碳正离子与亚烃基环丙烷或联烯的亲电加成反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Studies on the Electrophilic Addition Reactions of Carbocations with Methylenecyclopropanes or Allenes
  • 作者:孟博
  • 论文级别:博士
  • 学科专业名称:有机化学
  • 学位年度:2013
  • 导师:黄宪
  • 学科代码:070303
  • 学位授予单位:浙江大学
  • 论文提交日期:2013-04-01
摘要
碳-碳键的形成是构筑复杂分子碳骨架的必经之路,是有机合成化学中最重要最有意义的反应之一。亲电加成反应中,以碳正离子为亲电试剂的反应是一类可简便构建碳-碳键的有效方法。通常情况下,这类反应具有一锅形成多根碳-碳键、区域及立体选择性良好及反应条件温和等特点。
     亚烃基环丙烷是由碳碳双键和环丙烷直接相连而形成的一类具有高张力的分子。在过去的几十年问,大量文献报导了亚烃基环丙烷的亲电加成反应,但以碳正离子作为亲电试剂的报导却非常罕见。由于亚烃基环丙烷具有多个反应位点,使其可以合成许多结构各异的有用分子。因此,研究以碳正离子作为亲电试剂与亚烃基环丙烷的亲电加成反应并控制其选择性既有意义又具有挑战性。另一方面,联烯是一类含有高活性碳-碳双键的化合物,也可以接受碳正离子的进攻。本文详细研究了亚烃基环丙烷及联烯与1,3-二芳基烯丙基碳正离子、二芳基甲基碳正离子、炔丙基碳正离子等碳正离子的亲电加成反应,在温和反应条件下形成新的碳-碳键并获得相应有用的分子结构。主要内容包括以下几个方面:
     1.首先,选用1,3-二芳基丙烯作为碳正离子前体,在2,3-二氯-5,6-二氰基-1,4-苯醌(DDQ)作用下原位产生的碳正离子与亚烃基环丙烷发生亲电加成反应,高区域选择性地使亚烃基环丙烷的侧键断裂,产生的碳正离子中间体被水捕获,最终生成高烯丙基醇化合物。当反应中存在二氯化锌时,上述碳正离子中间体被氯离子捕获,顺利获得高烯丙基氯化合物。
     2.其次,我们将亲电基团羟基引入到亚烃基环丙烷分子内,研究了羟甲基取代的亚烃基环丙烷与1,3-二芳基烯丙基碳正离子的亲电反应。当亚烃基环丙烷的环丙烷侧有羟甲基取代基时,反应以高区域、立体选择性地生成亲电加成/分子内环合产物3-氧-双环[3.1.0]己烷;当亚烃基环丙烷的双键一侧有羟甲基取代基时,则发生亲电加成/扩环/烯基迁移/分子内环合反应,高区域、立体选择性地生成(1S*,2R*,5R*,E)-2,5-二苯基-1-苯乙烯基-3-氧双环[3.2.0]庚烷。
     3.再次,研究了联烯与1,3-二芳基烯丙基碳正离子、二芳基碳正离子和炔丙基碳正离子的亲电加成反应。当联烯为单芳基取代时,反应生成(Z)-式烯丙基卤化合物;当1,1-二取代联烯参与反应时,则生成多取代茚类化合物。反应均以高区域、立体选择性地生成相应产物。
     4.最后,我们还研究了环丙烷基联烯与NXS的亲电加成反应,该反应可控地同时向产物中引入两个官能团,生成2,6-双官能团取代的1,3-共轭二烯。这类化合物可作为有用的合成子而被用于构筑复杂化合物的合成途径中。
The formation of carbon-carbon bonds, an efficient pathway to construct complex skeletons, is one of the most important reactions in organic synthesis. The electrophilic addition reactions with carbocations as electrophiles are efficient strategies to form carbon-carbon bonds. Normally, the electrophilic protocols are attractive due to the high efficiency of carbon-carbon bonds formation, excellent regio-and stereoselectivity and mild reaction conditions.
     Methylenecyclopropanes (MCPs), bearing both a cyclopropane unit and a C=C double bond, are highly strained but readily accessible molecules. An attractive but often troublesome feature of MCPs is their multi-forms of reactivity leading to the formation of a variety of different products. In the past decades, mounting attention has been paid to the electrophilic addition reactions of MCPs; however, examples utilizing carbocations as electrophiles are very rare. Thus, the exploration of the electrophilic addition of various carbocations to MCPs with controlling of the regio-and stereoselectivity is meaningful and challenging in organic synthesis. On the other hand, allenes are a class of compounds possessing propadiene units with high reactivity, which can also take part in the electrophilic reaction with carbocations. In this thesis, the electrophilic addition reactions of1,3-diarylallylic carbocations, diarylmethyl carbocations, propynyl carbocations to MCPs or allenes were disclosed, constructing new carbon-carbon bonds under mild reaction conditions and furnishing useful molecular skeletons. We have developed the following reactions:
     Firstly,1,3-diarylpropenes were introduced as the precursor of carbocations. In the presence of2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ),1,3-diarylallylic carbocations could be formed in situ and react with MCPs. Proximal cleavage occurred and the resulting intermediate would be attracted by H2O to afford homoallylic alcohol derivatives. In the presence of ZnCl2, the above-mentioned intermediate would be attacked by Cl-, leading to homoallylic chloride derivatives.
     Secondly, we introduced a hydroxyl group into MCPs as the intramolecular nucleophile. When (2-arylidenecyclopropyl)methanols were employed to react with1,3-diarylallylic carbocations,3-oxabicyclo[3.1.0]hexanes were generated with good regio-and stereoselectivity via electrophilic addition/intramolecular cyclization. On the other hand, when2-cyclopropylidene-2-arylethanols were introduced, the electrophilic addition/ring enlargement/vinyl group migration/intramolecular cyclization sequence gave stereo-specified product3-oxabicyclo[3.2.0]heptanes.
     Thirdly, we realized the first example of the electrophilic addition of allenes and1,3-diarylallylic carbocations, diarylmethyl carbocations and propynyl carbocations. Stereodefined allylic halorides could be generated by introducing1-aryl allenes. With the employment of1,1-disubstituted allenes, Friedel-Crafts cyclization reaction could occur to furnish indene derivatives with excellent regio-and stereoselectivity.
     Finally, we developed the electrophilic additions of NXS with1-cyclopropylallenes. Two functional groups were introduced simultaneously to give2,6-difunctional-1,3-hexadienes stereoselectively, which are useful synthetic motifs in the construction of complex structures.
引文
1. a) Wu, T.-K.; Li, W.-H.; Chang, C.-H.; Wen, H.-Y.; Liu, Y.-T.; Chang, Y.-C. Eur. J. Org. Chem.2009,5731-5737. b) Wu, T.-K.; Yu, M.-T.; Liu, Y.-T.; Chang, C.-H.; Wang, H.-J.; Diau, E. W.-G. Org. Lett.2006,8,1319-1322. c) Medina, J. C.; Guajardo, R.; Kyler, K. S. J. Am. Chem. Soc.1989,111,2311-2313. d) Lodeiro, S.; Schulz-Gasch, T.; Matsuda, S. P. T. J. Am. Chem. Soc.2005,127,14132-14133. e) Rotthaus, O.; Demuth, M. Tetrahedron 2002,58,7291-7293.
    2. a) Medina, J. C.; Guajardo, R.; Kyler, K. S. J. Am. Chem. Soc.1989,111, 2311-2313. b) Rotthaus, O.; Demuth, M. Tetrahedron 2002,7291-7293.
    3. Hassll, C. H.; Reyle, K. Biochem. J.1955,60,334.
    4. Grey, D. O.; Fowden, L. Biochem. J.1962,82,385.
    5. Nemoto, T.; Ojika, M.; Sakagami, Y. Tetrahedron Lett.1997,38,5667-5670.
    6. Siriwardana, A. I.; Nakamura, I.; Yamamoto, Y. Tetrahedron Lett.2003,44,985.
    7. Huang, J.-W.; Shi, M. Tetrahedron 2003,60,2057.
    8. Fu, W.-J.; Huang, X, Synlett 2007,321.
    9. Chen, W. L.; Xian, H.; Zhou, H. W. Synthesis 2004,10,1573.
    10. Shao L.-X; Huang J.-W.; Shi, M. Tetrahedron 2004,60,11895.
    11. Tian, G.-Q.; Shi, M. Org. Lett.2007,9,2405.
    12. a) Koster, R.; Arora, S.; Binger, P. Synthesis 1971,322-323. b) Koster, R.; Arora, S.; Binger, P. Lie bigs Ann. Chem.1973,1619-1627. c) Salaiin, J.; Gamier, B.; Conia, J.-M. Tetrahedron 1974,30,1413-1421. d) Fontaine, G.; Andre, C.; Jolivet, C.; Maitte, P. Bull. Soc. Chim. Fr.1963,1444-1448. e) Anderson, B. C. J. Org. Chem. 1962,27,2720-2724. f) Volta, L.; Stirling, C. J. M. Chem. Commun.1998,2481-2482. g) Derocque, J.-L.; Sunderman, F.-B.; Youssif, N.; Hanack, M. Liebigs Ann. Chem. 1973,419-431. h) Salaun, J.; Hanack, M. J. Org. Chem.1975,40,1994-1998. i) Hanack, M. J.; Bassler, T.; Eymann, W.; Heyd, W. E.; Kopp, R. J. Am. Chem. Soc. 1974,96,6686-6691. j) Kopp, R.; Hanack, M. Chem. Ber.1979,112,2453-2464. k) Fields, R.; Haszeldine, R. N.; Pradhan, P. R.; Bunegar, M. J.J. Chem. Res., Miniprint 1984,4,1217-1246.1) Guiliano, M.; Mille, G.; Leandri, G.; Meou, A. Spectrochim. Acta, A 1984,40,829-833. m) Cheng, C.; Shimo, T.; Somekawa, K.; Baba, M. Tetrahedron 1998,54,2031-2040. n) Qui, Y.-L.; Hempel, A.; Camerman, N.; Camerman, A.; Geiser, F.; Ptak, R. G.; Breitenbach, J. M.; Kira, T.; Li, L.; Gullen, E.; Cheng, Y. C.; Drach, J. C.; Zemlicka, J. J. Med. Chem.1998,26,5257-5264. o) Krief, A.; Ronvaux, A. Synlett 1998,491-494. p) Review:von Angerer, S. In Houben-Weyl, Carbocyclic Three-Membered Ring Compounds; de Meijere, A., Ed.; Thieme: Stuttgart,1997; Vol. E 17b, pp 1507-1544.
    13. Kozhushkov, S.; Spath, T.; Fiebig, T.; Galland, B.; Ruasse, M.-F.; Xavier, P.; Apeloig, Y.; de Meijere, A. J. Org. Chem.2002,67,4100.
    14. Shao, L. X.; Shi, M. Synlett 2006,1269.
    15. Huang, X, Fu, W.-J. Synthesis 2006,1016.
    16. a) Shi, M.; Shao, L.-X. Synlett 2004,807. b) Xu, B.; Shi M. Org. Lett.2003,5, 1415. c) Shao, L.-X.; Zhao, L.-J.; Shi, M. Eur. J. Org. Chem.2004,4894.
    17. Liu, L. P. Shi, M. J. Org. Chem.2004,69,2805.
    18. a) Li, W.; Shi, M. Tetrahedron 2007,63,11016. b) Liang, Y.; Jiao, L.; Wang, Y. Y.; Chen, Y. Y.; Ma, L. G.; Xu, J. X.; Zhang, S. W.; Yu, Z. Y. Org. Lett.2006,8, 5877-5879. c) Shi, M.; Wang, B. Y.; Li, J. Eur. J. Org. Chem.2005,759-765.
    19. a) Shi, M.; Xu, B. Org. Lett.2002,4,2145. b) Shi, M.; Chen, Y.; Xu, B.; Tang, J. Tetrahedron Lett.2002,43,8019. c) Shi, M.; Chen, Y.; Xu, B. Org. Lett.2003,5, 1225. d) Shi, M.; Chen, Y. J. Fluorine Chem.2003,122,219.
    20. Zhu, Z. B.; Li, L. P.; Shao, L. X.; Shi, M. Synlett 2007,115-118.
    21. Huang, J.-W.; Shi, M. Tetrahedron Lett.2003,44,9343.
    22. Zhou, H.-W; Huang, X; Chen, W.-L. Synlett 2003,2080.
    23. a) Shi, M.; Shao, L.-X.; Xu, B. Org. Lett.2003,5,579. b) Shao, L.-X.; Shi, M. Adv. Synth. Catal.2003,345,963.
    24. a) Rajamaki, S.; Kilburn, J. D. J. Chem. Soc, Chem. Commun.2005,1637. For the cycloaddition of silylated MCPs with aldehydes in the presence of TiCl4, see:b) Patient, L.; Berry, M. B.; Killburn, D. Tetrahedron Lett.2003,44,1015. c) Patient L Berry, M.; Coles, S.J.;Hursthouse, M. B.; Kilburn. J. D. Chem. Commun.2003. 2552.
    25. a) Huang, X.;Zhou. H.; Chen, W. J. Org. Chem.2004,69,839. b) Huang. X.; Zhou, H. Org. Lett.2002,4,4419.
    26. Huang, X.; Yang, Y. Org. Lett.2007,9,1667.
    27. Yao, L.-F.; Shi, M. Org. Lett.2007,9,5187.
    1. Li, Z.; Li, C.-J. Eur. J. Org. Chem.2005,3173.
    2. Basle, O.; Li, C.-J. Green Chem.2007,9,1047.
    3. Li, Z.; Li, C-J. J. Am. Chem. Soc.,2006,128,56.
    4. Fu, P. P.; Harvey, R. G. Chem. Rev.1978,78,317.
    5. Capella, L.; Montevecchi, P.C.; Nanni, D. J. Org. Chem.1994,59,7379.
    6. Walker, D.; Hiebert, J. D. Chem. Rev.1967,67,153.
    7. Xu, Y.-C.; Roy, C.; Lebeau, E. Tetrahedron Lett.1993,34,8189.
    8. Cheng, D.; Bao, W.Adv. Synth. Catal.2008,350,1263.
    9. Li, Y.; Bao, W. Adv. Synth. Catal.2009,351,865-868.
    10.程冬萍博士毕业论文.
    11. Selected recent examples about difunctional reactions, please see:a) Morgan, J. B.; Miller S. P.; Morken, J. P.; J. Am. Chem. Soc.2003,125,8702. b) Rauhut, C. B.; Melzig, L.; Knochel, P. Org. Lett.2008,10,3891. c) Shi, M.; Jiang, M.; Liu, L.-P. Org. Biomol. Chem.2007,5,438. d) Yu, L.; Meng, B.; Huang, X. Synlett 2007,2919. e) Yu, L.; Meng, B.; Huang, X. Synlett 2008,1331. f) Yu, L.; Meng, B.; Huang, X. J. Org. Chem.2008,73,6895. g) Meng, B.; Yu, L.; Huang, X. Tetrahedron Lett.2009, 50,1947.
    12. a) Liepins, V.; Karlstrom, A. S. E.; Backvall, J.-E. Org. Lett.2000,2,1237. b) Wu, M.-S.; Rayabarapu, D. K.; Cheng, C.-H. J. Am. Chem. Soc.2003,125,12426. c) Xie, M.; Wang, J.; Gu, X.; Sun Y.; Wang, S. Org. Lett.2006,8,431. d) Hall, S. S.; Akermark, B. Organometallics 1984,3, 1745. e) Moreau, B.; Wu, J. Y.; Ritter, T. Org. Lett.2009,11,337. f) Shibata, T.; Tahara, Y.-K. J. Am. Chem. Soc.2006,128,11766. g) Akermark, B.; Soderberg, B. C; Hall, S. S. J. Org. Chem.1989,54,1110. h) Woo, S.; Squires, N.; Fallis, A. G. Org. Lett.1999,1,573. i) Liepins, V.; Karlstrom, A. S. E.; Backvall, J.-E. J. Org. Chem.2002,67,2136.
    1. Crystal data: C27H26O, MW = 366.48, orthorhombic, space group P212121, final R indices [I> 2σ(I)], R1 = 0.0410, wR2 = 0.1066, R indices (all data) R1 = 0.0522, wR2 = 0.1141, a = 8.9813(10) A, b = 9.5597(10) A, c = 24.709(2) A, a = 90°, (3 = 90°, y 90°, F= 2121.5(4) A3, T= 293(2) K, Z = 4, reflections collected/unique: 8596/3637 (Rint = 0.0264), number of observations [>2σ(I)] 3008, parameters: 255. CCDC 892799.
    2. Crystal data: C27H26O, Mw = 366.48, monoclinic, space group Pc, final R indices [I> 2g(I)],R1 = 0.0462, wR2 = 0.1159, R indices (all data)R1= 0.0558, wR2 = 0.1272, a = 11.2135(14) A, b = 11.8432(10) A, c = 8.7056(8) A,α = 90°, β = 112.853(12)°, γ = 90°, V= 1065.4(2) A3, T= 293(2) K, Z = 2, reflections collected/unique: 4302/2208 (Rim = 0.0224), number of observations [ >2σ(I)] 1877, parameters: 255. CCDC 892800.
    3. a) Thommes, K.; Kiefer, G.; Scopelliti, R.; Severin, K. Angew. Chem., Int. Ed. 2009, 48, 8115. b) Koft, E. R.; Smith, A. B. J. Am. Chem. Soc. 1982, 104, 2659. c) Lewis, J. D.; Laane, J. J. Chem. Phys. 1974, 61, 2342. d) Wang, B.-Y.; Huang, J.-W.; Liu, L.-P.; Shi, M. Synlett 2005, 421. e) Miao, M.; Huang, X. J. Org.Chem. 2009, 74, 5636. f) Shao, L.-X.; Qi, M.-H.; Shi, M. Tetrahedron Lett. 2008, 49, 165.
    4. Li, Y.; Bao, W. Adv. Synth. Catal. 2009, 557, 865.
    5. Crystal data: C27H26O, Mw = 366.48, monoclinic, space group P21/c, final R indices [I> 2σ(I)], R1 = 0.0386, wR2 = 0.0907, R indices (all data) R1= 0.0745, wR2 = 0.0981, a = 10.0728(5) A, b = 19.9065(5) A, c = 11.4855(5) A, α= 90°,β 111.843(5)°, γ = 90°, V = 2137.66(14) A3, T = 293(2) K, Z = 4, reflections collected/unique: 16368/3901 (Rint= 0.0344), number of observations [ > 2σ(I)] 2227, parameters: 254. CCDC 892801.
    6. Crystal data: C26H24O, MW = 352.45, monoclinic, space group P21/n, final R indices [I> 2σ(I)], R1 = 0.0406, wR2 = 0.0809, R indices (all data) R1 = 0.1025,wR2 = 0.0908, a = 10.6062(5) A, b = 9.3855(4) A, c = 20.1820(10) A, a = 90°, J8 96.479(4)°, y = 90°, V = 1996.18(17) A3, T = 293(2) K, Z = 4, reflections collected/unique: 9615/3649 (Rint = 0.0398), number of observations [ > 2a(I)] 1709, parameters: 244. CCDC 892249.
    7. a) Dembitsky, V. M. J. Nat. Med. 2008, 62, 1. b) Namyslo, J. C; Kaufmann, D. E. Chem, Rev. 2003, 103, 1485.
    8. Lebreton, J.; Escudier, J.-M.; Arzel, L.; Len, C. Chem. Rev. 2010, 110, 3371.
    9. a) Figueras, A.; Miralles-Lluma, R.; Flores, R.; Rustullet, A.; Busque, F.; Figueredo, M.; Font, J.; Alibes, R.; Marechal, J.-D. ChemMedChem 2012, 7, 1044. b) Alibes, R.; Alvarez-Larena, A.; de March, P.; Figueredo, M.; Font, J.; Parella, T.; Rustullet, A. Org. Lett. 2006, 8, 491-494. c) Flores, R.; Rustullet, A.; Alibes, R.; Alvarez-Larena, A.; de March, P.; Figueredo, P. M.; Font, J. J. Org. Chem. 2011, 76, 5369. d) Kryger, M. J.; Munaretto, A. M.; Moore, J. S. J. Am. Chem. Soc. 2011, 133, 18992-18998.
    10. a) Ghosh, S.; Raychaudhuri, S. R.; Salomon, R. G. J. Org. Chem. 1987, 52, 83. b) Hertel, R.; Mattay, J.; Runsink, J. J. Am. Chem. Soc. 1991, 113, 657. c) Raychaudhuri, S. R; Ghosh, S.; Salomon, R. G. J. Am. Chem. Soc. 1982, 104, 6841. d) Patra, D.; Ghosh, S. J. Org. Chem. 1995, 60, 2526. e) Sarkar, N.; Nayek, A.; Ghosh, S. Org. Lett. 2004, 6, 1903. f) Ischay, M. A.; Lu, Z.; Yoon, T. P. J. Am. Chem. Soc. 2010, 132, 8572. g) Gulias, M.; Collado, A.; Trillo, B.; Lopez, F.; Oiiate, E.; Esteruelas, M. A.; Mascarenas, J. L. J. Am. Chem. Soc. 2011, 133, 7660. h) DeKorver, K. A.; Hsung, R. P.; Song, W.-Z.; Wang, X.-N.; Walton, M. C. Org. Lett. 2012,14, 3214.
    11. a) Wang, J.; Masui, Y.; Onaka, M. ACS Catal. 2011, 1, 446. b) Rao, W.; Tay, A. H. L.; Goh, P. J.; Choy, J. M. L.; Ke, J. K.; Chan, P. W. H. Tetrahedron Lett. 2008, 49, 122. c) Niggemann, M.; Meel, M. J. Angew. Chem. 2010, 122, 3767; Angew. Chem. Int. Ed. 2010, 49, 3684. d) Gruber, S.; Zaitsev, A. B.; Worle, M; Pregosin, P. S. Organometallics 2008, 27, 3796.
    1. a) Landor, S. R. Eds. The Chemistry of the Allenes, Vol 1, Academic Press, London, 1982. b) Krause, N.; Hashmi, A. S. K., Eds. Modern Allene Chemistry, Vols 1-2, Wiley-VCH, Weinheim,2004. c) Schuster, H. F.; Coppola, G. M.; Allenes in Organic Synthesis John Wiley & Sons:New York,1984. d) Patai, S.; Eds. The Chemistry of Ketenes, Allenes, and Related Compounds John Wiley & Sons:New York,1980, Part 1. e) Elsevier, C. J. in Methods of Organic Chemistry (Houben-Weyl), Vol. E21a (Eds.: Helmchen, G.; Hoffmann, R.W.; Mulzer, J.; Schaumann, E.), Thieme, Stuttgart,1995, pp.537-566.
    2. For reviews on the chemistry of allenes, see:a) Zimmer, R.; Dinesh, C.; Nandanan, E.; Khan, F. Chem. Rev.2000,100,3067. b) Marshall, J. Chem. Rev.2000,100,3163. c) Hashmi, A. S. K. Angew. Chem. Int. Ed. 2000,39,3590. d) Bates, R.; Satcharoen, V. Chem. Soc. Rev.2002,31,12. e) Sydnes, L. Chem. Rev.2003,103,1133. f) Ma, S. Acc. Chem. Res.,2003,36,701. g) Brandsma, L.; Nedolya, N. A. Synthesis 2004,735. h) Tius, M. Acc. Chem. Res.2003,36,284. i) Wei, L.-L.; Xiong, H.; Hsung, R. P. Acc. Chem. Res.2003,36,773. j) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res.2001,34,535. k) Wang, K. K. Chem. Rev.1996,96,207.1) Ma, S. Chem. Rev.2005,105,2829. m) Ma, S. Aldrich. Acta 2007,40,91.
    3. Van't Hoff, J. H. La Chimie dans L'Espace, Bazendijk, Rotterdam,1875.
    4. Burton, B. S.; Pechmann, H. v. Ber. Dtsch. Chem. Ges.1887,20,145.
    5. Jones, E. R. H.; Mansfield, G. H.; Whiting, M. L. H. J. Chem. Soc.1954,3208.
    6. a) "Naturally Occurring Allenes":Landor, S. R. in The Chemistry of the Allenes (Ed.:Landor, S. R.), Academic Press, London,1982, pp.679-707. b) Claesson, A. Biologically Active Allenes in The Chemistry of the Allenes (Ed.:Landor, S. R.), Academic Press, London,1982, pp.709-733.
    7. Hoffmann-Roder, A.; Krause, N. Angew. Chem. Int. Ed.2004,43,1196.
    8. For reviews on the chemistry of allenes, see:a) Zimmer, R.; Dinesh, C.; Nandanan, E.; Khan, F. Chem. Rev.2000,100,3067. b) Marshall, J. Chem. Rev.2000,100,3163. c) Hashmi, A. S. K. Angew. Chem. Int. Ed.2000,39,3590. d) Bates, R.; Satcharoen, V. Chem. Soc. Rev.2002,31,12. e) Sydnes, L. Chem. Rev.2003,103,1133. f) Ma, S. Acc. Chem. Res.,2003,36,701. g) Brandsma, L.; Nedolya, N. A. Synthesis 2004,735. h) Tius, M. Ace. Chem. Res.2003,36,284. i) Wei, L.-L.; Xiong, H.; Hsung, R. P. Ace. Chem. Res.2003,36,773. j) Lu, X.; Zhang, C.; Xu, Z.Acc. Chem.Res.2001,34,535. k) Wang, K. K. Chem. Rev.1996,96,207.1) Ma, S. Chem. Rev.2005,105,2829. m) Ma, S. Aldrich. Acta 2007,40,91.
    9. Smaaja, W. Chem. Rev.1983,83,263.
    10. Waters, W. L.; Linn. W. S.; Caserio, M. C. J. Am. Chem. Soc.1968,90,6741.
    11. a) Peer, H. G. Rec. Trav. Chim.1959,81,113. b) Carothers, W. H.; Berchet, G. J. J. Am. Chem. Soc.1933,55,1628. c) Mueller, W. H.; Butler, P. E.; Griesbaum, K. J. Org. Chem.1967,32,2651.1.
    12. Davidson, R. I.; Kropp, P. J. J. Org. Chem.1982,47,1904.
    13. Mueller, W. H.; Butler, P. E. J. Org. Chem.1968,33,1533.
    14. Banks, R.E.; Haszeldine, R.N.; Taylor, D. R. J. Chem. Soc. C 1966,2051.
    15. a) Jacobs, T. L.; Johnson, R. N. J. Am. Chem. Soc.1960,82,6397. b) Griesbaum, K.; Naegele, W.; Wanless, G..G.J. Am. Chem. Soc.1965,87,3151.
    16. Greibrokk, T.Acta. Chem. Scand.1973,27,3368.
    17. Baird, M. S.; Reese, C. B. Synthesis 1976,385.
    18. Jacobs, T. L.; Kammerer, R. C. J. Am. Chem. Soc.1974,96,6213.
    19. Bianchini, J.; Guillemonat, A. Bull. Soc. Chim. Fr.1968,2120.
    20. Poutsma, M. L. J. Org. Chem.1968,33,4080.
    21. Georgoulis, C.; Smadja, W.; Valery, J. M. Synthesis 1973,572.
    22. Heinsohn, G. E.; Kuivila, H. G. J. Org. Chem.1968,33,2165.
    23. Bianchini, J.-P.; Cocordano, M. Tetrahedron 1970,26,3401.
    24. Coulomb, F.; Roumestant, M.-L.; Gore, J. Bull. Soc. Chim. Fr.1973,3352.
    25. Okuyama, T.; Ohashi, K.; Izawa, K.; Fueno, T. J. Org. Chem.1974,39,2255.
    26. Zhou, C.; Li, J.; Lu, B.; Fu, C.; Ma, S. Org. Lett.2008,10,581.
    27. (a) Ma, S.; Wei, Q.; Wang, H. Org. Lett.2000,2,3893. (b) Ma, S.; Ren, H.; Wei, Q. J. Am. Chem. Soc.2003,125,4817.
    28. Fu, C.; Huang, X.; Ma, S. Tetrahedron Lett.2004,45,6063.
    29. (a) Ma, S.; Hao, X.; Huang, X. Org. Lett.2003,5,1217; (b) Ma, S.; Hao, X.; Huang, X. Chem. Commun.2003,1082; (c) Ma, S.; Hao, X.; Meng, X.; Huang, X. J. Org. Chem.2004,69,5720.
    30. Fu, C.; Chen, G.; Liu, X.; Ma, S. Tetrahedron 2005,61,7768.
    31. Gu, Z.; Deng, Y.; Shu, W.; Ma, S. Adv. Synth. Catal.2007,349,1653.
    32. Jacobs, T. L.; Macomber, R.; Zunker, D.J.Am. Chem. Soc.1967,89,7001.
    33. Pierre L. B.; Veronique, M. M.; Dennis G. G. Tetrahedron Lett.1980,21,129.
    34. a) Marshall, J. A.; Wang, X. J. Org. Chem.1990,55,2995. b) Marshall, J. A.; Wang, X. J. Org. Chem.1990,56,4913.
    35. a) Fu, C.; Ma, S. Eur. J. Org. Chem.2005,3942. b) Fu, C.; Li, J.; Ma, S. Chem. Commun.2005,4119. c) Li, J.; Fu, C.; Chen, G.; Chai, G.; Ma, S. Adv. Synth. Catal. 2008,350,1376. d) Li, J.; Kong, W.; Yu, Y.; Fu, C.; Ma, S. J. Org. Chem.2009,74, 5104.
    36. Shingu, K.; Hagishita, S.; Nakagawa, M. Tetrahedron Lett.1967,8,4371.
    37. Gill, G. B.; Idris, M. S. H. Tetrahedron Lett.1985,26,4811.
    38. Ma, S.; Shi, Z. Tetrahedron Lett.1999,40,2393.
    39. a) Ma, S.; Wu, S. J. Org. Chem.1999,64,9314. b) Ma, S.; Yu, Z.; Wu, S. Tetrahedron 2001,57,1585.
    40. Ma, S.; Pan, F.; Hao, X.; Huang, X. Synlett 2004,85.
    41. Zhou, C.; Ma, Z.; Gu, Z.; Fu, C.; Ma, S. J. Org. Chem.2008,73,772.
    42. Gill, G. B.; Idris, M. S. H. Tetrahedron Lett.1985,26,4811.
    43. a) Font, J.; Gracia, A.; March, P. Tetrahedron Lett.1990,31,5517. b) March, P.; Font, J.; Gracia, A.; Zhang, Q. J. Org. Chem.1995,60,1814.
    44. Marshall, J. A.; Wolf, M. A.; Wallace, E. M. J. Org. Chem.1997,62,367.
    45. Ma, S.; Wu, S. Tetrahedron Lett.2001,42,4075.
    46. Fu, C.; Ma, S. Eur. J. Org. Chem.2005,3942.
    47. Lii, B.; Fu, C.; Ma, S. Org. Biomol. Chem.2010,8,274.
    48. a) Chen, G.; Fu, C.; Ma, S. Tetrahedron 2006,62,4444. b) He, G.; Guo, H.; Qian, R.; Guo, Y.; Fu, C.; Ma, S. Tetrahedron 2009,65,4877. c) He, G.; Yu, Y.; Fu, C.; Ma, S. Eur. J. Org. Chem.2010,101.
    49. a) Connell, R. D.; Helquist, P.; Akermark, B. J. Org. Chem.1989,54,3359. b) Yadav, V. K.; Babu, K. G. Tetrahedron 2003,59,9111.
    50. a) Guillon, J.; Dallemagne, P.; Leger, J.-M.; Sopkova, J.; Bovy, P. R.; Jarry, C.; Rault, S. Bioorg. Med. Chem.2002,10,1043. b) Kolanos, R.; Siripurapu, U.; Pullagurla, M.; Riaz, M.; Setola, V.; Roth, B. L.; Dukat, M.; Glennon, R. A. Bioorg. Med. Chem. Lett.2005,15,1987. c) Watanabe, N.; Nakagawa, H.; Ikeno, A.; Minato, H.; Kohayakawa, C.; Tsuji, J. Bioorg. Med. Chem. Lett.2003,13,4317. d) Karaguni, I.-M.; Glusenkamp, K.-H.; Langerak, A.; Geisen, C.; Ullrich, V.; Winde, G.; Moroy, T.; Muller, O. Bioorg. Med. Chem. Lett.2002,12,709.
    51. a) Barbera, J.; Rakitin, O. A.; Ros, M. B.; Torroba, T.Angew. Chem., Int. Ed.1998, 37,296. b) Yang, J.; Lakshmikantham, M. V.; Cava, M. P.; Lorcy, D.; Bethelot, J. R. J. Org. Chem.2000,65,6739.
    52. Alt, H. G.; Koppl, A. Chem. Rev.2000,100,1205.
    1.1-Cyclopropylallenes could be conveniently prepared by the classical reaction of cyclopropyl Grignard reagent with toluene-4-sulfonic acid prop-2-ynyl ester catalyzed by copper (Ⅰ) bromide. For details see:Brandsma, L.; Verkruijsse, H. D. Synthesis of Acetylenes, Allenes and Cumlenes; Elsevier:Netherlands.1981.
    2. a) Yu, L.; Meng, B.; Huang, X. Synlett 2007,2919. b) Yu, L.; Meng, B.; Huang, X. Synlett 2008,1331. c) Yu, L.; Meng, B.; Huang, X. J. Org. Chem.2008,73,6895.
    3. Selected recent articles about conjugated dienes:a) Zhou, C; Fu, C.-L.; Ma, S.-M. Tetrahedron 2007,63,7612. b) Shi, M.; Wang, B.-Y; Huang, J.-W. J. Org. Chem. 2005,70,5606. c) Wong, K.; Hung, Y. Tetrahedron Lett.2003,44,8033. d) Taylor, D. K.; Avery, T. D.; Greatrex, B. W.; Tiekink, E. R. T.; Macreadie, I. G.; Macreadie, P. I.; Humphries, A. D.; Kalkanidis, M.; Fox, E. N.; Klonis, N.; Tilley, L. J. Med. Chem. 2004,47,1833.
    4. Selected recent articles about homoallylic compounds:a) Shi, M.; Xu, B. Org. Lett. 2002,4,2145. b) Xu, B.; Shi, M. Org. Lett.2003,5,1415. c) Liu, L.-P.; Shi, M. J. Org. Chem.2004,69,2805. d) Huang, J.-W.; Shi, M. Tetrahedron 2004,60,2057. e) Huang, X.; Yu, L. Synlett 2005,2953. f) Chen, Y.; Shi, M. J. Org. Chem.2004,69, 426. g) Huang, J.-W.; Shi, M. Tetrahedron Lett.2003,44,9343. h) Shao, L.-X. Huang, J.-W.; Shi, M. Tetrahedron 2004,60,11895. i) Zhou, H.-W.; Huang, X.; Chen, W.-L. Synlett 2003,2080.
    5. a) Hopf, H.; Jager, H.; Ernst, L. Liebigs Ann.1996,815. b) Kros, A.; Nolte, R. J. M.; Sommerdijk, N. A. J. M. Adv. Mater.2002,14,1779. c) Carroll, R. L.; Gorman, C. B. Angew. Chem., Int. Ed.2002,41,4378. d) McQuade, D. T.; Pullen, A. E.; Swager, T. M. Chem. Rev.2000,100,2537. e) Tour, J. M. Acc. Chem. Res.2000,33,791. f) Liphardt, M.; Goonesekera, A.; Jones, B. E.; Ducharme, S.; Takacs, J. M.; Zhang, L. Science 1994,263,367. g) Miller, J. S. Adv. Mater.1993,5,671. h) Greenham, N. C Moratti, S. C.; Bradley, D. D. C.; Friend, R. H.; Holmes, A. B. Nature 1993,365,628. i) Nalwa, H. S. Adv. Mater.1993,5,341. j) Buckley, A. Adv. Mater.1992,4,153.
    6. a) Michinobu, T.; Boudon, C.; Gisselbrecht, J.-P.; Seiler, P.; Frank, B.; Moonen, N. N. P.; Gross, M.; Diederich, F. Chem.-Eur. J.2006,12,1889. b) Pahadi, N. K.; Camacho, D. H.; Nakamura, I.; Yamamoto, Y. J. Org. Chem.2006,71,1152. c) Michinobu, T.; May, J. C.; Lim, J. H.; Boudon, C.; Gisselbrecht, J.-P.; Seiler, P.; Gross, M.; Biaggio, I.; Diederich, F. Chem. Commun.2005,737.
    1. Utimoto, K.; Tamura, M.; Sisido, K. Tetrahedron 1973,14,1169.
    2. Maercker, A.; Daub, V. E. E. Tetrahedron 1994,50,2439.
    3. Stafford, J. A.; McMurry, J. E. Tetrahedron Lett 1988,29,2531.
    4. Callens, E. Tetrahedron Lett.2008,49,3709.
    5.有机化学制备手册(石油化学工业出版社)
    6. J. M. Dickinson, J. A. Murphy, C. W. Patterson, N. F. Wooster, J. Chem. Soc., Perkin Trans.1 1990,1179.
    7. Wang, J.; Huang, W.; Zhang, Z.; Xiang, X.; Liu, R.; Zhou, X. J. Org. Chem.2009, 74,3299.
    8. Tang, X-Y.; Shi, M. J. Org. Chem.2010,75,902.
    9. Nagano, T.; Kobayashi, S. J. Am. Chem. Soc.2009,131,4200.
    10. a) Bolesov, I. G.; Ignatchenko, A. V.; Bovin, N. V.; Prodchenko, I. A.; Surmina, L. S.; Plemenkov, V. V.; Petrovkii, P. V.; Romanov, I. V.; Mel'nik, I. I. Zhurnal Organichekoi Khimii,1990,102. b) Huang, J. H.; Lee, T. Y.; Swenson, D. C.; Messerle, L. Inorganica Chimica Acta,2003,345,209.
    11. Isagawa, K.; Mizuno, K.; Sugita, H.; Otsuji, Y. J. Chem. Soc., Perkin Trans.1 1991,2283.
    12. Hyatt, J. A.; Raynolds, P. W. Organic Reactions (Hoboken, NJ. United States), 1994,45.
    13. Brandsma, L.; Verkruijsse, H. D. Synthesis of Acetylenes, Allenes and Cumlenes; Elsevier:Netherlands.1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700