基于烯酰基乙酰胺的杂环化反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统上讲,杂环化学是有机化学中最大的分支。杂环化合物种类繁多(约占有机化合物总数的一半),广泛应用于医药、农业化学品等方面,并与生命科学、材料科学等密切相关。有关杂环化合物的合成研究在有机合成中占有相当大的比重,文献浩如烟海。杂环化合物,特别是含氮杂环化合物(如生物碱),其广泛的生物活性及结构多样性使其成为主要的合成目标。开拓杂环化合物的合成方法,尤其是简洁、高效、符合原子经济性要求的合成杂环化合物新方法一直令人期待。
     在过去的数十年中,α-酰基乙酰胺类化合物作为合成前体已被成功地运用于多取代的杂环化合物的合成中。本论文研究以发现新合成方法为出发点,从易于制备的α-烯酰基乙酰胺类化合物出发,通过串联反应、分子内环合反应及氧化重排反应等合成了几种新颖的杂环结构,包括C2桥连的双杂环化合物,四氢吲哚,哌啶酮,特窗胺及琥珀酰亚胺衍生物。结合实验结果,对反应机理进行了深入细致的研究。
     论文共分六个章节。第一章介绍了近年来α-烯酰基乙酰胺在杂环化合物合成研究中的进展;第二章阐述了本论文的选题依据。在第三章中,详细阐述了所发现的一种新合成策略——在温和的条件下,α-烯酰基乙酰胺类化合物和异腈基乙酸乙酯通过串联反应以较高产率生成C2桥连吡咯/噁唑化合物的合成方法。该串联反应涉及两次[3+2]环加成,一步反应即构建了两个不同的杂环,可以很好的区域选择性及非对映选择性一次性构建四个C-C键和一个C-O键。
     第四章介绍了一种新颖的串联反应。在温和条件下,α-烯酰基乙酰胺类化合物和异腈基乙酸乙酯反应生成多官能团化的7-氮杂-四氢吲哚类化合物。反应涉及一新颖的反应机理,揭示了异腈基乙酸乙酯中的异氰基碳原子可以作为1,1-双亲电体。
     第五章涉及极性反转共轭加成反应的发现,在此基础上提出了一个新的概念。详细描述了远程取代基电性的微妙的变化即可影响共轭加成的区域选择性。这个新的概念有助于加深对共轭加成反应的理解。
     第六章,介绍特窗胺在温和的条件下可发生氧化-重排反应生成琥珀酰亚胺衍生物。该反应利用空气中的氧气作为氧化剂,无须渡金属催化或光激发,是一种值得关注的新颖的重排反应。
Traditionally, heterocyclic chemistry is the largest branch in organic chemistry. A widevariety of heterocyclic compounds (about half of the total organic compounds), widely usedin medicine, agricultural chemicals etc., and is closely related to life science and materialscience. Heterocyclic compounds in organic synthesis accounts for a sizeable proportion ofvoluminous literature. Heterocyclic compounds, especially aza-heterocycles (eg alkaloids)posses a wide range of biological activity and structural diversity, making it the main goal ofthe synthesis. Exploring the synthetic methodology of heterocyclic compounds, especially ina simple, efficient, and atom economy fashion, is very desirable.
     In the past several decades, α-acyl acetamide compounds have been extensively andsuccessfully used as synthetic precursors for the synthesis of polyfunctionalized heterocycles.The study in this thesis focuses on the discovery of new synthetic methods of the syntheses ofseveral novel heterocycles including two-carbon-tethered heterocyclic pairs,tetrahydroindole,piperidone, tetramic acids and succinimide derivatives by tandem reaction, intramolecularcyclization and oxidative rearrangemen, respectively, starting from the easily availablealkenoyl acetamide derivatives on the other hand, the related reaction mechanisms arediscussed.
     The thesis is divided into six chapters. In the first chapter, a review for the research onthe use of alkenoyl acetamide compounds for the synthesis of several heterocyclics in recentyears. And the thesis proposal is presented in chapter two. In chapter three, it is describes thata new strategy for the synthesis of C2-tethered pyrrole/oxazole pairs in good to high yieldsunder mild reaction conditions from alkenoyl acetamides and ethyl isocyanoacetate. Thistandem reaction comprises two [3+2] cycloadditions and allows the construction of twodiferent heterocycles in a single step. This new strategy involves the formation of four C-Cand one C-O bonds in a regio-and diastereoselective manner with the chemoselectivefragmentation.
     Chapter four describes a new strategy for the synthesis of various highlyfunctionalized7-aza-tetrahydroindoles from α-alkenoyl acetamide and ethylisocyanoacetate in a single step under mild conditions. A new reaction mechanism isproposed based on the observation that isocyanide carbon plays the role of a1,1-dielectrophile.
     Chapter five introduces a new concept, polarity-reversible conjugate addition and showedhow the regioselectivity of a conjugate addition can be reversed with a simple and subtlechange in a remote substituent. This concept provides new insights into the conjugate addition chemistry.
     In Chapter six, an oxidative rearrangemen pathway to succinimide derivatives fromtetramic acids is described. This new oxidative rearrangement reaction is unique in severalrespects including the use of triplet oxygen as oxidant without activation (metal-free systemswithout photoexcitation), and it is a noteworthy new tandem reaction.
引文
[1] Pozharskii, A. F.; Soldatenkov, A. T.; Katritzky, A. R. Heterocycles in Life and Society; Wiley: NewYork,1997.
    [2](a) Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Ress,C. W., Scriven, E. F. V., Eds.;Pergamon: Oxford, U.K.,1996; Vol.1-9.(b) Comprehensive Heterocyclic Chemistry III; Katritzky, A.R.,Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K., Eds.; Pergamon:Oxford, U.K.,2008; Vol.1-13.(c)Martins, M. A. P.; Cunico, W.; Pereira, C. M. P.; Flores, A. F. C.; Bonacorso, H. G.; Zanatta, N.Curr.Org. Synth.2004,1,39.(d) Druzhinin, S. V.; Balenkova, E. S.;Nenajdenko, V. G. Tetrahedron2007,63,7753.(e) Martins, M. A. P.; Frizzo, C. P.; Moreira, D. N.; Zanatta, N.; Bonacorso, H. G. Chem. Rev.2008,108,2015.
    [3] Knorr L, Synthetische Versuche mit dem Acetessigester [J]. Justus Liebig's Annalen der Chemie,1886,236(1-2):69-115.
    [4] Meyer R H, über den Zusammenhang zwischen Konstitution und Gleichgewicht beiketo-enol-desmotropen Verbindungen.(über Keto-Enol-Tautomerie. VI)[J]. Ber,1912,45(3):2843-2864.
    [5] a) Nakpathom M, Hinks D, Freeman H S, Synthesis and evaluation of organic pigments.4. Newmonoarylide and diarylide pigments [J]. Dyes and Pigments,2001,48(2):93-106. b) Wang S R, Liu XF, Xiao J Q, et al. A study on the application behaviors of latent pigment derived from CI PigmentYellow151[J]. Dyes and Pigments,2004,61(2):99-102. c) Harikrishnan U, Menon S K, The synthesis,characterization and spectral properties of crown ether based disazo dyes [J]. Dyes and Pigments,2008,77(2):462-468.
    [6] Kaupp G, Metwally M A, Amer F A, et al. Quantitative Gas-Solid Diazotization of3-Aminopyrazolo[3,4-b]pyridine Derivatives and Azo Dye Syntheses by Means of Solid-SolidReactions [J]. Eur J Org Chem,2003,1545-1551.
    [7] a) Marull M, Lefebvre O, Schlosser M, An Improved Access to4-Trifluoromethyl-2(1H)-quinolinones:The Watering Protocol [J] Eur J Org Chem,2004,(1):54-63. b) Katritzky A R, Huang T B, VoronkovM V, et al. Polycyclic heteroaromatics from reactions of acylbenzotri-azoles with aryl isocyanates [J]. JOrg Chem,2000,65(23):8069-8073. c) Zaragoza F, Remarkable substituent effects on thechemoselectivity of rhodium(II) carbenoids derived from N-(2-diazo-3-oxobutyryl)-L-phenylalanineesters [J]. Tetrahedron,1995,51(32):8829-8834. d) Carling R W, Leeson P D, Moore K W, et al.3-Nitro-3,4-dihydro-2(1H)-quinolones.Excitatory amino acid antagonists acting at glycine-site NMDAand (RS)-.alpha.-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors [J]. J Med Chem,1993,36(22):3397-4308. e) Rigo B, Studies on Pyrrolidinones. Synthesis of N-AcylpyroglutamicAcids Having Bactericide and Fungicide Properties [J]. J Heterocycl Chem,1988,25(1):59-63.
    [8] a) Campbell K N, Tipson R S, Elderfield R C, et al. Synthesis of Ethyl Quininate [J]. J Org Chem,1946,11,803-811. b) Singh B K N, Fernandes P S, Synthesis and biological activity of substituted quinolinesderived from4-aminophenyl-2H-1,2,3-triazole [J]. Indian J Heterocycl Chem,2003,13(1):19-24. c)Tale R H, Sagar A D, Santan H D, et al.3-Nitrobenzeneboronic Acid as an Efficient andEnvironmentally Benign Catalyst for the Selective Transesterification of β-Keto Esters [J]. Synlett,2006,3,415-418. d) Hanna M A, Al-Sarawy A A, Rashed I G, et al. Novel sulphoarylazo4-pyrazolone-based tartrazine dye analogues [J]. Phosphorus Sulfur Silicon Relat Elem,2004,179(6):1209-1226. e) Bandgar B P, Uppalla L S, Sadavarte V S, Chemoselective Transesterification of β-Keto Esters under Neutral Conditions using NBS as a Catalyst [J]. Synlett,2001,11,1715-1718. f)Suri O P, Satti N K, Suri K A, Microwave Induced Acetoacetylation of Hetaryl and Aryl Amines [J].Synth Commun,2000,30(20):3709-3718. g) Witzeman J S, Nottingham W D, Transacetoacetylationwith tert-butyl acetoacetate: synthetic applications [J]. J Org Chem,1991,56(5):1713-1718.
    [9] Xu F, Joseph D. Armstrong III, Edward J. J. Grabowski, Mechanistic Evidence for an α-OxoketenePathway in the Formation of β-Ketoamides/Esters via Meldrum’s Acid Adducts [J]. J Am Chem Soc,2004,126,13002-13009.
    [10] a) Andreichikov Y S, Gein L F, Gein, V L, Sythesis of2,2,6-Trisubstituted1,3-Dioxen-4-ones [J].Khimiya Geterotsiklicheskikh Soedinenii,1979,9,1280. b) Mohri K, Oikawa Y, Hirao K, Neldrum'sAcid in Organic Synthesis3. Synthesis of2-Substituted Indoles From Phenylhydroxylamine [J].Heterocycles1982,19,515-520. c) Mohri K, Oikawa Y, Hirao K, et al. Meldrum's Acid in OrganicSynthesis. VI. Synthesis of2-Substituted Indoles from Acyl Meldrum's Acids andPhenylhydroxylamine via [3,3] Sigmatropic Rearrangement [J]. Chem Pharm Bull,1982,30(9):3097-3105. d) Sato M, Ogasawara H, Komatsu S, et al. Synthesis of β-Ketocarboxamide DerivativesUsing2,2-Dimethyl-2H,4H-1,3-dioxin-4-ones [J]. Chem Pharm Bull,1984,32(10):3848-3856. e)Clemens R J, HyattJ A, Acetoacetylation with2,2,6-trimethyl-4H-1,3-dioxin-4-one: a convenientalternative to diketene [J]. J Org Chem,1985,50(14):2431-2435. f) Sato M, Ogasawara H, TakayamaK,et al. A Novel Synthetic Method of Lactams From1,3-Dioxin-4-ones via Intramolecular KeteneTrapping [J]. Heterocycles,1987,26(10):2611-2614. g) Andreichikov Y S, Gein, V L, Kozlov A P, etal. Interaction of2,2-dimethyl-6-aryl-1,3-dioxin-2-ones with Aromatic-Amines and Ortho-Phenylenediamine [J]. Zhurnal Organicheskoi Khimii,1988,24(1):210-217. h) Himbert G,Ruppmich M, Eine Wagner-Meerwein-Umlagerung als Zwischenschritt bei derDihydroindolon-Bildung aus2-Diazo-acetoacetaniliden [J]. Angewandte Chemie,1990,102(1):69-70. i) Sakaki J, Kobayashi S, Sato M, et al. Synthesis of1,3-Dioxin-4-ones and Their Use inSynthesis. XVIII.: Synthesis of Azetidin-2-ones from1,3-Dioxin-4-ones via3-Hydroxycarboxamides[J]. Chem Pharm Bull,1989,37(11):2952-2960. j) Siek P C, Cheol Y H, Bok C E, Aminolysis of5-Acyl-2,2-dimethyl-1,3-dioxane-4,6-diones (Acyl Meldrum's Acids) as a Versatile Method for theSynthesis of β-Oxo Carboxamides [J]. Synthesis,1992,(12):1213-1214. k) Beier N, Labitzke E,Mederski W W K R, Synthesis of7-ethyl-1,2-dihydroquinolin-2-ones as angiotensin receptor IIantagonists [J]. Heterocycles,1994,39(1):117-131. l) Sharma G V M, Ilangovan A, Narayanan V L, etal. First synthesis of aza-calanolides-a new class of anti-HIV active compounds [J]. Tetrahedron,2002,59(1):95-99. m) Miriyala B, Williamson J S, An efficient and rapid synthesis of β-carboxamidederivatives using2,2-dimethyl-2H,4H-1,3-dioxin-4-ones by microwave irradiation [J]. TetrahedronLett,2003,44(43):7957-7959. n) Huggins M T, Barber P S, Florian D, et al. Short, Efficient Synthesesof Pyrrole–Amides [J]. Synth Commun,2008,38(23):4226-4239.
    [11] a) Yamamoto Y, Onishi S, Azuma Y, A New Method for Preparation of N-Acetoacetyl-carboxamides[J]. Synthesis,1981,2,122-124. b) Davis S E, Rauckman B S, Chan J H, et al.2,4-Diamino-5-benzylpyrimidines and analogs as antibacterial agents.11. Quinolylmethyl analogs with basic substituentsconveying specificity [J]. J Med Chem,1989,32(8):1936-1942. c) Galeazzi R, Mobbili G, Orena M,Thermodynamic vs. kinetic control in the stereoselective intramolecular conjugate addition of amideenolates leading to chiral trans-3,4-disubstituted pyrrolidin-2-ones [J] Tetrahedron,1999,55(13):4029-4042. d) Synthesis of Enantiopure Pyrrolo[3,4-c]Pyrazole Derivatives via IntramolecularCycloaddtion of Homo-chiral Nitrilimines [J]. Synth Commun,2001,31(24):3799-3806.
    [12] a) Hendi S B, Hendi M S, Wolfe J F, A new synthesis of β-keto amides via reaction of ketone lithiumenolates with isocyanates [J]. Synth Commun,1987,17(1):13-18.b) Aznar F, Valdés C, Cabal M,Enamines in solid-phase: synthesis and reactivity towards electrophiles [J]. Tetrahedron Lett,2000,41(30):5683-5687. c) Yoshimitsu T, Matsuda K, Nagaoka H, Radical Fixation of FunctionalizedCarbon Resources: α-sp3C H Carbamoylation of Tertiary Amines with Aryl Isocyanates [J]. Org Lett,2007,9(24):5115-5118.
    [13] Babudri F, Ciminale F, Nunno D L, Florio S, Organometallic induced self-condensation ofcarboxamides [J]. Tetrahedron,1982,38(4):557-561.
    [14] a) Ali M I, Hammouda H A, Reactions with Benzothiazoles. I. Action of Amines on3-Hydroxy-1H-benzo[d]pyrido[2,1-b]thiazol-1-one and its derivatives [J]. Journal fuer Praktische Chemie(Leipzig),1979,321(2):331-335. b) Ferri R A, Pitacco G, Valentin E, Nucleophilic Behaviour ofl-substituted Morpholino Ethenes [J].Tetrahedron,1978,34(16):2537-2543.
    [15] Knorr L, Synthetische Versuche mit dem Acetessigester [J]. Justus Liebig's Annalen der Chemie,1888,245(3):357-382.
    [16] a) Coffey S, Thompson J K, Wilson F J, Ethyl esters of β-arylaminocrotonic acids [J]. J Chem Soc,1936,856-859. b) Bergstrom F W, Heterocyclic nitrogen compounds. Part II A. Hexacyclcioccompounds: pyridine, quinoline, and isoquinoline [J]. Chem Rev,1944,35,77-277. c) Hauser C R,Reynolds G A, Reactions of β-Keto Esters with Aromatic Amines. Syntheses of2-and4-Hydroxyquinoline Derivatives [J]. J Am Chem Soc,1948,70,2402-2404. d) Carter P H, KatritzkyA R, Plant S G, Experiments on the preparation of indolocarbazoles. Part VII. Some derivatives of5-amino-1-phenylbenzotriazole [J]. J Chem Soc,1955,337-340. e) Uchida M, Tabusa F, Komatsu M,et al. Studies on2(1H)-quinolinone derivatives as gastric antiulcer active agents. Synthesis andantiulcer activity of the metabolites of2-(4-chlorobenzoylamino)-3-[2(1H)-quinolinon-4-yl]propionnic acid [J]. Chem Pharm Bull,1986,34,4821-4824. f) Rahan M, Martin V A, Craine L,Torsional barriers in quinolinone hydroxylamine and sulfenamide derivatives [J]. J Org Chem,1990,55(14):4311-4316. g) Ashrof M A, Raman P S, Studies on Cyclization of allylacetoacetanilides andSpectral Characterization of the Products [J]. J Indian Chem Soc,1994,71(12):733-737. h) Hahn H,Chang K H, Lee W S, et al. Synthesis of new dihydrooxathiino[2,3-b]quinoline [J]. J HeterocyclChem,1996,33(6):2055-2057. i) Bhalekar S M, Parab H M, Synthesis and biological activity of2-(substituted quinolin-6-yl)-4H-1-benzopyran-4-ones [J]. Indian J Heterocycl Chem,2007,16(4):337-340.
    [17] Staskun B, The Conversion of Benzoylacetanilides into2-and4-hydroxy quinolines [J]. J Org Chem,1964,29(5):1153-1157.
    [18] Sai K K S, Gilbert T M, Klumpp D A, Knorr Cyclizations and Distonic Superelectrophiles [J]. J OrgChem,2007,72(25):9761-9764.
    [19] a) Bunnett J F, Hrutfiord B F, Williamson S M,3-Acetyloxindole [J]. Organic Syntheses Coll,1973,5,12-16;1960,40,1-4. b) Bunnett J F, Hrutfiord B F, Ring Closure via Aryne Intermediates: A GeneralPrinciple of Synthesis [J]. J Am Chem Soc,1961,83(7):1691-1697.
    [20] Setsune J, Matsukawa K, Kitao T, Copper (I)-Promoted Aromatic Nucleophilic-Substitution Reactionsof Ortho-Bromoaniline Derivatives with Active Methylene Carbanions [J]. Nippon Kagaku Kaishi,1985,3,438-441.
    [21] Lu B, Ma D, Assembly of3-Acyloxindoles via CuI/L-Proline-Catalyzed Intramolecular Arylation ofβ-Keto Amides [J]. Org Lett,2006,8(26):6115-6118.
    [22] Zhou C and Che C, Highly Efficient Au(I)-Catalyzed Intramolecular Addition of β-Ketoamide toUnactivated Alkenes [J]. J Am Chem Soc,2007,129,5828-5829.
    [23] Liu F and Li C, Intramolecular Formal [4+2] Cycloaddition of Nitriles with Amides Triggered byTMSOTf/Et3N: Highly Efficient Construction of Pyrrolo[1,2-a]-pyrimidin-4(6H)-ones [J]. J OrgChem,2009,74,5699–5702.
    [24] Xu Z, Huang K, Liu T, Xie M and Zhang H, Synthesis of spirocyclic β-keto-lactams: copper catalyzedprocess [J]. Chem. Commun.,2011,47,4923–4925.
    [25] a) Muller F and Rodriguez J, Multicomponent Domino Reaction from β-Ketoamides: Highly EfficientAccess to Original Polyfunctionalized2,6-Diazabicyclo[2.2.2]octane Cores [J]. J Am Chem Soc,2005,127,17176-17177. b) Zhor El Asri and Plaquevent J, Multicomponent reactions in ionic liquids:convenient and ecocompatible access to the2,6-DABCO core [J]. Green Chem.,2011,13,2549–2552.
    [26] Ducker J W, Gunter M J, The Reaction of Malononitrile with Some β-Dicarbonyl Compounds [J].Austr J Chem,1975,28(10):581-590.
    [27] Zaleska B, Slusarska B, Knoevenagel Reaction of malononitrile and its “dimer” with β-ketoanilides [J].Monatshefte fuer Chemie,1981,112(10):1187-1194.
    [28] Muller F and Rodriguez J, Metal-free Michael addition initiated multicomponent oxidativecyclodehydration route to polysubstituted pyridines from1,3-dicarbonyls [J]. Chem. Commun.,2008,4207–4209.
    [29] Xin X, Wang Y, Dong D, Efficient one-pot synthesis of substituted pyridines through multicomponentreaction [J]. Org. Biomol. Chem.,2010,8,3078–3082.
    [30] a) Biginelli P, Ueber Aldehyduramide des Acetessig thers [J]. Ber.1891,24(1):1317-1319; UebeAldehyduramide des Acetessig thers. II,24(2):2962-2967. b) Biginelli P, Ueber eineBildungsweisedes Stilbens [J]. Ber.1893,26(1):447-451. c) Zaugg H E, Martin W B,[J]. Org. React.1965,14,88. d) Kappe C O,100Years of the Biginelli Dihydropyrimidine Synthesis [J]. Tetrahedron1993,49(32)6937-6963. e) Kappe C O, Recent Advances in the Biginelli DihydropyrimidineSynthesis. New Tricks from an Old Dog [J]. Acc Chem Res,2000,33(12):879-888.
    [31] a) O'Reilly B C, Atwal K S, Synthesis of Substituted1,2,3,4-Tetrahydro-6-Methyl-2-Oxo-5Pyrimidinecarboxylic Acid Esters: The Biginelli Condensation Revisited [J]. Heterocycles,1987,26(5):1185-1188. b) Atwal K S, O'Reilly B C, Gougoutas J Z, et al. Synthesis of Substituted1,2,3,4-Tetrahydro-6-Methyl-2-Thioxo-5-Pyrimidinecarboxylic Acid Esters [J]. Heterocycles,1987,26(5):1189-1192.
    [32] Kato T, Chiba T, Sasaki M, Biginelli Reaction using Acetoacetamide Derivatives [J]. YakugakuZasshi,1981,101(2):182-185.
    [33] Stadler A, Kappe C O, Automated Library Generation Using Sequential Microwave-AssistedChemistry. Application toward the Biginelli Multicomponent Condensation [J]. J Comb Chem,2001,3(6):624-630.
    [34] Gross G, Wurziger H, Schober A, Solid-Phase Synthesis of4,6-Diaryl-3,4-Dihydropyrimidine-2(1H)-one-5-carboxylic Acid Amide Derivatives: ABiginelli Three-ComponentCondensation Protocol Based on Immobilized β-Ketoamide [J]. J. Comb. Chem.2006,8,153155.
    [35] a) Chaudhury C, Siddhanta S K, Kinetics and Mechanism of the Reaction Betweencis-[Coen2(H2O)2]3+ion and Salicylic-acid in3-percent Ethanol-Water Mixture [J]. J Indian ChemSoc,1990,67(6):516-518. b) Lee K, Kwon H, Kim B, et al. Synthesis of Pyrazolo-fused Hetercyles bya Tandem Appel's Dehydration/Electrocylization Methodolgy [J]. J Heterocyclic Chem,1997,34(6):1795-1799. c) Tang J, Shewchuk L M, Sato H, et al. Anilinopyrazole as selective CDK2inhibitors:design, synthesis, biological evaluation, and x-ray crystallographic analysis [J]. Bioorg Med ChemLett,2003,13(18):2985-2988. d) Dodd D S, Martinez R L, One-pot synthesis of5-(substituted-amino)pyrazoles [J]. Tetrahedron Lett,2004,45(22):4265-4267. e) Kaleta Z, TárkányiG, G m ry á, et al. Synthesis and Application of a Fluorous Lawesson's Reagent: ConvenientChromatography-Free Product Purification [J]. Org Lett,2006,8(6):1093-1095. f) Teng M, Zhu J,Johnson M D, et al. Structure-Based Design of (5-Arylamino-2H-pyrazol-3-yl)-biphenyl-2‘,4‘-diols asNovel and Potent Human CHK1Inhibitors [J]. J Med Chem,2007,50(22):5253-5256.
    [36] Dodd D, Martinez R, Kamau M, Michael A. Poss, Solid-Phase Synthesis of5-Substituted AminoPyrazoles, J. Comb. Chem.2005,7,584588.
    [37] Celerier J P, Haddad M, Jacoby D, et al. Heterocyclization of Primary Amines With Highly ActivatedCyclopropanes: A New Route to Isoretronecanol [J]. Tetrahedron Lett,1987,28(52):6597-6600.
    [38] Zhang Z, Zhang Q, Liu Q, Domino Ring-Opening/Recyclization Reactions of Doubly ActivatedCyclopropanes as a Strategy for the Synthesis of Furoquinoline Derivatives [J]. Angew. Chem. Int. Ed.2007,46,1726–1729.
    [39] Zhang Z, Zhang Q, Yan Z, Liu Q, A New Efficient Synthesis of Pyranoquinolines from1-AcetylN-Aryl Cyclopentanecarboxamides [J]. Org Lett,2007,9(18):3651-3653.
    [40] Hu Y, Fu X, Barry B, Bi X, Dong D, Regiospecific β-lactam ring-opening/recyclization reactions ofN-aryl-3-spirocyclic-β-lactams catalyzed by a Lewis–Br nsted acids combined superacid catalystsystem: a new entry to3-spirocyclicquinolin-4(1H)-ones [J]. Chem. Commun.
    [41] Liang F, Cheng X, Liu J, et al. Efcient three-component one-pot synthesis of fully substitutedpyridin-2(1H)-ones via tandem Knoevenagel condensation–ring-opening of cyclopropane–intramolecular cyclization [J]. Chem Commun,2009,(24):3636-3638.
    [42] Zhang Z, Zhang Q, Ni Z, Liu Q, Ag-containing all-carbon1,3-dipoles: generation and formalcycloaddition for furo[3,2-b]-β/γ-lactams [J]. Chem. Commun.,2010,46,1269–1271.
    [43] Wang Y, Li W, Bi X, Liu Q, Catalytic intramolecular aromatic C–H alkenylation of arenes withnon-activated ketones: synthesis of4-alkylene quinolin-2-ones [J]. Chem. Commun.,2010,46,6843–6845.
    [44] a) Wang K, Xiang D, Liu J, Dong D, Efficient and Divergent Synthesis of Fully Substituted1H-Pyrazoles and Isoxazoles from Cyclopropyl Oximes [J]. Org Lett,2008,10(9):1691-1694. b)Wang K, Fu X, Liu J, Dong D, PIFA-Mediated Oxidative Cyclization of1-Carbamoyl-1-oximylcycloalkanes: Synthesis of Spiro-Fused Pyrazolin-5-one N-Oxides [J]. Org Lett,2008,11(4):1015-1018.
    [45] Pan W, Dong D, Liu Q, Efficient One-Pot Synthesis of Highly Substituted Pyridin-2(1H)-ones via theVilsmeier Haack Reaction of1-Acetyl,1-Carbamoyl Cyclopropanes [J]. Org Lett,2007,9(12):2421-2423.
    [46] Xiang D, Yang Y, R Zhang, et al. Vilsmeier-Haack Reactions of2-Arylamino-3-acetyl-5,6-dihydro-4H-pyrans toward the Synthesis of Highly Substituted Pyridin-2(1H)-ones [J]. J Org Chem,2007,72(22):8593-8596.
    [47] Kelber C. The effect of sulphuric carbonic acid and atzaki on acetophenone [J]. Berichte DerDeutschen Chemischen Gesellschaft,1910,43(2):1252-1259.
    [48] For reviews, see: a) Dieter R K, Alpha-Oxo Ketene Dithioacetals and Related Compounds-Versatile3-Carbon Synthons [J]. Tetrahedron,1986,42(12):3029-3096. b) Junjappa H, Ila H, Asokan C V,α-Oxoketene-S,S-, N,S-and N,N-acetals: Versatile intermediates in organic synthesis [J]. Tetrahedron,1990,46(16):5423-5506. c) Kolb M, Ketene Dithioacetals in Organic Synthesis: RecentDevelopments [J]. Synthesis,1990,(3):171-190.
    [49] Rudorf W D, Schierhorn A, Augustin M, Reaktionen von o-halogenacetophenonen mitschwefelkohlenst off und phenylisothiocyanat [J]. Tetrahedron,1979,35(4):551-556.
    [50] Liu J, Liang F, Liu Q, et al. BF3·Et2O-Mediated C-C Bond-forming Reaction ofα-Hydroxyketene-(S,S)-acetals with Active Methylene Compounds and its Application in theSynthesis of Substituted3,4-Dihydro-2-pyridones [J]. Synlett,2007,(1):156-160.
    [51] Chen L, Zhao Y, Liu Q, et al. Domino Reaction of α-Acetyl-α-carbamoyl Ketene Dithioacetals withVilsmeier Reagents: A Novel and Efficient Synthesis of4-Halogenated2(1H)-Pyridinones [J]. J. Org.Chem.2007,72,9259-9263.
    [52] Wang Y, Huang J, Liu Q, Dong D, et al. Efficient One-Pot Synthesis of Highly Substituted ThiopheneLibrary from1,3-Dicarbonyl Compounds [J]. J. Org. Chem.2007,72,9259-9263.
    [53] Huang J, Lu Y, Qiu B, et al. One-Pot Synthesis of Substituted Isothiazol-3(2H)-ones: IntramolecularAnnulation of a-Carbamoyl Ketene-S,S-acetals via PIFA-Mediated N-S Bond Formation [J].Synthesis,2007,(18):2791-2796.
    [54] a) Sharaf M A F, Ezat E H M, Hammouda H A A, Reactions with4,5-di (p-Chlorophenyl)Imidazolidine-2-Thione [J]. Phosphorus Sulfur Silicon Relat Elem,1994,92(1-4):19-27. b) AbdallahM A, Mosselhi M A N, Riyadh S M, et al. Novel in situ Formation and Rearrangement ofThiohydrazonate Esters [J]. J Chem Res, Synop,1998,(11):700-701. c) Shawali A S, Ali N A H, AliA S, et al. Synthesis and biological activity of new functionalised cyclohepta[4,5]-thieno[2,3-d][1,2,4]triazolo[4,3-a]pyrimidin-5-ones [J]. Journal of Chemical Research,2006,(5):327-332. d) Shawali AS, Mahran A M, Nada A A, Synthesis and antimicrobial activity of new functionalized derivatives of
    [1,2,4]triazolo[4,3-a]pyrimidin-5(1H)-one [J]. Heteroat Chem,2007,18(4):393-398.
    [55] Han M, Nam K, Hahn H, et al. Unexpected formation of new bicyclic γ-lactams by dimerization ofα-chloroacetoacetanilides [J]. Tetrahedron Lett,2008,49(35):5217-5219.
    [56] a) Etkin N, Babu S D, Fooks C J, et al. Preparation of3-acetyl-2-hydroxyindoles via rhodiumcarbenoid aromatic carbon-hydrogen insertion [J]. J Org Chem,1990,55(3):1093-1096. b)Gerstenberger B S, Lin J, Mimieux Y S, et al. Structural Characterization of an Enantiomerically PureAmino Acid Imidazolide and Direct Formation of the β-Lactam Nucleus from an α-Amino Acid [J].Org Lett,2008,10(3):369-372.
    [57] a) Doyle M P, Shanklin M S, Pho H Q, et al. Rhodium(II) acetate and Nafion-H catalyzeddecomposition of N-aryldiazoamides. Efficient synthesis of2(3H)-indolinones [J]. J Org Chem,1988,53(5):1017-1022. b) Wee A G H, Liu B, Zhang L, Dirhodium Tetraacetate CatalyzedCarbon-Hydrogen Insertion Reaction in N-Substituted α-Carbomethoxy-α-diazoacetanilides andStructural Analogues. Substituent and Conformational Effects [J]. J Org Chem,1992,57(16):4404-4414. c) Himbert G, Ruppmich M, A Wagner-Meerwein Rearrangement as Intermediate Step inthe Formation of Dihydroindolones from2-Diazoacetoacetanilides [J]. Angew Chem Int Ed,1990,29(1):86-87. d) Venkatesan H, Davis M C, Altas Y, et al. Total Synthesis of SR121463A, a HighlyPotent and Selective Vasopressin V2Receptor Antagonist [J]. J Org Chem,2001,66(11):3653-3661.
    [58] Zhang H, Ryono D E, Devasthale P, et al. Design, synthesis and structure-activity relationships ofazole acids as novel, potent dual PPAR α/γ agonists [J]. Bioorg Med Chem Lett,2009,19(5):1451-1456.
    [59] Zaragoza F, Remarkable substituent effects on the chemoselectivity of rhodium(II) carbenoids derivedfrom N-(2-diazo-3-oxobutyryl)-L-phenylalanine esters [J]. Tetrahedron,1995,51(32):8829-8834.
    [60] Muroni D, Saba A, Quinoline β-lactams by Rh(II)-catalyzed highly stereoselective carbon-hydrogenintramolecular insertion [J]. Arkivoc,2005,(13):1-7.
    [61] Lee S, Yoshida K, Matsushita H, et al. N H Insertion Reactions of Primary Ureas: The Synthesis ofHighly Substituted Imidazolones and Imidazoles from Diazocarbonyls [J]. J Org Chem,2004,69(25):8829-8835.
    [62] Arcadi A, Cacchi S, Fabrizi G, et al. Highly substituted furans from2-propynyl-1,3-dicarbonyls andorganic halides or triflates via the oxypalladation-reductive elimination domino reaction [J]Tetrahedron,2003,59(25):4661-4671.
    [63] a) Zhang R, Zhang D, Dewen Dong et al. Vilsmeier Reaction of3-Aminopropenamides: One-PotSynthesis of Pyrimidin-4(3H)-ones [J]. J Org Chem,2011,76,2880–2883b) Zhang R, Zhang D,Dewen Dong et al. Vilsmeier Reaction of Enaminones: Efficient Synthesis of HalogenatedPyridin-2(1H)-ones [J]. J. Org. Chem.2008,73,9504–9507.
    [64] Bi X, Dong D, Liu Q, et al.[5+1] Annulation: A Synthetic Strategy for Highly Substituted Phenolsand Cyclohexenones [J]. J Am Chem Soc,2005,127(13):4578-4579.
    [65] Dong D, Bi X, Liu Q, et al.[5C+1N] Annulation: a novel synthetic strategy for functionalized2,3-dihydro-4-pyridones [J]. Chem Commun,2005,(28):3580-3582.
    [66] Zhao L, Liang F, Bi X, et al. Efficient Synthesis of Highly Functionalized Dihydropyrido[2,3-d]pyrimidines by a Double Annulation Strategy from r-Alkenoyl-r-carbamoyl Ketene-(S,S)-acetals[J]. J Org Chem,2006,71(3):1094-1098.
    [67] Li Y, Liang F, Bi X, et al. Intramolecular Thia-anti-Michael Addition of a Sulfur Anion to Enones: ARegiospecific Approach to Multisubstituted Thiophene Derivatives [J]. J Org Chem,2006,71(21):8006-8010.
    [68] Bi X, Zhang J, Liu Q, et al. Intramolecular Aza-Anti-Michael Addition of an Amide Anion to Enones:A Regiospecific Approach to Tetramic Acid Derivatives [J]. Adv Synth Catal,2007,349(14-15):2301-2306.
    [69] Liang F, Lin S, and Wei Y, Aza-Oxy-Carbanion Relay via Non-Brook Rearrangement: EfficientSynthesis of Furo[3,2-c]pyridinones [J]. J. Am. Chem. Soc.2011,133,1781–1783.
    [70] Lin S, and Wei Y, Liang F, et al. Halonium-initiated electrophilic cascades of1-alkenoylCyclopropane carboxamides: efcient access to dihydrofuropyridinones and3(2H)-furanones [J].Chem. Commun.,2011,47,12394–12396.
    [71] Zhang R, Liang Y, Dewen Dong, et al. Ring-Enlargement of Dimethylaminopropenoyl Cyclopropanes:An Efficient Route to Substituted2,3-Dihydrofurans [J]. J. Org. Chem.2008,73,8089–8092.
    [72] Huang P, Zhang N, Zhang R, Dong D, Vilsmeier-Type Reaction of Dimethyl AminoalkenoylCyclopropanes:One-Pot Access to2,3-Dihydrofuro[3,2-c]pyridin-4(5H)-ones [J]. Org Lett, accepted.
    [73] Huang P, Zhang R, Liang Y and Dong D, Lawesson's Reagent-Initiated Domino Reaction ofAminopropenoyl Cyclopropanes: Synthesis of Thieno[3,2-c]pyridinones [J]. Organic&BiomolecularChemistry
    [74] a) Ono N, Kawamura H, Bougauchi M, et al. Chem Soc, Chem Commur,1989:1580. b)Uno, H.;Inoue, K.; Inoue, B. et al. Preparation of a-Free Pyrroles with Perfluorinated Groups at β-Positions [J].Synthesis,2001,15:2255-2258. c) Misra, N. V.; Panda, K.; Ila, H.; et al. An Efficient HighlyRegioselective Synthesis of2,3,4-Trisubstituted Pyrroles by Cycloaddition of Polarized KeteneS,Sand N,S-Acetals with Activated Meijlere Isocyanides [J]. J. Org. Chem.,2007,72(4):1246-1251
    [75] Tan J, Xu X, Zhang L, Li Y, Liu Q; Tandem Doubel Addition/Cyclization/Acyl Migration of1,4-Dien-3-ones and Isocyanoacetate: A New Strategy for Stereoselective Synthesis of Pyrrolizidines[J]. Angew. Chem. Int. Ed,2009,48(16):2868-2872.
    [76] Zhang,L.J.;Xu,X.; Tan, J.et al.Tandem Michael addition/intramolecular isocyanide [3+2]cycloaddition: highly diastereoselective one pot synthesis of fused oxazolinesw [J]. Chem. Commun.,2010,46,3357–3359
    [77] Xu X, Li Y, Zhang Y, Liu Q, Direct Synthesis of6-Azabicyclo[3.2.1]oct-6-en-2-ones andPyrrolizidines from Divinyl Ketones and Observation of Remarkable Substituent Effects [J]. Adv.Synth. Catal.2011,353,1218-1222.
    [78] a)吴毓林,麻生明,戴立信,现代有机合成化学进展,化学工业出版社,北京,2005年版. b) Tietze,L. F.; Brasche, G.; Gericke, M. Domino Reactions in Organic Synthesis,2006, WILEY-VCH VerlagGmbH&Co. KGaA, Weinheim.
    [79] a) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G [J]. Angew. Chem. Int. Ed.2006,45,7134–7186; b)Kumar, K.; Waldmann, H [J]. Angew. Chem. Int. Ed.2009,48,3224–3242. c) Nandy, J. P.; Prakesch,M.; Khadem, S.; Reddy, P. T.; Sharma, U.; Arya, P [J]. Chem. Rev.2009,109,1999–2060. d)Schreiber, S. L [J]. Science2000,287,1964–1969. e) Díaz-Gavilán, M.; Warren R. J. D. Galloway, W.R. J. D.; O’Connell, K. M. D.; Hodkingson, J. T.; Spring, D. R [J]. Chem. Commun.2010,46,776–778.
    [80] D mling, A.; Ugi, I [J]. Angew. Chem. Int. Ed.2000,39,3168–3210.
    [81] Multicomponent Reactions; Zhu, J., Bienaymé, H., Eds.; Wiley-VCH: Weinheim,2005.
    [82] a) Kaim, L. E.; Grimaud, L [J]. Tetrahedron2009,652153–2171; b) D mling, A [J]. Chem. Rev.2006,106,17–89; c) Zhu, J [J]. Eur. J. Org. Chem.2003,1133–1144.
    [83] a) Sha, F.; Huang, X. A [J]. Angew. Chem. Int. Ed.2009,48,3458–3461. b) Yue, T.; Wang, M.-X.;Wang, D.-X.; Masson, G.; Zhu, J [J]. Angew. Chem. Int. Ed.2009,48,6717–6721. c) Li, X.;Danishefsky, S. J [J]. J. Am. Chem. Soc.2008,130,5446–5448. d) Pan, C. S.; List, B [J]. Angew.Chem. Int. Ed.2008,47,3622–3625.
    [84] Robinson R. LXXV. A theory of the Mechanism of the Phytochemical Synthesis of Certain Alkaloids[J]. J. Chem. Soc.1917,111,876-899.
    [85] Ugi I, Meyr R, et al. Neue Darstellungsmethode fur Isonitrile [J]. Angew. Chem,1958,70(22-23):702-703.
    [86] Kehagia K, Domling A, Ivar Ugi. The Formation of β-Lactam Derivatives and a C3-SymmetricalHererocycle form5,6-Dihydro-2H-1,3-oxazines [J]. Tetrahedron.1995,51(1):139-144.
    [87] Pirrung M C and Wang J. Multicomponent Reactions of Cyclobutanones [J]. J Org Chem,2009,74(8):2958-2963.
    [88] Xu X, Li Y, Zhang Y, Liu Q, Direct Synthesis of6-Azabicyclo[3.2.1]oct-6-en-2-ones andPyrrolizidines from Divinyl Ketones and Observation of Remarkable Substituent Effects [J]. Adv.Synth. Catal.2011,353,1218-1222.
    [89] Fattorusso, E.; Taglialatela-Scafati, O. Two novel pyrrole-imidazole alkaloids from theMediterranean sponge Agelas oroides [J].Tetrahedron Lett.2000,41,9917.
    [90] a) Mukherjee, S.; Sivappa, R.; Yousufuddin, M.; Lovely, C. J. Asymmetric Total Synthesis ofent-Cyclooroidin [J]. Org. Lett.2010,12,4940. b) Papeo, G.; Gomez-Zurita, M. A.; Borghi, D.;Varasi, M.Total synthesis of (±)-cyclooroidin [J].Tetrahedron Lett2005,46,8635. c) Poverlein,C.;Breckle, G.; Lindel, T. Diels Alder Reactions of Oroidin and Model Compounds [J]. Org. Lett.2006,8,819. d) Trost, B.M.; Dong, G. Asymmetric Annulation toward Pyrrolopiperazinones: ConciseEnantioselective Syntheses of Pyrrole Alkaloid Natural Products [J]. Org. Lett.2007,9,2357.
    [91] Nett, M.; Erol, O.; Kehraus, S.; Kock, M.; Krick, A.; Eguereva, E.; Neu, E.; Konig, G. M. Siphonazole,an Unusual Metabolite from Herpetosiphon sp [J]. Angew. Chem., Int. Ed.2006,45,3863.
    [92] Linder, J.; Moody, C. J. The total synthesis of siphonazole, a structurally unusual bis-oxazole naturalproduct [J]. Chem. Commun.2007,1508.
    [93] Zhang, J.; Ciufolini, M. A. Total Synthesis of Siphonazoles by the Use of a Conjunctive OxazoleBuilding Block [J]. Org. Lett.2009,11,2389.
    [94] Tcherniuk, S.; Skoufias, D. A.; Labriere, C.; Rath, O.; Gueritte, F.; Guillou, C.; Kozielski, F.Relocation of Aurora B and Survivin from Centromeres to the Centra Spindle Impaired by aKinesin-Specific MKLP-2Inhibitor [J]. Angew. Chem., Int. Ed.2010,49,8228.
    [95] a) Zhang,D;Xu,X;Tan,J;Liu,Q. Direct Stereoselective Synthesis of1-Amino-2,5-diaryl-cyclohexanecarboxylic Acid Derivatives Based on a [5+1] Annulation of Divinyl Ketone andIsocyanoacetate [J]. Synlett2010, No.6,0917–0920. b) Silvanus, A. C.;Groombridge, B. J.; Andrews,B. I.; Kociok-Kohn,G.; Carbery, D. R. J. Org. Chem.2010,75,7491.
    [96] a) Liang, F.; Li, Y.; Li, D.; Cheng, X.; Liu, Q. Tetrahedron Lett.2007,48,7938. b) Iyer, S.; Hengge,A. C. J. Org. Chem.2008,73,4819.
    [97] Zhang, Q.; Zhao, Y.-L.; Shi, Y.; Wang, L.-X.; Liu, Q. Synth. Commun.2002,32,2369.
    [98] Isocyanides is the name adapted by IUPAC(“Nomenclature of Organic chemistry”, Seyion C,1965)
    [99] Gautier A. Jystus Liebigs Ann. Chem.1869,146,119.
    [100] For a review on the synthetic utility of isocyanoacetate derivatives, see: Gulevich, A. V.; Zhdanko, A.G.; Orru, R. V. A; Nenajdenko,V. G. Chem. Rev.2010,110,5235.
    [101] B ll, W. A.; Gerhart, F.; Nurrenbach, A.; Sch llkopf, U. Angew. Chem., Int. Ed. Engl.1970,9,458.
    [102] R. Grigg, M. I. Lansdell, M.Thornton-Pett, Catalysed Cycloadditions of lsocyanoacetates[J]. Tetrahedron1999,55,2025.
    [103] S. Kamijo, C. Kanazawa, Y. Yamamoto, Copper-or Phosphine-Catalyzed Reaction of Alkynes withIsocyanides. Regioselective Synthesis of Substituted Pyrroles Controlled by the Catalyst [J]. J. Am.Chem. Soc.2005,127,9260.
    [104] A. V. Lygin, O. V. Larionov, V. S. Korotkov, A. de Meijere, Oligosubstituted Pyrroles Directly fromSubstituted Methyl Isocyanides and Acetylenes [J]. Chem. Eur. J.2009,15,227.
    [105] a) Mérour, J.-Y.; Joseph, B. Curr. Org. Chem.2001,5,471–506; b) Le Hyaric, M.; Vieira deAlmeida, M.; Nora de Souza, M.V. Quim. Nova2002,25,1165–1171;(c) Popowycz, F.; Routier,S.; Joseph, B.; Mérour, J.-Y. Tetrahedron2007,63,1031–1064.
    [106] Only three examples of alkaloids such as variolins-A,-B, and-D showing antitumor and antiviralproperties are known. For that, see: a) Perry, N. B.; Ettouati, L.; Litaudon, M.; Blunt, J. W.; Munro,M. H. G.; Parkin, S.; Hope, H. Tetrahedron1994,50,3987–3992; b) Trimurtulu, G.; Faulkner, D. J.;Perry, N. B.; Ettouati, L.; Litaudon, M.; Blunt, J. W.; Munro, M. H. G.; Jameson, G. B. Tetrahedron1994,50,3993–4000; c) Fernández, D.; Ahaidar, A.; Danelón, G.; Cironi, P.; Marfil, M.; Pérez, O.;Cuevas, C.; Albericio, F.; Joule, J. A.; Alvarez, M. Monatsh. Chem.2004,135,615–627.
    [107] S. M. Verbitski, C. L. Mayne, R. A. Davis, G. P. Concepcion, C. M. Ireland, Isolation, StructureDetermination, and Biological Activity of a Novel Alkaloid, Perophoramidine, from the PhilippineAscidian Perophora namei [J]. J. Org. Chem.2002,67,7124.
    [108] J. R. Fuchs, R. L. Funk, Total Synthesis of (()-Perophoramidine [J]. J. Am. Chem. Soc.2004,126,5068.
    [109]秦勇,海洋天然产物(+)-Perophoramidine的全合成及其绝对立体构型的确定,《有机化学》,2010年,第12期。
    [110] T. Sunazuka, T. Shirahata, S. Tsuchiya, T. Hirose, R. Mori, Y. Harigaya, I. Kuwajima, S. ōhmura, AConcise Stereoselective Route to the Indoline Spiroaminal Framework ofNeoxaline and Oxaline [J]. Org. Lett.2005,7,941and references therein.
    [111] R. H. Jiao, S. Xu, J. Y. Liu, H. M. Ge, H. Ding, C. Xu, H. L. Zhu, R.X. Tan, Chaetominine,CytotoxicAlkaloid Produced by Endophytic Chaetomium sp. IFB-E015[J]. Org. Lett.2006,8,5709.
    [112] M. Toumi, F. Couty, J. Marrot, G. Evano, Total Synthesis of Chaetominine [J]. Org. Lett.2008,10,5027.
    [113] N. Oukli, S. Comesse, N. Chafi, H. Oulyadi, A. Da ch, Unexpected reversible nitrogen atom transferin the synthesis of polysubstituted imides and7-aza-hexahydroindolones via enaminonitrileg-lactams [J]. Tetrahedron Lett.2009,50,1459.
    [114] a) B. Alcaide, P. Almendros, T. Mart nez del Campo, Metal-Catalyzed Regiodivergent Cyclization ofg-Allenols: Tetrahydrofurans versus Oxepanes [J]. Angew. Chem. Int. Ed.2007,46,6684; b) X.Jiang, X. Ma, Z. Zheng, S. Ma, Controllable Cyclization Reactions of2-(2’,3’-Allenyl)acetylacetatesCatalyzed by Gold and Palladium Affording Substituted Cyclopentene and4,5-DihydrofuranDerivatives with Distinct Selectivity [J]. Chem.–Eur. J.2008,14,8572. c) L. Liu, J. Zhang,Selectivity Control in Lewis Acid Catalyzed Regiodivergent Tandem Cationic Cyclization/RingExpansion Terminated by Pinacol Rearrangement [J]. Angew. Chem. Int. Ed.2009,48,6093. d) A. S.Dudnik, Y. Xia, Y. Li, V. Gevorgyan, Computation-Guided Development of Au-CatalyzedCycloisomerizations Proceeding via1,2-Si or1,2-H Migrations: Regiodivergent Synthesis ofSilylfurans [J]. J. Am. Chem. Soc.2010,132,7645. e) P. A. Evans, J. R. Sawyer, P. A. Inglesby,Regiodivergent Ligand-Controlled Rhodium-Catalyzed [(2+2)+2] Carbocyclization Reactions withAlkyl Substituted Methyl Propiolates [J]. Angew. Chem. Int. Ed.2010,49,5746. f) P. Panne, J. M.Fox,[J]. Rh-Catalyzed Intermolecular Reactions of Alkynes with r-Diazoesters That Possessβ-Hydrogens: Ligand-Based Control over Divergent PathwaysJ.Am. Chem. Soc.2007,129,22.
    [115] M. álvarez-Corral, M. Mu oz-Dorado, I. Rodírguez-García, Silver-Mediated Synthesis ofHeterocycles [J]. Chem. Rev.2008,108,3174.
    [116] For reviews, see: a) Sydnes L K, Allenes from Cyclopropanes and Their Use in OrganicSynthesis-Recent Developments [J]. Chem Rev,2003,103(4):1133-1150. b) Gnad F, Reiser O,Synthesis and Applications of β-Aminocarboxylic Acids Containing a Cyclopropane Ring [J]. ChemRev,2003,103(4):1603-1624. c) Reissig H U, Zimmer R, Donor Acceptor-SubstitutedCyclopropane Derivatives and Their Application in Organic Synthesis [J]. Chem Rev,2003,103(4):1151-1196. d) Lebel H, Marcoux J F, Molinaro C, et al. Stereoselective Cyclopropanation Reactions[J]. Chem Rev,2003,103(4):977-1050. e) Reichelt A, Martin, SF, Synthesis and Properties ofCyclopropane-Derived Peptidomimetics [J]. Acc Chem Res,2006,39(7):433-442. f) Yu M,Pagenkopf B L, Recent advances in donor-acceptor (DA) cyclopropanes [J]. Tetrahedron,2005,61(2):321-347. g) Wong H N C, Hon M Y, Tse C W, et al. Use of cyclopropanes and theirderivatives in organic synthesis [J]. Chem Rev,1989,89(1):165-198.
    [117] Y. Li, X. Xu, J. Tan, P. Liao, J. Zhang, Q. Liu, Polarity-Reversible Conjugate AdditionTuned by Remote Electronic Effects [J]. Org. Lett.2010,12,244.
    [118] F. Liang, S. Lin, Y. Wei, Aza-Oxy-Carbanion Relay via Non-Brook Rearrangement:Efficient Synthesis of Furo[3,2-c]pyridinones [J]. J. Am. Chem. Soc.2011,133,1781.
    [119] For recent reviews, see: A. V. Lygin, A. de Meijere, Isocyanides in the Synthesis of NitrogenHeterocycles [J]. Angew. Chem. Int. Ed.2010,49,9094.
    [120] a) Michael A J. J Prakt Chem,1887,36,349-356. b) Perhnutter R Conjugate Addition ReactionsinOrganic Synthesis[M]. Pergamon Press: Oxford,1992.
    [121] For the rule Y never auacks the3position, see;March J. Advanced Organic Chemistry[M],2nd ed.McGraw-Hill: New York,1977, P679.
    [122] Klumpp G w, Mierop A J C, Vrielink J J, et a1. Anti-Michael carbolithiation of silicon and phenyl-substituted alpha, beta-unsaturated secondary amides [J]. J Am Soc Chem,1985,107(23):6740-6742.
    [123] For a review of anti-Michael addition, see: Lewandowska, E. Substitution at the α-carbons ofα,β-unsaturated carbonyl compounds: anti-Michael addition [J]. Tetrahedron2007,63,2107–2122.
    [124] Knunyanta, I. L.; Cheburkov, Ya. A. Izv. Akad. Nauk, SSSR, Ser. Khim.1960,2162.
    [125] Ponticello G S, Freedman M B, Habecker C N,et a1. Utilization of. α,β-unsaturated acids as Michaelacceptors for the synthesis ofthieno[2,3-b]thiopyrans [J]. J Org Chem,1988,53(1):9-13.
    [126] Trost, B. M.; Dake, G. R. J. Am. Chem. Soc.1997,119,7595.
    [127] a) Trost, B. M.; Li, C.-J. Tetrahedron Lett.1993,34,2271; b) Nakamura, H.; Shim, J.-G.; Yamamoto,Y. J. Am. Chem. Soc.1997,119,8113; c) Shim, J.-G.; Nakamura, H.; Yamamoto, Y. J. Org. Chem.1998,63,8470.
    [128] a) Crossland, I. Acta Chem. Scand. B1975, B29,468; b) Holm, T.; Crossland, I.; Madsen, J. O. ActaChem. Scand. B1978, B32,754.
    [129] Basavaiah D, Ran A J, Satyanarayana T Recent Advances in the Baylis—Hillman Reaction andApplications [J]. Chem Rev,2003,103(3):811-892.
    [130] Modem Aldol Reactions[M]. Mahrwald R, Ed,2004, Wiley-VCH: Weinheim.
    [131]Patai S, Rappoport Z, Eds, The Chemistry of α-Haloketones, α-Haloaldehydes and et-Haloimines[M].1988, John Wiley&Sons, Ltd.
    [132] For a general discussion of the importance of the proximity effects in intramolecular, reactions see: a)Menger, F. M. Acc. Chem. Res.1985,18,128–134. b) Menger, F. M. Acc. Chem. Res.1993,26,206–212. c)Jung, M. E.; Piizzi, G. Chem. ReV.2005,105,1735–1766.
    [133] Johnson, C. D. Acc. Chem. Res.1993,26,476–482.
    [134] For selected examples of catalyst-controlled regiodivergent synthesis of cyclic compounds, see:(a)Xiao, Y.; Zhang, J. Chem. Commun.2009,3594–3596.(b) Sromek, A. W.; Rubina, M.; Gevorgyan,V. J. Am. Chem. Soc.2005,127,10500–10051.(c) Alcaide, B.; Almendros, P.; del Campo, T. M.Angew. Chem., Int. Ed.2007,46,6684–6687.(d) Xiong, T.; Zhang,Q.; Zhang, Z.; Liu, Q. J. Org. Chem.2007,72,8005–8009. J. Org. Chem.2007,72,8005–8009.
    [135] Ho, R. Y. N.; Liebman, J. F.; Valentine, J. S. Overview of the Energetics and Reactivity of Oxygen.In Active Oxygen in Chemistry, Foote, C.S.; Valentine, J.S.; Greenberg, A.; Liebman, J.F., Eds.Blackie Academic&Professional: New York, N.Y.,1995; Vol.2, pp.1-23.
    [136] For reviews, see: a) E. L. Clennana, A. Pace, Advances in singlet oxygen chemistry [J]. Tetrahedron2005,61,6665. b) P. R. Ogilby, Chem. Soc. Rev.2010,39,3181.(c) A. E. Wendlandt, A. M. Suess, S. S. Stahl,Copper-Catalyzed Aerobic Oxidative C-H Functionalizations: Trends and Mechanistic Insights [J].Angew.Chem. Int. Ed.2011,50,11062.
    [137] a) J. W. Kim; K. Yamaguchi; N. Mizuno, Heterogeneously Catalyzed Efficient Oxygenation ofPrimary Amines to Amides by a Supported Ruthenium Hydroxide Catalyst [J]. Angew. Chem. Int.Ed.,2008,47,9249-9251. b) A. M. Khenkin, L. Weiner, R. Neumann, Selective OrthoHydroxylation of Nitrobenzene with Molecular Oxygen Catalyzed by the H5PV2Mo10O40Polyoxometalate [J]. J. Am. Chem. Soc.,2005,127,9988–9989.
    [138] Schenck, G. O. Naturwissenschaften1948,35,28–29.
    [139] Schenck, G. O.; Ziegler, K. Naturwissenschaften1944,32,157.
    [140] Bartlett, P. D.; Schaap, A. P. J. Am. Chem. Soc.1970,92,3223–3224.
    [141] Einaga, H.; Nojima, M.; Abe, M. J. Chem. Soc., Perkin Trans.11999,2507–2512.
    [142] Schenck, G. O.; Krauch, C. H. Angew. Chem.1962,74,510.
    [143] a)“Poly(Phenylene Oxides)”: J. Bussink, H. T. van de Grampel in Ullmann_s Encyclopedia ofIndustrial Chemistry,5th ed.(Eds.: W. Gerhartz, Y. S. Yamamoto, F. T. Campbell, R. Pfefferkorn, J.F. Rounsaville), VCH, Weinheim,1985; b) A. S. Hay, H. S. Blanchard, G. F. Endres, J.W. Eustance,J. Am. Chem. Soc.1959,81,6335–6336; c) A. S. Hay (General Electric Co.), US3306875,1967.
    [144] C. Zhang, N. Jiao, Dioxygen Activation under Ambient Conditions: Cu-Catalyzed OxidativeAmidation-Diketonization of Terminal Alkynes Leading to r-Ketoamides [J]. J. Am. Chem. Soc.2010,132,28.
    [145] H. Wang, Y. Wang, D. Liang, L. Liu, J. Zhang, Q. Zhu, Copper-Catalyzed IntramolecularDehydrogenative Aminooxygenation: Direct Access to Formyl-Substituted AromaticN-Heterocycles [J]. Angew. Chem. Int. Ed.,2011,50,5678-5681.
    [146] Y.-H. Zhang, J.-Q. Yu, Pd(II)-Catalyzed Hydroxylation of Arenes with1atm of O2or Air [J]. J. Am.Chem. Soc.2009,131,14654.
    [147] A. Wang, H. Jiang, H. Chen, Palladium-Catalyzed Diacetoxylation of Alkenes with MolecularOxygen as Sole Oxidant [J]. J. Am. Chem. Soc.,2009,131,3846.
    [148] Reviews on flavin-catalyzed oxidations: a) F. G. Gelalcha, Heterocyclic Hydroperoxides in SelectiveOxidations [J]. Chem. Rev.2007,107,3338-3361. b) Imada, Y.; Naota, T. Chem.Rec.2007,7,354–361.
    [149] Y. Imada, H. Iida, S. Ono, S.-I. Murahashi, Flavin Catalyzed Oxidations of Sulfides and Amines withMolecular Oxygen [J].J. Am. Chem. Soc.,2003,125,2868.
    [150] a) V. A. Schmidt, E. J. Alexanian, Metal-Free, Aerobic Dioxygenation of Alkenes Using HydroxamicAcids [J]. Angew. Chem. Int. Ed.,2010,49,4491-4494. b) B. C. Giglio; V. A. Schmidt; E. J.Alexanian, Metal-Free, Aerobic Dioxygenation of Alkenes Using SimpleHydroxamic Acid Derivatives [J]. J. Am. Chem. Soc.,2011,133,13320-13322.
    [151] T. Kondo, M. Nomura, Y. Ura, K. Wada, T.-a. Mitsudo, Ruthenium-catalyzed [2+2+1]Cocyclization of Isocyanates, Alkynes, and CO Enables the Rapid Synthesis of PolysubstitutedMaleimides [J]. J. Am. Chem. Soc.,2006,128,14816.
    [152] G.-Q. Li, Y. Li, L.-X. Dai, S.-L. You, N-Heterocyclic Carbene Catalyzed Ring Expansion of4-Formyl-γ-lactams: Synthesis of Succinimide Derivatives [J]. Org. Lett.2007,9,3519.
    [153] K. M. Driller, H. Klein, R. Jackstell, M. Beller, Iron-Catalyzed Carbonylation: Selective and EfficientSynthesis of Succinimides [J]. Angew. Chem.2009,121,6157; Angew. Chem. Int. Ed.2009,48,6041.
    [154] D. Basavaiah, B. Devendar, K. Aravindu, A. Veerendhar, A Facile One-Pot Transformation ofBaylis–Hillman Adducts into Unsymmetrical Disubstituted Maleimide and Maleic AnhydrideFrameworks: A Facile Synthesis of Himanimide A [J]. Chem. Eur. J.,2010,16,2031.
    [155] a) Tian, H.; Ermolenko, L.; Gabant, M.; Vergne, G.; Moriou, C.; Retailleau, P.; Al-Mourabit, A.Pyrrole-Assisted and Easy Oxidation of Cyclic a-Amino Acid-Derived Diketopiperazines under MildConditions [J]. Adv. Synth. Catal.2011,353,1525. b) Travert, N.; Al-Mourabit, A. A LikelyBiogenetic Gateway Linking2-Aminoimidazolinone Metabolites of Sponges to Proline: SpontaneousOxidative Conversion of the Pyrrole-Proline-Guanidine Pseudo-peptide to Dispacamide A [J]. J. Am. Chem. Soc.2004,126,10252. c) C. Vergne, J. Appenzeller, C.Ratinaud, M.-T. Martin, C. Debitus, A. Zaparucha, A. Al-Mourabit, Debromodispacamides B and D:Isolation from the Marine Sponge Agelas mauritiana and Stereoselective Synthesis Using aBiomimetic Proline Route [J]. Org. Lett.,2008,10,493.
    [156] For enzymatically mediated oxidative rearrangement of tetramic acids to pyridone alkaloids, see: a) L.M. Halo, M. N. Heneghan, A. A. Yakasai, Z. Song, K. Williams, A. M. Bailey, R. J. Cox, C. M.Lazarus, T. J. Simpson, Late Stage Oxidations during the Biosynthesis of the2-Pyridone Tenellin in the Entomopathogenic Fungus Beauveria bassiana [J]. J. Am. Chem. Soc.,2008,130,17988. b) M. Isaka, P. Chinthanom, S. Supothina, P. Tobwor, N. L. Hywel-Jones, J. Nat.Prod.,2010,73,2057.
    [157] a) K. Suzuki, H. Takikawa, Y. Hachisu, J. W. Bode, Isoxazole-Directed Pinacol Rearrangement:Stereocontrolled Approach to Angular Stereogenic Centers [J]. Angew. Chem. Int. Ed.2007,46,3252–3254. b) M. M. Hussain, H. Li, N. Hussain, M. Ure a, P. J. Carroll, P. J. Walsh, Applicationsof1-Alkenyl-1,1-Heterobimetallics in the Stereoselective Synthesis of Cyclopropylboronate Esters,Trisubstituted Cyclopropanols and2,3-Cyclobutanones [J]. J. Am. Chem. Soc.,2009,131,6516-6524.
    [158] T. Okuyam, Acc. Chem. Res.,1986,19,370–376.
    [159] a) Sheng, D.; Ballou, D. P.; Massey, V. Biochemistry2001,40,11156. For recent reviews on theBaeyer-Villiger reaction, see: a) H. Leisch, K. Morley, P. C. K. Lau, Baeyer_VilligerMonooxygenases: More Than Just Green Chemistry [J]. Chem. Rev.2011,111,4165. b) G.-J. tenBrink, I. W. C. E. Arends, R. A. Sheldon, The Baeyer-Villiger Reaction: New Developments towardGreener Procedures [J]. Chem. Rev.2004,104,4105.
    [160] a) Gonzalez, F. V.; Jain, A.; Rodriguez, S.; Saez, J. A.; Vicent, C.; Peris, G. Stereoiso-Merization ofβ-Hydroxy-r-sulfenyl-γ-butyrolactones Controlled by Two Concomitant1,4-Type NonbondedSulfur-Oxygen Interactions As Analyzed by X-ray CrystallographyJ. Org. Chem.2010,75,5888. b)Dieter, R. K. Tetrahedron1986,42,3029.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700