resistance gene rich region on soybeanmolecular linkage group F. Crop Sci2006,46:168–173
    96. Gordon S.G., Kowitwanich K., Pipatpongpinyo W., St Martin S.K, Dorrance A.E. Molecularmarker analysis of soybean plant introductions with resistance to Phytophthora sojae.Phytopathology2007,97:113–118
    97. Graham M.A., Marek L.F., Lohnes D., Cregan P., Shoemaker R.C. Expression and genomeorganization of resistance gene analogs in soybean. Genome2000,43:86–93
    98. Graham M.A., Marek L.F., Shoemaker R.C. Organization, expression and evolution of a diseaseresistance gene cluster in soybean. Genetics2002,162:1961–1977
    99. Grant M.R., Godiara L., Straube E., Ashfield T., Lewald J., Sattler A., Innes R.W., Dangl JL.Structure of the Arabidopsis RPM1gene enabling dual specificity disease resistance. Science1995,269(5225):843–846
    100. Gu K., Yang B., Tian D., Wu L.F., Wang D.J., Sreekala C., Yang F., Chu Z.Q., Wang G.L., WhiteF.F., Yin Z.C. R gene expression induced by a type-III effector triggers disease resistance in rice.Nature2005,435:1122–1125
    101. Haas J.H., Buzzell R.I. New races5and6of Phytophthora megasperma var.sojae and differentialreactions of soybean cultivars for races1to6. Phytopathology1976,66:1361–1362
    102. Halterman D., Zhou F., Wei F., Wise R.P., Schulze-Lefert P. The MLA6coiled–coil, NBS–LRRprotein confers AvrMla6–dependent resistance specificity to Blumeria graminis f.sp.hordei inbarley and wheat. Plant J2001,25:335–348
    103. Halterman D.A., Wise R.P. A single-amino acid substitution in the sixth leucine-rich repeat ofbarley MLA6and MLA13alleviates dependence on RAR1for disease resistance signaling. Plant J2004,38:215–226
    104. He J., Gu D., Wu X., Chen J., Duan X., Chen J., Whelton P.K. Effect of soybean protein on bloodpressure: a randomized controlled trial. Ann Intern Med2005,143:1–9
    105. Hegstad J.M., Williams G.J., Wisson E.R. Pod inoculation technique with Phytophthora sojae toevaluate soybean populations for Rps alleles in field plantings. Crop Sci1996,36:1706–1708
    106. Hilty J.W. Phytopathogenic and cultural variablility of singlezoospore isolates of Phytophthoramegasperma.var.sojae. Phytopathology1962,52:859–862
    107. Hu J.G., Vick B.A. Target region amplification polymorphism: A novel marker technique for plantgenotyping. Plant Mol Biol Rep2003,21:289–294
    108. Hu J.G., Chen J.F., Gulya T.J., Miller J.F. TRAP markers for a sunflower downy mildew resistancegene from a new helianthus annuus source, PI468435. Proc.16thInternational SunflowerConference, Fargo, ND USA
    109. Jablonska B., Ammiraju J.S., Bhattarai K.K., Mantelin S., Ilarduya O.M., Roberts P.A., Kaloshian I.The Mi-9gene from Solanum arcanum conferring heat-stable resistance to root–knot nematodes isa homolog of Mi-1. Plant Physiol2007,143:1044–1054
    110. Jackson T.A., Kirkpatrick T.L., Rupe J.C. Races of Phytophthora sojae in Arkansas soybean fieldsand their effects on commonly grown soybean cultivars. Plant Dis2004,88:345–351
    111. Jones D.A., Thomas C.M., Hammond-Kosack K.E., Balint-Kurti P.J., Jones J.D. Isolation of thetomato Cf-9gene for resistance to Cladosporium fulvum by transposon tagging. Science1994,266(5186):789–793
    112. Kang Y.J., Kim K.H., Shim S., Yoon M.Y., Sun S.L., Kim M.Y., Van K., Lee S.H. Genome–widemapping of NBS–LRR genes and their association with disease resistance in soybean. BMC PlantBiology2012,12:139.biomedcentral.com/1471–2229/12/139
    113. Kasuga T., Salimath S.S., Shi J., Gijzen M., Buzzell R.I., Bhattacharyya M.K. High resolutiongenetic and physical mapping of molecular markers linked to the Phytophthora resistance geneRps1–k in soybean. Mol Plant Microbe In1997,10:1035–1044
    114. Kilen T.C., Hartwig E.E., Keeling B.L. Inheritance of a second major gene for resistance toPhytophthora root rot in soybeans. Crop Sci1974,14:260–262
    115. Kim Y.T., Oh J., Kim K.H., Uhm J.Y., Lee B.M. Isolation and characterization of NgRLK1, areceptor–like kinase of Nicotiana glutinosa that interacts with the elicitin of Phytophthora capsici.Mol Biol Rep2010,37:717–727
    116. Kim D.H., Kim K.H., Van K., Kim M.Y., Lee S.H. Fine mapping of a resistance gene to bacterialleaf pustule. Theor Appl Genet2010,120:1443–1450
    117. Kloos D.U., Phillips M.S., Ganal M.W. The broad–spectrum potato cyst nematode resistance gene(Hero) from tomato is the only member of a large gene family of NBS–LRR genes with an unusualamino acid repeat in the LRR region. Plant J2002,31:127–136
    118. Kyle D.E., Nickell C.D., Nelson R.L., Pedersen W.L. Response of soybean accessions fromprovinces in southern China to Phytophthora sojae. Plant Dis1998,82:555–559
    119. Lagudah E.S., Moullet O., Appels R. Map–based cloning of a gene sequence encoding anucleotide-binding domain and a leucine–rich region at the Cre3nematode resistance locus ofwheat. Genome1997,40:659–665
    120. Lawrence G.J., Finnegan E.J., Ayliffe M.A., Ellis J.G. The L6gene for flax rust resistance is relatedto the Arabidopsis bacterial resistance gene RPS2and the tobacco viral resistance gene N. PlantCell1995,7(8):1195–1206
    121. Lavelle D.T., Dahlbeck D., Staskawicz B.J. Tomato Prf is a member of the leucine-rich repeat classof plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell1996,12,86(1):123–133
    122. Liu J.L., Liu X.L., Dai L.Y., Wang G.L. Recent progress in elucidating the structure, function andevolution of disease resistance genes in plants. J Genet Genomics2007,34(9):765–776
    123. Lohens D.G., Schmitthenner A.F., Nickell C.D. Incidence and distribution of Phytophthoraresistance in new soybean germplasm from China. Agronomy Abstract1994:217
    124. Lohnes D.G., Nickell C.D., Schmitthenner A.F. Origin of soybean alleles for Phytophthoraresistance in China. Crop Sci1996,36:1689–1692
    125. Malvick D.K., Grunden E. Traits of soybean infecting Phytophthora populations from Illinoisagricultural fields. Plant Dis2004,88:1139–1145
    126. Martin G.B., Brommonschenkel S.H., Chunwongse J., Frary A., Ganal M.W., Spivey R., Wu T.,Earle E.D., Tanksley S.D. Map–based cloning of a protein kinase gene conferring diseaseresistance in tomato. Science1993,262:1432–1436
    127. McDowell J.M., Dhandaydham M., Long T.A., et al. Intragenic recombination and diversifyingselection contribute to the evolution of downy mildew resistance at the RPP8locus of Arabidopsis.Plant Cell1998,10:1861–1874
    128. Michelmore R.W., Paran I., Kesseli R.V. Identification of markers linked to disease–resistancegenes by bulked segregant analysis: a rapid method to detect markers in specific genomic regionsby using segregating populations. Proc Natl Acad Sci1991,88:9828–9832
    129. Michelmore R.W., Meyers B.C. Clusters of resistance genes in plants evolve by divergent selectionand a birth and death process. Genome Res1998,8:1113–1130
    130. Milligan S.B., Bodeau J., Yaghoobi J., Kaloshian I., Zabel P., Williamson V.M. The root knotnematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding,leucine rich repeat family of the plant genes. Plant Cell1998,10:1307–1319
    131. Morrison R.H., Thorne J.C.Inoculation of detached cotyledons for screening soybeans against tworaces of Phytophthora megasperma var.sojae. Crop Sci1978,18:1089–1091
    132. Morris P.F., Bone E., Tyler B.M. Chemotropic and contact responses of Phytophthora sojae hyphaeto soybean isoflavonoids and artificial substrates. Plant Physiol1998,117:1171–1178
    133. Mueller E.H., Athow K.L., Laviolette F.A. Inheritance of resistance to four physiologic races ofPhytophthora megasperma var.sojae. Phytopathology68:1318–1322
    134. Nabila Y., Payorm S., Robert D., et al. Genome analysis at different ploidy levels allows cloning ofthe powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J2004,37:528–538
    135. Ori N., Eshed Y., Paran I., Presting G., Aviv D., Tanksley S., Zamir D., Flur R. The I2C familyfrom the wilt disease resistance locus I2belongs to the nucleotide binding, leucine rich repeatsuperfamily of plant resistance genes. Plant cell1997,9:521–532
    136. Pan Q., Wendel J., Fluhr R. Divergent evolution of plant NBS-LRR resistance gene homologues indicot and cereal genomes. J Mol Evol2000,50:203213
    137. Parker J.E., Coleman M.J., Szabb V., Frost L.N., Schmidt R., van der Biezen E. A., Moores T.,Dean C., Daniels M.J., Jones J.D. The Arabidopsis downy mildew resistance gene RPP5sharessimilarity to the toll and interN leukinN1receptors with N and L6. Plant Cell1997,9:879–894
    138. Phillip W.P., Allen J.W. Soybean disease loss estimates for the Southern United States from1994to1996. Plant Dis1998,82:114–116
    139. Phillip N., Miklas, Hu J., Grunwald N.J., Larsen K.M. Potential Application of TRAP (TargetedRegion Amplified Polymorphism) markers for mapping and tagging disease resistance traits incommon bean. Crop Sci2006,46:910–916
    140. Ploper L.D., Athow K.L., Laviolette F.A. A new allele at Rps3locus for resistance to Phytophthoramegasperma f.sp.glycinea in soybean. Phytopathology1985,75:690–694
    141. Polzin K.M., Lohnes D.G., Nickell C.D., Shoemaker R.C. Integration of Rps2, Rmd, and Rj2intolinkage group J of the soybean molecular map. J Hered1994,85:300–303
    142. Pretorius Z.A., Rijkenberg F.H.J., Wilcoxson R.D. Influence of genetic background on theexpression of wheat leaf rust resistance gene Lr22a. Phytopathology1990,80:579–584
    143. Qu S.H., Liu G.F., Zhou B., Bellizzi M., Zeng L,R., Dai L.Y., Han B., Wang G.L. The broadspectrum blast resistance gene Pi9encodes an NBS–LRR protein and is a member of a multigenefamily in rice. Genetics2006,172:1901–1914
    144. Richly E., Kurth J., Leister D. Mode of amplification and reorganization of resistance genes duringrecent Arabidopsis thaliana evolution. Mol Biol Evol2002,19:76–84
    145. Rohlf F. NTSYS–PC numerical taxonomy and multivariate analysis system ver2.11L. AppliedBiostatistics, NY.2000
    146. Ryley M.J., Obst N.R. Changes in the racial composition of Phytophthora sojae in Australiabetween1979and1996. Plant Dis1998,82:1048–1054
    147. Sacks F.M., Lichtenstein A., Van Horn L., Harris W., Kris-Etherton P., Winston M. For theAmerican Heart Association Nutrition Committee. Soy protein, isoflavones, and cardiovascularhealth: an American Heart Association Science Advisory for Professionals from the NutritionCommittee.2006, Circulation113:1034–1044
    148. Salmero J.M., Oldroyd G.E.D., Rommens C.M.T., Scofield S.R., Kim H.S., Lavelle D.T., DahlbeckD., Staskawicz B.J. Tomato Prf is a member of the leucine–rich repeat class of plant diseaseresistance genes and lies embedded within the Pto kinase gene cluster. Cell1996,86:123–133
    149. Sandhu D., Gao H., Cianzio S., Bhattacharyya M.K. Deletion of a disease resistancenucleotide–binding–site leucine–rich repeat–like sequence is associated with the loss of thePhytophthora resistance gene Rps4in soybean. Genet2004,168:2157–2167
    150. Sandhu D., Schallock K.G., Rivera–Velez N., Lundeen P., Cianzio S., Bhattacharyya M.K. SoybeanPhytophthora resistance gene Rps8maps closely to the Rps3region. J Hered2005,96:536–541
    151. Satterlee J.S., Sussman M.R. Unusual membrane–associated protein kinases in higher plants.Membrane Biol1998,164:205–213
    152. Schmitthenner A.F. Problems and processing in control of Phytophthora root rot of soybean. PlantDis1985,69:462–468.
    153. Schmitthenner A.F., Hobe M., Bhat R.G. Phytophthora sojae races in Ohio over a10–year interval.Plant Dis1994,78:269–276
    154. Schmithenner A.F., Van Doren D.M. Integrated control of root rot of soybean caused byPhytophthora megasperma f.sp.glycinea.In: Parker C.A., Rovira A.D., Moore K.J., Wong P.T.W.,and Kollmorgen J.F.editors.Ecology and management of soilborne plant pathogens.St.Paul (MI):APS Press.1985,263–266
    155. Sessa G.D., Ascenzo M., Martin G.B. Thr38and Ser198are Pto autophosphorylation sites requiredfor the AvrPto/Pto–mediated hypersensitive response. EMBO J2000,19:2257–2269
    156. Schulze-Muth P., Irmler S., Schroder G., Schroder J. Novel type of receptor-like protein kinasefrom a higher plant (Catharanthus roseus). J Biol Chem1996,271:26684–26689
    157. Shirano Y., Kachroo P., Shah J., Klessig D.F. A gain-of-function mutation in an Arabidopsis TollInterleukin-1Receptor–Nucleotide Binding Site–Leucine-Rich Repeat type R gene triggersdefense responses and results in enhanced disease resistance. Plant Cell2002,14:3149–3162
    158. Slaminko T.L., Bowen C.R., Hartman G.L. Multi–Year evolution of commercial soybean cultivarsfor resistance to Phytophthora sojae. Plant Dis2010,94:368–371
    159. Song W.Y., Wang G.L., Chen L.L., Kim H.S., Pi L.Y., Holsten T., Gardner J., Wang B., Zhai W.X.,Zhu L.H., Fauquet C., Ronald P. A receptor kinase–like protein encoded by the rice diseaseresistance gene Xa21. Science1995,270:1804–1806
    160. Sugimoto T., Yoshida S., Watanabe K., Aino M., Kanto T., Maekawa K., Irie K. Identification ofSSR markers linked to the Phytophthora resistance gene Rps1–d in soybean. Plant Breeding2008,127:154–159
    161. Sugimoto T., Yoshida S., Kaga A., Hajika M., Watanabe K., Aino M., Tatsuda K., Yamamoto R.,Matoh T., Walker D.R., Biggs A.R., Ishimoto M. Genetic analysis and Identification of DNAmarkers linked to a novel Phytophthora sojae resistance gene in the Japanese soybean cultivarWaseshiroge. Euphytica2011a,182:133–145
    162. Sugimoto T., Yoshida S., Aino M., Maekawa K., Kanto T., Matoh T., Koroda Y., Irie K., WatanabeK. Pathogenic races of Phytophthora sojae in Glycine max cv.Tanbakuro producing areas in Hyogoand selection of parental soybeans for breeding new resistant cultivars. J Crop Res2010b,55:19–25
    163. Sun S., Wu X.L., Zhao J.M., Wang Y.C., Tang Q.H., Yu D.Y., Gai J.Y., Xing H. Characterizationand mapping of RpsYu25, a novel resistance gene to Phytophthora sojae. Plant Breeding2011,130:139–143
    164. Sun X.L., Cao Y.L., Yang Z.F., Xu C., Li X., Wang S., Zhang Q. Xa26, a gene conferring resistanceto Xanthomonas oryzae pv.oryzae in rice, encodes an LRR receptor kinase–like protein. Plant J2004,37:517–527
    165. Staiger D., Zecca L., Wieczorek Kirk D.A., Apel K., Eckstein L. The circadian clock regulatedRNA-binding protein AtGRP7auto-regulates its expression by influencing alternative splicing ofits own pre-mRNA. Plant J2003,33:361–371
    166. Steven B.C., Hongyan Z., Andrew M.B., Russell S., Georgiana M., Douglas R.C., Nevin D.Y.Diversity, distribution, and ancient taxonomic relationships within the TIR and non-TIR NBS-LRRresistance gene subfamilies. J Mol Evol2002,54:548562
    167. Takahashi H., Miller J., Nozaki Y., Takeda M., Shah J., Hase S. RCY1, an Arabidopsis thalianaRPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requiressalicylic acid, ethylene and a novel signal transduction mechanism. Plant J2002,32:655667
    168. Tai T.H., Dahlbeck D., Clark E.T., Gajiwala P., Pasion R., Whalen M.C., Stall R.E., Staskawicz B.J.Expression of the Bs2pepper gene confers resistance to bacterial spot disease in tomato. Proc NatlAcad Sci1999,96:1415314158
    169. Thomas C.M., Jones D.A., Parniske M., Harrison K., Balint-Kurti P.J., Hatzixanthis K., JonesJ.D.G. Characterization of the tomato Cf94gene for resistance to Cladosporium fulvum identifiessequences that determine recognition specificity in Cf94and Cf99. Plant Cell1997,9:22092224
    170. Torii K.U., Mitsukawa N., Oosumi T., Matsuura Y., Yokoyama R., Whittier R.F., Komeda Y. TheArabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellularleucine-rich repeats. Plant Cell1996,8:735–746.
    171. Tyler B.M. Phytophthora sojae: root rot pathogen of soybean and model27oomycete. Mol PlantPathol2007,8:1–8
    172. Van Ooijen J.W. JoinMap4Software for the calculation of genetic linkage maps in experimentalpopulations. Kyazma B.V., Wageningen, Netherlands,2006
    173. Venancio S., Arahana., Graef G.L., Specht J.E., Steadman J.R., Eskridge K.M. Identification ofQTLs for resistance to Sclerotinia sclerotiorum in Soybean. Crop Sci2001,41:180–188
    174. Vossen E.A., Voort J.N., Kanyuka K., Bansal S., Shioiri T. Homologues of a single resistance-genecluster in potato confer resistance to distinct pathogens: a virus and a nematode. Plant J2000,23:567–576
    175. Wang Q.H., Zhang B.L., Lu Q.S.Conserved region amplification polymorphism (CoRAP), a novelmarker technique for plant genotyping in Salvia miltiorrhi. Plant Molecular Biology Reporter2009,27(2):139–143
    176. Wang Z.X., Yano M., Yamanouchi U., Iwamoto M., Monna L., Hayasaka H., Katayose Y., SasakiT.The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeatclass of plant disease resistance genes. Plant J1999,19:55–64
    177. Wang G.L., Ruan D.L., Song W.Y. Xa21D encodes a receptor-like molecule with a leucine-richrepeat domain that determines race-specific recognition and is subject to adaptive evolution. PlantCell1998,10(5):765–780
    178. Weng C., Yu K., Anderson T.R., Poysa V. Mapping genes conferring resistance to Phytophthoraroot rot of soybean, Rps1a and Rps7. J Hered2001,92:442–446
    179. Westerink N., Brandwagt B.F., De Wit P.J., Joosten M.H. Cladosporium fulvum circumvents thesecond functional resistance gene homologue at the Cf–4locus (Hcr9–4E) by secretion of a stableavr4E isoform. Mol Microbiol2004,54:533–545
    180. Whitham S., Dinesh-Kumar S.P., Choi D. The product of the tobacco mosaic virus resistance geneN: similarity to Toll and the interleukin-1receptor.Cell1994,78:1011–1015
    181. Wilson R.F. Soybean: market driven research needs.In: Stacey G, editors.Genetics and Genomics ofSoybean. New York (NY): Springer.2008:3–15
    182. Workneh F., Yang X.B., Tylka G.L. Soybean brown stem rot, Phytophthora sojae and Heteroderaglycines affected by soil texture and tillage relations. Phytopathology1999,89:844–850
    183. Wrather J.A., Anderson T.R., Arsyad D.M., Tan Y., Ploper L.D., Puglia A., Ram H.H., Yorinori J.T.Soybean disease loss estimates for the top ten soybean–producing countries in1998. Can J PlantPathol2001,23:115–121
    184. Wrather J.A., Koenning S.R. Estimates of disease effects on soybean yields in the United States2003to2005. J Nematol2006,38:173–180
    185. Wu X.L., Zhang B.Q., S S., Zhao J.M., Yang F., Guo N., Gai J. Y., Xing H. Identification, geneticanalysis and mapping of resistance to Phytophthora sojae of Pm28in soybean. AgriculturalSciences in China2011,10(10):1506–1511
    186. Warren R.F., Henk A., Mowery P., Holub E., Innes R.W. A mutation within the leucine-rich repeatdomain of the Arabidopsis disease resistance gene RPS5partially suppresses multiple bacterial anddowny mildew resistance genes. Plant Cell10:1439–1452
    187. Xiao S., Ellwood S., Calis O., Patrick E., Li T.X., Coleman M., Turner J.G. Broad-spectrummildew resistance in Arabidopsis thaliana mediated by RPW8. Science2001,291:118–120
    188. Xie H., Guan R.X., Chang R.Z., Qiu L.J. Genetic diversity of Chinese summer soybean germplasmrevealed by SSR markers. Chinese Science Bulletin2005,50(6):526–535
    189. Yang X.B., Ruff R.L., Meng X.Q., Workneh F. Races of Phytophthora sojae in Iowa soybean fields.Plant Dis1996,80:1418–1420
    190. Yoshimura S., Yamanouchi U., Katayose Y., Toki S., Wang Z.X., Kono I., Kurata N., Yano M.,Iwata N., Sasaki T. Xa1Rice Xanthomona oryzae CC-NBS-LRR. Proc Natl Acad Sci1998,95:1663–1668
    191. Yuan J.Z., Bashir R., Salas G., Sharma H., Srour A., Lightfoot D.A. New approaches to selectingresistance or tolerance to SDS and fusarium root rot. J Plant Genome Sci2012,1:10–17
    192. Yue B., Cai X.W., Vick B.A, Hu J.G. Genetic diversity and relationships among177publicsunflower inbred lines assessed by TRAP markers. Crop Sci2003,49:1242–1249
    193. Zhang S.Z., Xu.PF., Wu J.J., Xue A.G., Zhang J.X., Li W.B., Chen C., Chen W.Y., Lv H.Y. Racesof Phytophthora sojae and their virulences on soybean cultivars in Heilongjiang, China. Plant Dis2010,94:87–91
    194. Zhou J.M., Loh Y.T., Bressan R.A., Martin G.B. The tomato gene Pti1encodes a serine/threoninekinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell1995,83:925–935
    195. Zhou J.M., Tang X.Y., Martin G.B. The Pto kinase conferring resistance to tomato bacterial speckdisease interacts with proteins that bind a cis–element of pathogenesis–related genes. EMBO J1997,16:3207–3218
    196. Zhou J.R., Erdman J.W., Jr.2005. Soy consumption and cancer prevention.In: Bendich A., andDeckelbaum R.J., edited.Preventive nutrition: the comprehensive guide for health professionals.3rd edition. Totowa (NJ): Humana Press. p.123–157
    197. Zhou Y.L., Wan J., Li D.Y., Chen R.S., Zhai W.X., Zhu L.H. Testifying the rice bacterial blightresistance gene xa5by genetic complementation and further analyzing xa5(Xa5) in comparisonwith its homolog TFIIAgamma1. Mol Genet Genomics2004,275:354–366
    198. Zou H.W., Song Z.J., Wu Z.Y., Zhang X.H., Liu H.F., Ma G.H., Huang C.L. Isolation and analysisof ZmPto from maize, a homologue to Pto. POJ2011,4:53–59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700