基于α-羰基二硫缩烯酮多米诺成环反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着当今自然资源的日益短缺和环境的不断恶化,可持续发展战略的实施已经刻不容缓。因此,发展高效的合成方法,从源头上消除或减少废物的排放是现代有机化学家们所面临的严峻挑战。而多米诺反应具有简单、高效、原子经济性高、无需分离中间产物、环境污染少等特点,迅速发展成为了有机化学中一个重要的热点研究领域。
     本论文以发展高效、简洁的多米诺反应为基础,以实现简单高效的环合反应为核心,重点研究了具有两个1,5-双亲电体系结构的α-羰基二硫缩烯酮与各种偶极子双环化反应以及自由基导向的α-羰基二硫缩烯酮与二苯甲烷类化合物连续的分子间偶联和分子内环合反应。主要包括以下三方面内容:
     在NaOH的作用下,利用具有1,5-双亲电体系结构的α-烯酰基二硫缩烯酮与甲基异腈类化合物进行连续的[5+1]环合和分子内[3+2]环合的多米诺双环化反应,成功制备了一系列氢化吲哚酮类化合物。该反应不仅具有合成路线简洁、反应条件温和以及高原子经济性和区域选择性等优点,而且在“一锅”反应中形成三个化学键和两个环。
     以具有1,5-双亲电体系结构的α-烯酰基二硫缩烯酮为底物,在DBU的作用下,成功实现了其与重氮乙酸乙酯的双环化多米诺反应。该反应经历连续的1,3-偶极环加成/分子内的氮杂迈克尔加成/氧化芳构化的反应历程,创建了一种由简单易得的链状起始原料一步构建氢化吡咯并吡唑酮衍生物的合成新策略。
     在DDQ的作用下,利用α-羰基二硫缩烯酮与二苯甲烷衍生物进行多米诺反应,实现了无金属催化下、自由基导向的α-羰基二硫缩烯酮α-位的官能化反应,即分子间烯烃Csp2–H键和无相邻杂原子的苄基Csp3–H键交叉脱氢偶联(CDC)反应。在此基础上,经过连续的分子间C(sp2)–C(sp3)键和分子内C(sp2)–C(sp2)键的双CDC反应过程,创建直接一步合成多取代茚类化合物的通用、简洁、高效的新方法。
With current the increasing shortage of natural resources and environmentworsening, implementing sustainable development has become essential. Hence, it isserious challenges for organic chemists to develop efficient synthesis methods whicheliminate or reduce emissions from the source. Domino reaction rapidly becomes oneof hot research areas in organic chemistry because of its advantage, such as simple,high efficiency, high atomic economy, without isolation of intermediate products, lowenvironmental pollution and so on.
     In this thesis, based on the development of a highly efficient, simple dominoreaction, together with a core of achieving simple and efficient cyclization reaction,we mainly study the bicyclic reaction of α-oxo ketene dithioacetals containing double1,5-dielectrophilic systems and various dipoles as well as the radical-directed cascadeintermolecular coupling and intramolecular cyclization reaction of α-oxo ketenedithioacetals with diphenylmethane derivatives. This thesis mainly includes thefollowing three aspects:
     A domino bicyclization reaction of α-alkenoyl ketene dithioacetals of1,5-dielectrophilic systems with methyl isocyanide derivatives has been developedand a series of hydrogenated indolones were obtained in the presence of NaOH. Thissingle step process involves a sequent [5+1] cycloaddition/intramolecular [3+2]cyclization where up to three chemical bonds and two rings are createdsimultaneously in one-pot. This protocol is associated with concise synthesis route,mild reaction conditions, high atom economy and regional selectivity.
     A domino bicyclization reaction of the α-alkenoyl ketene dithioacetals with1,5-dielectrophilic systems with diazo compounds has been developed in the presenceof DBU. The reaction provides a highly efficient strategy for the direct synthesis of4H-pyrrolo[1,2-b]pyrazol derivatives through the tandem1,3-dipolarcycloaddition/intramolecular aza-Michael addition/oxidative aromatization reaction ofthe readily available acyclic precursors in single step.
     A radical-directed α-functionalization of α-oxo ketene dithioacetals withdiphenylmethane derivatives has been carried out under metal-free conditions in thepresence of DDQ, namely the intermolecular cross-dehydrogenative coupling (CDC)reaction of Csp2–H bonds of alkenes with alkyl Csp3–H bonds not adjacent toheteroatoms. On this basis of this reaction, a new, general and highly efficient strategy for the direct synthesis of polysubstituted indene compounds has been developed via asequent intermolecular C(sp2)–C(sp3) bonds and intramolecular C(sp2)–C(sp2) bondscross-dehydrogenative coupling reactions in single step.
引文
(1)(a) Tietze, L. F.; Beifuss, U.; Sequential Transformations in Organic Chemistry:A Synthetic Strategy with a Future[J]. Angew. Chem. Int. Ed.1993,32,131-163.
    (b) Tietze, L. F.; Domino Reactions in Organic Synthesis[J]. Chem. Rev.1996,96,115-136.(c) Tietze, L. F.; Brasche, G.; Gericke, K.; Domino ReactionsinOrganic Synthesis[M], Wiley-VCH, Weinheim,2006.
    (2)(a) Trost, B. M.; The atom economy: a search for synthetic efficiency[J]. Science.1991,254,1471-1477.(b) Trost, B. M.; Atom Economy–A Challenge forOrganic Synthesis: Homogeneous Catalysis Leads the Way[J]. Angew. Chem. Int.Ed.1995,34,259-281.
    (3)(a) Anastas, P. T.; Warner, J. C.; Green Chemistry: Theory and Practice, OxfordUniversity Press, Oxford,2000, p.135.(b) Matlack, A. S.; Introduction to GreenChemistry, Marcel Dekker, New York,2001, p.570.
    (4)(a) Chapman, C. J.; Frost, C. G.; Tandem and Domino Catalytic Strategies forEnantioselective Synthesis[J]. Synthesis.2007,1,1-21.(b) Fogg, D. E.; dosSantos, E. N.; Tandem catalysis: a taxonomy and illustrative review[J]. Coord.Chem. Rev.2004,248,2365-2379.
    (5)(a) Tietze, L. F.; Ila, H.; Bell, H. P.; Enantioselective Palladium-CatalyzedTransformations[J]. Chem. Rev.2004,104,3453-3516.(b) Pellissier, H.;Asymmetric domino reactions. Part A: Reactions based on the use of chiralauxiliaries[J]. Tetrahedron.2006,62,1619-1665.(c) Pellissier, H.; Asymmetricdomino reactions. Part B: Reactions based on the use of chiral catalysts andbiocatalysts[J]. Tetrahedron.2006,62,2143-2173.(d) Padwa, A.; Scott, K.; Bur,S. K.; The domino way to heterocycles[J]. Tetrahedron.2007,63,5341-5378.(e)Ender, D. Grondal, C.; Hüttl, M. R.; Asymmetric Organocatalytic DominoReactions[J]. Angew. Chem. Int. Ed.2007,46,1570-1581.(f) Tietze, L. F.;Kinzel, T.; Brazel, C. C.; The Domino Multicomponent Allylation Reaction forthe Stereoselective Synthesis of Homoallylic Alcohols[J]. Acc. Chem. Res.2009,42,367-378.(g) Tietze, L. F.; Düfert, A.; Multiple Pd-catalyzed reactions in thesynthesis of natural products, drugs, and materials[J]. Pure Appl. Chem.2010,82,1375-1392.
    (6) Robinson, R.; A Synthesis of Tropinone[J]. J. Chem. Soc.1917,111,762-768.
    (7) Johnson, W. S.; Biomimetic Polyene Cyclizations[J]. Angew. Chem. Int. Ed.1976,15,9-17.
    (8)(a) Pellissier, H.; Recent Developments in Asymmetric Organocatalytic DominoReactions[J]. Adv. Synth. Catal.2012,354,237-294.(b) Clavier, H.; Pellissier,H.; Recent Developments in Enantioselective Metal-Catalyzed DominoReactions[J]. Adv. Synth. Catal.2012,354,3347-3403.(c) Pellissier, H.;Stereocontrolled Domino Reactions[J]. Chem. Rev.2013,113,442-524.
    (9) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G.; Cascade Reactions in TotalSynthesis[J]. Angew. Chem., Int. Ed.2006,45,7134-7186.
    (10)Denmark, S. E.; Thorarensen, A.; Tandem [4+2]/[3+2] Cycloadditions ofNitroalkenes[J]. Chem. Rev.1996,96,137-165.
    (11)(a) Johnson, W. S.; Fletcher, V. R.; Chenera, B.; Bartlett, W. R.; Tham, F. S.;Kullnig, R. K.; Cation-stabilizing auxiliaries in polyene cyclizations.5. Thefluorine atom as a cation-stabilizing auxiliary in biomimetic polyene cyclizations.2. Asymmetric synthesis of a steroid[J]. J. Am. Chem. Soc.1993,115,497-504.(b) Jiricek, J.; Blechert, S.; Enantioselective Synthesis of ()-Gilbertine via aCationic Cascade Cyclization[J]. J. Am. Chem. Soc.2004,126,3534-3538.
    (12)Balog, A.; Curran, D. P.; Ring-Enlarging Annulations. A One-Step Conversion ofCyclic Silyl Acyloins and.omega.-Alkynyl Acetals to Polycyclic Enediones[J]. J.Org. Chem.1995,60,337-344.
    (13)Nakatani, M.; Nakamura, M.; Suzuki, A.; Inoue, M.; Katoh, T.; A New Strategytoward the Total Synthesis of Stachyflin, A Potent Anti-Influenza A VirusAgent: Concise Route to the Tetracyclic Core Structure[J]. Org. Lett.2002,4,4483-4486.
    (14)Zhang, X.; Zhang, S.; Wang, W.; Iminium–Allenamine Cascade Catalysis:One-Pot Access to Chiral4H-Chromenes by a Highly EnantioselectiveMichael–Michael Sequence[J]. Angew. Chem. Int. Ed.2010,49,1481-1484.
    (15)Tietze, L. F.; Stegelmeier, H., Harms, K.; Brumby, T.; Control of theConformation of Transition States in Intramolecular Diels-Alder Reactions withInverse Electron Demand[J]. Angew. Chem. Int. Ed.1982,21,863-864.
    (16)Van Lingen, H. L.; Zhuang, W.; Hansen, T.; Rutjes, F. P. J. T.; Jorgensen, K. A.Formation of optically active chromanes by catalytic asymmetric tandemoxa-Michael addition–Friedel–Crafts alkylation reactions[J]. Org. Biomol. Chem.2003,1,1953-1958.
    (17)Han, X.-D.; Zhao, Y.-L.; M, J.; Ren, C.-Q.; Liu, Q.; Synthesis of Acridines andPersubstituted Phenols from Cyclobutenones and Active Methylene Ketones[J].J. Org. Chem.2012,77,5173-5178.
    (18)(a) Malacria, M.; Selective Preparation of Complex Polycyclic Molecules fromAcyclic Precursors via Radical Mediated-or Transition Metal-CatalyzedCascade Reactions[J]. Chem. Rev.1996,96,289-306.(b) McCarroll, A. J.;Walton, J. C.; Programming Organic Molecules: Design and Management ofOrganic Syntheses through Free-Radical Cascade Processes[J]. Angew. Chem.Int. Ed.2001,40,2224-2248.
    (19)(a) Boger, D. L.; Mathvink, R. J.; Tandem free-radical alkene addition reactionsof acyl radicals[J]. J. Am.Chem. Soc.1990,112,4003-4003.(b) Boger, D. L.;Mathvink, R. J.; Acyl radicals: intermolecular and intramolecular alkene additionreactions[J]. J. Org. Chem.1992,57,1429-1443.
    (20)de Armas, P.; Francisco, C. G.; Suarez, E.; Fragmentation of carbohydrateanomeric alkoxy radicals. Tandem. beta.-fragmentation-cyclization ofalcohols[J]. J. Am. Chem. Soc.1993,115,8865-8866.
    (21)Miyabe, H.; Fujii, K.; Goto, T.; Naito, T.; A New Alternative to the MannichReaction: Tandem Radical Addition Cyclization Reaction for AsymmetricSynthesis of γ-Butyrolactones and β-Amino Acids[J]. Org. Lett.2000,2,4071-4074.
    (22)Gibbs, R. A.; Okamura, W. H.; A short enantioselective synthesis of(+)-sterpurene: complete intramolecular transfer of central to axial to centralchiral elements[J]. J. Am. Chem. Soc.1988,110,4062-4063.
    (23)Mak, X. Y.; Crombie, A. L.; Danheiser, R. L.; Synthesis of PolycyclicBenzofused Nitrogen Heterocycles via a Tandem YnamideBenzannulation/Ring-Closing Metathesis Strategy. Application in a Formal TotalSynthesis of (+)-FR900482[J]. J. Org. Chem.2011,76,1852-1873.
    (24)Knight, S. D.; Overman, L. E.; Pairaudeau, G.; Asymmetric Total Syntheses of(-)-and (+)-Strychnine and the Wieland-Gumlich Aldehyde[J]. J. Am. Chem. Soc.1995,117,5776.
    (25)Nakamura, I.; Yamamoto, Y.; Transition-Metal-Catalyzed Reactions inHeterocyclic Synthesis[J]. Chem. Rev.2004,104,2127-2198.
    (26)(a) De Meijere, A.; Br se, S.; Palladium in action: domino coupling and allylicsubstitution reactions for the efficient construction of complex organicmolecules[J]. J. Organomet. Chem.1999,576,88-110.(b) Poli, G.;Giambastiani, G.; Heumann, A.; Palladium in Organic Synthesis: FundamentalTransformations and Domino Processes[J]. Tetrahedron.2000,56,5959-5989.(c) de Meijere, A.; von Zezschwitz, P.; Nüske, H.; Stulgies, B.; New cascade andmultiple cross-coupling reactions for the efficient construction of complexmolecules[J]. J. Organomet. Chem.2002,653,129-140.(d) Zeni, G.; Larock, R.;Synthesis of Heterocycles via Palladium π-Olefin and π-Alkyne Chemistry[J].Chem. Rev.2004,104,2285-2310.
    (27)(a) Fustero, S.; Jimenez, D.; Sanchez-Rosello, del Pozo, C.; Microwave-AssistedTandem Cross Metathesis Intramolecular Aza-Michael Reaction: An EasyEntry to Cyclic β-Amino Carbonyl Derivatives[J]. J. Am. Chem. Soc.2007,129,6700-6701.(b) Padwa, A.; Domino reactions of rhodium(II) carbenoids foralkaloid synthesis[J]. Chem. Soc. Rev.2009,38,3072-3081.(c) Nolan, S. P.;Clavier, H.; Chemoselective olefin metathesis transformations mediated byruthenium complexes[J]. Chem. Soc. Rev.2010,39,3305-3316.
    (28)(a) Shi, H.; Fang, L.; Tan, C.; Shi, L.; Zhang, W.; Li, C.-C.; Luo, T.; Yang, Z.;Total Syntheses of Drimane-Type Sesquiterpenoids Enabled by aGold-Catalyzed Tandem Reaction[J]. J. Am. Chem. Soc.2011,133,14944-14947.
    (b) Chen, Z.; Zhang, Y.-X.; Wang, Y.-H.; Zhu, L.-L.; Liu, H.; Li, X.-X.; Guo, L.;Gold Catalyzed Diastereoselective Cascade Allylation/EnyneCycloisomerization to Construct Densely Functionalized OxygenHetereocycles[J]. Org. Lett.2010,12,3468-3471.(c) Liu, Y.; Xu, W.; Wang, X.;Gold(I)-Catalyzed Tandem Cyclization Approach to Tetracyclic Indolines[J].Org. Lett.2010,12,1448-1451.
    (29)Zhang, Y.; Wu, G.; Agnel, G.; Negishi, E.; One-step construction of fusedtricyclic and tetracyclic structures from acyclic precursors via cycliccarbopalladation[J]. J. Am. Chem. Soc.1990,112,8590-8592.
    (30)Inuki, S.; Iwata, A.; Oishi, S.; Fujii, N.; Ohno, H.; Enantioselective TotalSynthesis of (+)-Lysergic Acid,(+)-Lysergol, and (+)-Isolysergol byPalladium-Catalyzed Domino Cyclization of Allenes Bearing Amino andBromoindolyl Groups[J]. J. Org. Chem.2011,76,2072-2083.
    (31)Fuwa, H.; Noto, K.; Sasaki, M.; Stereoselective Synthesis of SubstitutedTetrahydropyrans via Domino Olefin Cross-Metathesis/IntramolecularOxa-Conjugate Cyclization[J]. Org. Lett.2010,12,1636-1639.
    (32)Rao, W.; Susanti, D.; Chan, P. W. H.; Gold-Catalyzed Tandem1,3-Migration/[2+2] Cycloaddition of1,7-Enyne Benzoates to Azabicyclo[4.2.0]oct-5-enes[J]. J.Am. Chem. Soc.2011,133,15248-15251.
    (33)(a) Padwa, A.; Weingarten, M. D.; Cascade Processes of Metallo Carbenoids[J].Chem. Rev.1996,96,223-270.(b) Geng, Z.; Chen, B.; Chiu, P.; Total Synthesisof Pseudolaric Acid A[J]. Angew. Chem. Int. Ed.2006,45,6197-6207.(c) Lam,S. K.; Chiu, P.; Asymmetric Total Synthesis of ()-Indicol by a CarbeneCyclization–Cycloaddition Cascade Strategy[J]. Chem. Eur. J.2007,13,9589-9599.(d) Li, J.; Suh, J. M.; Chin, E.; Expedient Enantioselective Synthesisof the Δ4-Oxocene Cores of (+)-Laurencin and (+)-Prelaureatin[J]. Org. Lett.2010,12,4712-4715.
    (34)Lou, S.; Dai, P.; Schaus, S. E.; Asymmetric Mannich Reaction of DicarbonylCompounds with α-Amido Sulfones Catalyzed by Cinchona Alkaloids andSynthesis of Chiral Dihydropyrimidones[J]. J. Org. Chem.2007,72,9998-10008.
    (35)(a) Kanaoka, Y.; Photoreactions of cyclic imides. Examples of synthetic organicphotochemistry[J]. Acc. Chem. Res.1978,11,407-413.(b) Yoon, U. C.; Mariano,P. S.; The Synthetic Potential of Phthalimide SET Photochemistry[J]. Acc. Chem.Res.2001,34,523-533.(c) Oelgem ller, M.; Griesbeck, A. G.; Photoinducedelectron transfer chemistry of phthalimdes: an efficient tool for C–C-bondformation[J]. J. Photochem. Photobiol. C.2002,3,109-127.
    (36)Horvat, M.; G rner, H.; Warzecha, K.-D.; Neud rfl, J.; Griesbeck, A. G.;Mlinari-Majerski, K.; Basari, N.; Photoinitiated Domino Reactions:N-(Adamantyl)phthalimides and N-(Adamantylalkyl)phthalimides[J]. J. Org.Chem.2009,74,8219-8231.
    (37)(a) Cane, D. E.; Enzymic formation of sesquiterpenes[J]. Chem. Rev.1990,90,1089-1103.(b) Mayer, S. F.; Kroutil, W. Faber, K.; Enzyme-initiated domino
    (cascade) reactions[J]. Chem. Soc. Rev.2001,30,332-339.(c) Wasilke, J.-C.;Obrey, S. J.; Baker, R. T.; Bazan, G. C. Concurrent Tandem Catalysis[J]. Chem.Rev.2005,105,1001-1020.
    (38)Müller,G. H.; Lang, A.; Seithel, D. R.; Waldmann, H.; An Enzyme-InitiatedHydroxylation–Oxidation Carbo Diels–Alder Domino Reaction[J]. Chem. Eur. J.1998,4,2513-2522.
    (39)Coquerel, Y.; Filippini, M.-H.; Bensa, D.; Rodriguez, J.; The MARDi Cascade: AMichael-Initiated Domino-Multicomponent Approach for the StereoselectiveSynthesis of Seven-Membered Rings[J]. Chem.-Eur. J.2008,14,3078-3092.
    (40)Enders, D.; Jeanty, M.; Bats, J. W.; Organocatalytic Asymmetric Triple DominoReactions of Nitromethane with α, β-Unsaturated Aldehydes[J]. Synlett.2009,3175-3178.
    (41)Wada, A.; Noguchi, K.; Hirano, M.; Tanaka, K.; Enantioselective Synthesis ofC2-Symmetric Spirobipyridine Ligands through CationicRh(I)/Modified-BINAP-Catalyzed Double [2+2+2] Cycloaddition[J]. Org.Lett.2007,9,1295-1298.
    (42)Merz, K.; Dyker, G.; Isoindoles and dihydroisoquinolines by gold-catalyzedintramolecular hydroamination of alkynes[J]. Chem. Commun.2006,6,661.
    (43)Yu, D.-F.; Wang, Y.; Xu, P.-F.; Organocatalytic enantioselective multicomponentcascade reaction: facile access to tetrahydropyridines with C3all-carbonquaternary stereocenters[J]. Tetrahedron.2011,67,3273-3277.
    (44)(a) Fustero, S.; Catalan, S.; Sanchez-Rosello, M.; Simon-Fuentes, A.; del Pozo, C.;Tandem Asymmetric Michael Reaction Intramolecular Michael Addition. AnEasy Entry to Chiral Fluorinated1,4-Dihydropyridines[J]. Org. Lett.2010,12,3484-3487.(b) Yao, M.; Lu, C.-D.; Three-Component Reactions ofSulfonylimidates, Silyl Glyoxylates and N-tert-Butanesulfinyl Aldimines: AnEfficient, Diastereoselective, and Enantioselective Synthesis of CyclicN-Sulfonylamidines[J]. Org. Lett.2011,13,2782-2785.
    (45)(a) Barluenga, J.; Suero, M. G.; De la Campa, R.; Florez, J.; EnantioselectiveSynthesis of4-Hydroxy-2-cyclohexenones through a MulticomponentCyclization[J]. Angew. Chem. Int. Ed.2010,49,9720-9724.(b) Renzi, P.;Overgaard, Bella, M.; Multicomponent asymmetric reactions mediated byproline lithium salt[J]. Org. Biomol. Chem.2010,8,980-983.
    (46)Varga, S.; Jakab, G.; Drahos, L.; Holczbauer, T.; Czugler, M.; Soos, T. DoubleDiastereocontrol in Bifunctional Thiourea Organocatalysis: IterativeMichael–Michael–Henry Sequence Regulated by the Configuration of ChiralCatalysts[J]. Org. Lett.2011,13,5416-5419.
    (47)(a) Bertelsen, S.; Johansen, R. L.; J rgensen, K. A.; Controlling the formation of1out of64stereoisomers using organocatalysis[J]. Chem. Commun.2008,3016-3018.(b) Enders, D.; Kru ll, R.; Bettray, W.; Microwave-AssistedOrganocatalytic Quadruple Domino Reactions of Acetaldehyde andNitroalkenes[J]. Synthesis.2010,567-572.
    (48)(a) Kelber, C.; über die Einwirkung von Schwefelkohlenstoff und tzkali aufAcetophenon[J]. Berichte Der Deutschen Chemischen Gesellschaft.1910,43,1252-1259.
    (49)(a) Pan, L.; Bi, X.; Liu, Q.; Recent developments of ketene dithioacetalchemistry[J]. Chem. Soc. Rev.2013,42,1251-1286;(b) Pan, L.; Liu, Q.;[5+1]-Annulation Strategy Based on Alkenoyl Ketene Dithioacetals andAnalogues[J]. Synlett,2011,1073-1080.(c) Kolb, M.; Ketene Dithioacetals inOrganic Synthesis: Recent Developments[J]. Synthesis.1990,3,171-190.(d)Junjappa, H.; Ila, H.; Asokan, C. α-Oxoketene-S, S-, N, S-and N, N-acetals:Versatile intermediates in organic synthesis[J]. Tetrahedron.1990,46,5423-5506.
    (e) Dieter, R. K.; α-Oxo ketene dithioacetals and related compounds: versatilethree-carbon synthons[J]. Tetrahedron,1986,42,3029-3096.
    (50)Rudorf, W. D.; Schierhom, A.; Augustin, M.; Reaktionen vono-halogenacetophenonen mit schwefelkohlenstoff und phenylisothiocyanat[J].Tetrahedron.1979,35,551-556.
    (51)Ouyang, Y.; Dong, D. W.; Yu, H. F.; A Clean, Facile and Practical Synthesis ofα-Oxoketene S,S-Acetals in Water[J]. Adv. Synth. Catal.2006,348,206-210.
    (52)Mohanta, P. K.; Peruncheralathan, S.; Ila, H.; Junjappa, H.; DominoCarbocationic Rearrangement of α-[Bis(methylthio)methylene]alkyl-2-aryl-cyclopropyl Carbinols: Facile Access to1-Arylindanes[J]. J. Org. Chem.2001,66,1503-1508.
    (53)Yadav, A. K.; Peruncheralathan, S.; Ila, H.; Junjappa, H.; Domino CarbocationicRearrangement of α-[Bis(methylthio)methylene]alkyl-2-(3/2-indolyl)Cyclopropyl Ketones[J]. J. Org. Chem.2007,72,1388-1394.
    (54)Piao, C.-R.; Zhao, Y.-L.; Han, X.-D.; Liu, Q.; AlCl3-Mediated DirectCarbon-Carbon Bond-Forming Reaction of α-Hydroxyketene-S,S-acetals withArenes and Synthesis of3,4-Disubstituted Dihydrocoumarin Derivatives[J]. J.Org. Chem.2008,73,2264-2269.
    (55)Yu, H.; Yu, Z.; Direct Alkenylation of Indoles with α-Oxo Ketene Dithioacetals:Efficient Synthesis of Indole Alkaloids Meridianin Derivatives[J]. Angew. Chem.,Int. Ed.2009,48,2929-2933.
    (56)Kobatake, T.; Fujino, D.; Yoshida, S.; Yorimitsu, H.; Oshima, K.; Synthesis of3-Trifluoromethylbenzo[b]furans from Phenols via Direct OrthoFunctionalization by Extended Pummerer Reaction[J]. J. Am. Chem. Soc.2010,132,11838-11840.
    (57)Wang, M.; Han, F.; Yuan, H.; Liu, Q.; Tandem Nazarovcyclization–halovinylation of divinyl ketones under Vilsmeier conditions:synthesis of highly substituted cyclopentadienesw[J]. Chem. Commun.2010,46,2247-2249.
    (58)Bi, X. Dong, D. Liu, Q. Pan, W. Zhao, L. Li, B.;[5+1] Annulation: ASynthetic Strategy for Highly Substituted Phenols and Cyclohexenones[J]. J. Am.Chem. Soc.2005,127,4578-4579.
    (59)Dong, D.; Bi, X.; Liu, Q.; Cong F.;[5C+1N] Annulation: a novel syntheticstrategy for functionalized2,3-dihydro-4-pyridones[J]. Chem. Commun.2005,28,3580-3582.
    (60)Liang, F.; Zhang, J. Tan, J.; Liu, Q.; Domino Reaction of Acyclic α,α-Dialkenoylketene S,S-Acetals and Diamines: Efficient Synthesis of TetracyclicThienoThieno[2,3-b]-thiopyran-Fused Imidazo[1,2-a]pyridine/Pyrido[1,2-a]pyrimidines [J]. Adv. Synth. Catal.2006,348,1986-1990.
    (61)Fu, Z.; Wang, M.; Dong, Y.; Liu, J.; Liu, Q.; Direct Synthesis of HighlySubstituted2-Cyclohexenones and Sterically Hindered Benzophenones Based ona [5C+1C] Annulation[J]. J. Org. Chem.2009,74,6105-6110.
    (62)Ma, Y.; Wang, M.; Li, D.; Bekturhun, B.; Liu, J.; Liu, Q.; α-Alkenoyl KeteneS,S-Acetal-Based Multicomponent Reaction: An Efficient Approach for theSelective Construction of Polyfunctionalized Cyclohexanones[J]. J. Org. Chem.2009,74,3116-3121.
    (63)Zhao, Y.-L.; Chen, L.; Yang, S.-C.; Tian, C.; Liu, Q.; A Synthetic Strategy forPolyfunctionalized Bicyclo-[3.3.1]nonanes Based on a TandemThree-Component[3+2] Cycloaddition of α-Cinnamoyl Ketene-S,S-acetals withOxalyl Chloride[J]. J. Org. Chem.2009,74,5622-5625.
    (64)Tan, J.; Xu, X.; Zhang, L.; Li, Y.; Liu, Q.; TandemDouble-Michael-Addition/Cyclization/Acyl Migration of1,4-Dien-3-ones andEthyl Isocyanoacetate: Stereoselective Synthesis of Pyrrolizidines[J]. Angew.Chem. Int. Ed.2009,48,2868-2872.
    (65)Zhang, L.; Xu, X.; Tan, J.; Pan, L.; Xia, W.; Liu, Q.; Tandem Michaeladdition/intramolecular isocyanide [3+2] cycloaddition: highlydiastereoselective one pot synthesis of fused oxazolines[J]. Chem. Commun.2010,46,3357-3359.
    (66)Zhao, Y.-L.; Yang, S.-C.; Di, C.-H.; Han, X.-D.; Liu, Q.; Highly efficientsynthesis of3-amino-/alkylthio-cyclobut-2-en-1-ones based on the cyclization ofacyl ketene dithioacetals[J]. Chem. Commun.2010,46,7614-7616.
    (67)Wang, M.; Fu, Z.; Feng, H.; Dong, Y.; Liu, J.; liu, Q.; Tandem [4+1+1]annulation and metal-free aerobic oxidative aromatization: straightforwardsynthesis of highly substituted phenols from one aldehyde and two ketones[J].Chem. Commun.2010,46,9061-9063.
    (68)Zhang, L.; Xu, X.; Xia, W.; Liu, Q.; Bicyclization of Isocyanides: A SyntheticStrategy for Fused Pyrroles [J]. Adv. Synth. Catal.2011,353,2619-3623.
    (69)Yang, X.; Cheng, Y.; Zhao, F.; Li, Y.; Ding, Y.; Liang, Y.; Gan, F.; Dong, D.; Afacile and efficient synthesis of fully substituted pyridin-2(1H)-ones fromα-oxoketene-S,S-acetals[J]. Tetrahedron.2011,67,8343-8347.
    (70)Li, Y.; Xu, X.; Tan, J.; Xia, C.; Zhang, D.; Liu, Q.; Double IsocyanideCyclization: A Synthetic Strategy for Two-Carbon-Tethered Pyrrole/OxazolePairs[J]. J. Am. Chem. Soc.2011,133,1775-1777.
    (71)Zhao, Y.-L.; Di, C. H.; Liu, S. D.; Meng, J.; Liu, Q.;[3+2] Cycloaddition ofPropargylamines and a-Acylketene Dithioacetals: A Synthetic Strategy forHighly Substituted Pyrroles[J]. Adv. Synth. Catal.2012,354,3545-3550.
    (72)Xu, X.; Zhang, L.; Liu, X.; Pan, L.; Liu. Q.; Facile [7C+1C] Annulation as anEfficient Route to Tricyclic Indolizidine Alkaloids[J]. Angew. Chem. Int. Ed.2013,52,9271-9274.
    (73)Singh, P. P.; Yadav, A. K.; Ila, H. Junjappa, H.; Novel Route to2,3-SubstitutedBenzo[b]thiophenes via Intramolecular Radical Cyclization[J]. J. Org. Chem.2009,74,5496-5501.
    (74)Majumdar, K. C.; Bandyopadhyay, A.; Synthesis of Sulfur Heterocycles byThio-Claisen Rearrangement[J]. Monatsh. Chem.2004,135,581-587.
    (75)Yuan, H.-J.; Wang, M.; Liu, Y.-J.; Liu, Q.; Copper(II)-Catalyzed C-CBond-Forming Reactions of α-Electron-Withdrawing Group-Substituted KeteneS,S-Acetals with Carbonyl Compounds and a Facile Synthesis of Coumarins[J].Adv. Synth. Catal.2009,351,112-116.
    (76)Liu, Y.; Wang, M.; Yuan, H.-J.; Liu, Q.; Copper(II) Bromide/Boron TrifluorideEtherate-Cocatalyzed Cyclization of Ketene Dithioacetals and p-Quinones: aMild and General Approach to Polyfunctionalized Benzofurans[J]. Adv. Synth.Catal.2010,352,884-892.
    (77)Li, Y.; Xu, X.; Xia, C.; Zhang, L.; Pan, L.; Liu, Q.; Double nucleophilic attack onisocyanide carbon: a synthetic strategy for7-aza-tetrahydroindoles[J]. Chem.Commun.2012,48,12228-12230.
    (78)Wu, T.; Pan, L.; Xu, X.-X.; Liu, Q.; Regiodivergent heterocyclization: a strategyfor the synthesis of substituted pyrroles and furans using a-formyl ketenedithioacetals as common precursors[J]. Chem. Commun.2014,50,1797-1800.
    (1)(a) Rigby, J. H.; Dong, W.;[4+1] Cycloaddition of Bis(alkylthio)carbenes withVinyl Isocyanates. Total Synthesis of (±)-Mesembrine[J]. Org. Lett.2000,2,1673-1675.(b) Kamikubo, T.; Ogasawara, K.; First enantiocontrolled synthesisof sceletium alkaloid A-4: determination of the absolute configuration[J]. J.Chem. Soc., Chem. Commun.1998,783-784.
    (2)(a) Mori, M.; Kuroda, S.; Zhang, C.-S.; Sato, Y.; Total Syntheses of(-)-Mesembrane and (-)-Mesembrine via Palladium-Catalyzed EnantioselectiveAllylic Substitution and Zirconium-Promoted Cyclization[J]. J. Org. Chem.1997,62,3263-3270.(b) Meyers, A. I.; Hanreich, R.; Wanner, K. T.; EfficientAsymmetric Synthesis of (+)-Mesembrine and Related Chiral4,4-DisubstitutedCyclohexanones[J]. J. Am. Chem. Soc.1985,107,7776-7778.
    (3)Denmark, S. E.; Marcin, L. R.; Asymmetric Construction of a Quaternary CarbonCenter by Tandem [4+2]/[3+2] Cycloaddition of a Nitroalkene. The TotalSynthesis of (-)-Mesembrine[J]. J. Org. Chem.1997,62,1675-1686.
    (4)(a) Jeffs, P. W.; Capps, T.; Johnson, D. B.; Karle, J. M.; Martin, N. H.; Rauckman,B.; Sceletium Alkaloids. VI. Minor Alkaloids of S. namaquense and S.strictum[J]. J. Org. Chem.1974,39,2703-2710.(b) Snyckers, F. O.; Strelow, F.;Wiechers, A.; The Structures of Partial Racemic Sceletium Alkaloid A, andTortuosamine, Pyridine Alkaloids from Sceletiurn tortuosum N. E. Br.[J]. J.Chem. Soc., Chem. Commun.1971,1467-1469.
    (5)(a) Baldwin, S. W.; Debenham, J. S.; Total Syntheses of (-)-Haemanthidine,(+)-Pretazettine, and (+)-Tazettine[J]. Org. Lett.2000,2,99-102.(b) Rigby, J. H.;Cavezza, A.; Heeg, M. J. Total Synthesis of (±)-Tazettine[J]. J. Am. Chem. Soc.1998,121,3664-3670.(c) Overman, L. E.; Wild, H.;Preparation of functionalized hydroindol-3-ols via tandem aza-Cope rearrangement-mannich cyclizations. Formal total synthesis of (±)-6a-epipretazettine and related alkaloids[J]. Tetrahedron. Lett.1989,30,647-650.(d) Ishibashi, H.; Nakatani,H.; Iwami, S.; Sato, T.; Nakamura, N.; Ikeda, M. Ruthenium-catalysedAtom-transfer Cyclisation of N-(Cyclohex-2-enyl)-α-chloro-α-(pheny1thio)acetamides. A Formal Total Synthesis of(±)-Haemanthidinea and (±)-Pretazettine[J]. J. Chem. Soc. Chem. Commun.1989,1767-1769.
    (6)For reviews, see:(a) Ersmark, K.; Del Valle, J. R.; Hanessian, S.; Chemistry andBiology of the Aeruginosin Family of Serine Protease Inhibitors[J]. Angew.Chem. Int. Ed.2008,47,1202-1223.(b) Hanessian, S.; Auzzas, L.; The Practiceof Ring Constraint in Peptidomimetics Using Bicyclic and Polycyclic AminoAcids[J]. Acc. Chem. Res.2008,41,1241-1251.(c) Sayago, F. J.; Laborda, P.;Calaza, M. I.; Jiménez, A. I.; Cativiela, C.; Access to this contentAccess to thecis-Fused Stereoisomers of Proline Analogues Containing an OctahydroindoleCore[J]. Eur. J. Org. Chem.2011,11,2011-2028.
    (7)(a) Martin, S. F. In The Alkaloids; Brossi, A., Ed.; Academic Press Inc: New York,1987; Vol,30, pp251.(b) Lewis, J. R.; Amaryllidaceae and Sceletiumalkaloids[J]. Nat. Prod. Rep.1994,11,329-332.(c) Jeffs, P. W. In The Alkaloids,Rodrigo, R. G. A., Ed.; Academic Press; New York,1981; Vol,19, pp1.
    (8)Wipf, P.; Kim, Y.; Goldstein, D. M.; Asymmetric Total Synthesis of the StemonaAlkaloid (-)-Stenine[J]. J. Am. Chem. Soc.1995,117,11106-11112.
    (9)Mori, M.; Hori, K.; Akashi, M.; Hori, M.; Sato, Y. Nishida, M.; Fixation ofAtmospheric Nitrogen: Synthesis of Heterocycles with Atmospheric Nitrogen asthe Nitrogen Source[J]. Angew. Chem. Int. Ed.1998,37,636-637.
    (10)Mamedov, V. A.; Beschastnova, T. N.; Zhukova, N. A.; Gubaidullin, A. T.; Isanov,R. A.; Rizvanov, I.; A novel one-step efficient method for the synthesis oftetrahydroindoles from1-(1-pyrrolidino)cyclohexene and chloropyruvates[J].Tetrahedron. Lett.2008,49,4658-4660.
    (11) Brichacek, M.; Villalobos, M. N.; Plichta, A.; Njardarson, J. T.; StereospecificRing Expansion of Chiral Vinyl Aziridines[J]. Org. Lett.2011,13,1110-1113.
    (12)Solé, D.; Urbaneja, X.; Bonjoch, J.; Synthesis of the4-Azatricyclo[5.2.2.0]undecan-10-one Core of Daphniphyllum AlkaloidCalyciphylline A Using a Pd-Catalyzed Enolate Alkenylation[J]. Org. Lett.2005,7,5461-5464.
    (13)Padwa, A.; Brodney, M. A.; Dimitroff, M.; A New Method for the Formation ofOctahydroindole Alkaloids via the Intramolecular Diels-Alder Reaction of2-Amidofurans[J]. J. Org. Chem.1998,63,5304-5305.
    (14)Wenkert, D.; Chen, T.-F.; Ramachandran, K.; Valasinas, L.; Weng, L.; Mcphail, A.T.; N-Methylated5-Alkenyloxazolium Salt Transformations[J]. Org. Lett.2001,3,2301-2303.
    (15)Zeng, Y.; Reddy, D. S.; Hirt, E.; Aubé, J.; Domino Reactions That Combine anAzido-Schmidt Ring Expansion with the Diels-Alder Reaction[J]. Org. Lett.2004,6,4993-4995.
    (16)Pearson, W. H.; Aponick, A.; Formal Synthesis of Aspidosperma Alkaloids via theIntramolecular [3+2] Cycloaddition of2-Azapentdienyllithiums[J]. Org. Lett.2006,8,1661-1664.
    (17)(a) Rigby, J. H.; Qabar, M.;[l+4] Cycloaddition of Vinyl Isocyanates with AlkylIsocyanides. Formal Total Synthesis of Erysotrine[J]. J. Am. Chem. Soc.1991,113,8975-8976.(b) Carre o, M. C.; Ribagorda, M.; Posner, G. H.;Titanium-Promoted Stereoselective Synthesis of Hydroindolones fromp-Quinamines by Domino Conjugate Additions[J]. Angew. Chem. Int. Ed.2002,41,2753-2755.
    (18)(a)Pearson, W. H.; Postich, M. J.; Approach to6a-Epipretazettine and6a-Epiprecriwelline via an Intramolecular2-Azaallyl Anion CycloadditionReaction[J]. J. Org. Chem.1994,59,5662-5671.(b) Coldham, I.; Burrell, A. J.M.; White, L. E.; Adams, H.; Oram, N.; Highly Efficient Synthesis of TricyclicAmines by a Cyclization/Cycloaddition Cascade: Total Syntheses ofAspidospermine, Aspidospermidine, and Quebrachamine[J]. Angew. Chem. Int.Ed.2007,46,6159-6162.
    (19)(a) Isocyanides is the name adapted by IUPAC (“Nomenclature of Organicchemistry”, Setion C,1965).(b) Gulevich, A. V., Alexander, G. Z., Romano, V.A., Valentine, G. N.; Isocyanoacetate Derivatives: Synthesis, Reactivity, andApplication[J]. Chem Rev.2010,110,5235-5331.
    (20)Yu, H. Jin, W. Sun, C. Chen, J. Du, W. He, S. Yu, Z.; Palladium-CatalyzedCross-Coupling of Internal Alkenes with Terminal Alkenes to Functionalized1,3-Butadienes Using C-H Bond Activation: Efficient Synthesis of BicyclicPyridones[J]. Angew. Chem. Int. Ed.2010,49,5792-5797.
    (1)(a) Liu, T.; Fu, H.; Copper-Catalyzed Synthesis of N-Heterocyclic Compounds[J].Synthesis2012,44,2805-2824. For select examples, see:(b) Zhang, H.; Jin, Y.;Liu, H.; Jiang, Y.; Fu, H.; Copper-Catalyzed Cascade Synthesis of1H-Indolo[1,2-c]quinazoline Derivatives[J]. Eur. J. Org. Chem.2012,6798-6803.
    (2)(a) Li, M.; Shao, P.; Wang, S.-W.; Kong, W.; Wen, L.-R.; Four-ComponentCascade Heteroannulation of Heterocyclic Ketene Aminals: Synthesis ofFunctionalized Tetrahydroimidazo[1,2-a]pyridine Derivatives[J]. J. Org. Chem.2012,77,8956-8967.(b) Tyagi, V.; Khan, S.; Bajpai, V.; Gauniyal, H. M.;Kumar, B.; Chauhan, P. M. S.; Skeletal Diverse Synthesis of N-Fused PolycyclicHeterocycles via the Sequence of Ugi-Type MCR and CuI-CatalyzedCoupling/Tandem Pictet-Spengler Reaction [J]. J. Org. Chem.2012,77,1414-1421.
    (3)(a) Chernyak, D.; Gevorgyan, V.; Palladium-Catalyzed IntramolecularCarbopalladation/Cyclization Cascade: Access to Polycyclic N-FusedHeterocycles[J]. Org. Lett.2010,12,5558-5560.(b) Chen, W.; Hu, M.; Wu, J.;Zou, H.; Yu, Y.; Domino Approach for the Synthesis of Pyrrolo[1,2-α]pyrazinefrom Vinyl Azides[J]. Org. Lett.2010,12,3863-3865.
    (4) Seregin, I. V.; Schammel, A. W.; Gevorgyan, V.; Base-and Ligand-freenRoom-Temperature Synthesis of N-Fused Heteroaromatic Compounds via theTransition Metal-Catalyzed Cycloisomerization Protocol[J]. Org. Lett.2007,9,3433-3436.
    (5) Abunada, N. M.; Hassaneen, H. M.; Kandile, N. G.; Miqdad, O. A.; Synthesis andBiological Activity of Some New Pyrazoline andPyrrolo[3,4-c]pyrazole-4,6-dione Derivatives: Reaction of Nitrilimines withSome Dipolarophiles[J]. Molecules.2008,13,1011-1024.
    (6)(a) Katritzky, A. R.; Tymoshenko, D. O.; Monteux, D.; Vvedensky, V.; Nikonov,G.; Cooper, C. B.; Deshpande, M.; A New Three-Carbon Synthon for EfficientSynthesis of Benzannelated and1-(2-Arylethenyl) Heterocycles[J]. J. Org. Chem.2000,65,8059-8062.(b) Maryanoff, B. E.; McComsey, D. F.; Ho, W.; Shank, R.P.; Dubinsky, B.; Potential Anxiolytic Agents.2. Improvement of Oral Efficacyfor the Pyrido[1,2-a]benzimidazole (PBI) Classof GABA-A ReceptorModulators[J]. Bioorg.Med. Chem. Lett.1996,6,333-338.
    (7) Badawey, E.; Kappe, T.; Benzimidazole condensed ring system. IX. Potentialantineoplastics. New synthesis of some pyrido[l,2-albenzimidazoles and relatedderivatives[J]. Eur. J. Med. Chem.1995,30,327-332.
    (8)(a) Schroter, H.-B.; Neumann, D.; Katritzky, A. R.; Swinbourne, F. J.;Withasomnine. A Pyrazole Alkaloid from Withania Somnifera DUN[J].Tetrahedron.1966,22,2895-2897.(b) Houghton, P. J.; Pandey, R.; Hawkes, J.E.; Naphthaquinones and An Alkaloid from Roots of Newbouldia Laevis[J].Phytochem.1994,35,1602-1603.
    (9) Aladesanmi, A. J.; Nia, R.; Nahrstedt, A.; New Pyrazole Alkaloids from the RootBark of Newbouldia Laevis[J]. Planta Med.1998,64,90-91.
    (10) Elytraria: Ravikanth, V.; Ramesh, P.; Diwan, P. V.; Venkateswarlu, Y.; Pyrazolealkaloids from Elytraria acaulis[J]. Biochem. Syst. Ecol.2001,29,753-754.
    (11) Onaka, T.; Biogenetic-type Three-step Synthesis of Withasomnine[J].Tetrahedron Lett.1968,9,5711-5714.
    (12) Takano, S.; Imamura, Y.; Ogasawara, K.; A Synthesis of Withasomnine from4-phenylpyrazole[J]. Heterocycles.1982,19,1223-1225.
    (13) Ranganathan, D.; Bamezai, S.; A Novel and Practical One Step Synthesis of5,6-Dihydro-3-Phenyl-4Hpyrrolo (1,2-b) Pyrazole (Withasomnine) Synth.Commun.1985,15,259-265.
    (14) Allin, S. M.; Barton, W. R. S.; Bowman, W. R.; McInally, T.; Radical cyclisationonto pyrazoles: synthesis of withasomnine[J]. Tetrahedron Lett.2002,43,4191-4193.
    (15) Foster, R. S.; Huang, J.; Vivat, J. F.; Browne, D. L.; Harrity, J. P. A.; A divergentstrategy to the withasomnines[J]. Org. Biomol. Chem.2009,7,4052-4056.
    (16) Browne, D. L.; Vivat, J. F.; Plant, A.; Gomez-Bengoa, E.; Harrity, J. P. A.;Investigation of the Scope and Regiochemistry of AlkynylboronateCycloadditions with Sydnones[J]. J. Am. Chem. Soc.2009,131,7762-7769.
    (17) Tomilov, Y. V.; Novikov, R. A.; Nefedov, O. M.; Lewis acid catalyzed reactionsof donoreacceptor cyclopropanes with1-and2-pyrazolines: formation ofsubstituted2-pyrazolines and1,2-diazabicyclo[3.3.0]octanes[J]. Tetrahedron.2010,66,9151-9158.
    (18) Ichikawa, H.; Watanabe, R.; Fujino, Y.; Usami, Y.; Divergent synthesis ofwithasomnines via synthesis of4-hydroxy-1H-pyrazoles and Claisenrearrangement of their4-O-allylethers[J]. Tetrahedron Lett.2011,52,4448-4451.
    (19) Galeta, J.; Man, S.; Bouillon, J. P.; Potá ek, M.; Regioselective Synthesis of3-Carbo-5-phosphonylpyrazoles through a One-Pot Claisen–Schmidt/1,3-DipolarCycloaddition/Oxidation Sequence[J]. Eur. J. Org. Chem.2011,2011,3184-3190.
    (20) Kumar, R.; Namboothiri, I. N. N.; Regioselective Synthesis of Sulfonylpyrazolesvia Base Mediated Reaction of Diazosulfones with Nitroalkenes and a FacileEntry into Withasomnine[J]. Org. Lett.2011,13,4016-4019.
    (21) Verma, D.; Kumar, R.; Namboothiri, I. N. N.; Synthesis of Withasomnines andTheir Non-natural Analogues from Aldehydes and4Nitro-1-butanol in ThreeSteps[J]. J. Org. Chem.2013,78,3482-3486.
    (22) Zhang, L.; Xu, X.; Xia, W.; Liu, Q.; Bicyclization of Isocyanides: A SyntheticStrategy for Fused Pyrroles[J]. Adv. Synth. Catal.2011,353,2619-2623.
    (23) Verma, D.; Mobin, S.; Namboothiri, I. N. N.; Highly Selective Synthesis ofPyrazole and Spiropyrazoline Phosphonates via Base-Assisted Reaction of theBestmann-Ohira Reagent with Enones[J]. J. Org. Chem.2011,76,4764-4770.
    (1) Godula, K.; Sames, D.; C–H Bond Functionalization in Complex OrganicSynthesis[J]. Science.2006,312,67-72.
    (2) For selected recent reviews, see:(a) Lia, B.-J.; Shi, Z.-J.; From C(sp2)–H toC(sp3)–H: systematic studies on transition metal-catalyzed oxidative C–Cformation[J]. Chem. Soc. Rev.2012,41,5588-5598.(b) Shi, W.; Liu, C.; Lei, A.;Transition-metal catalyzed oxidative cross-coupling reactions to form C–C bondsinvolving organometallic reagents as nucleophiles[J]. Chem. Soc. Rev.2011,40,2761-2776.(c) Wencel-Delord, J.; Dr ge, T.; Liu, F.; Glorius, F.; Towards mildmetal-catalyzed C–H bond activation[J]. Chem. Soc. Rev.2011,40,4740-4761.(d) Ashenhurst, A.; Intermolecular oxidative cross-coupling of arenes[J]. Chem.Soc. Rev.2010,39,540-548.(e) Colby, D. A.; Bergman, R. G.; Ellman, J. A.;Rhodium-Catalyzed C–C Bond Formation via Heteroatom-Directed C–H BondActivation[J]. Chem. Rev.2010,110,624-655.(f) Chen, X.; Engle, K. M.; Wang,D.-H.; Yu, J.-Q.; Palladium(II)-Catalyzed C–H Activation/C–C Cross-CouplingReactions: Versatility and Practicality[J]. Angew. Chem. Int. Ed.2009,48,5094-5115.(g) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q.;Transition metal-catalyzed C–H activation reactions: diastereoselectivity andenantioselectivity[J]. Chem. Soc. Rev.2009,38,3242-3272.
    (3) For selected recent reviews, see:(a) Zhang, C.; Tang, C.; Jiao, N.; Recentadvances in copper-catalyzed dehydrogenative functionalization via a singleelectron transfer (SET) process[J]. Chem. Soc. Rev.2012,41,3464-3484.(b)Yeung, C. S.; Dong, V. M.; Catalytic Dehydrogenative Cross-Coupling: FormingCarbon-Carbon Bonds by Oxidizing Two Carbon-Hydrogen Bonds[J]. Chem.Rev.2011,111,1215-1292.(c) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S.;Copper-Catalyzed Aerobic Oxidative C–H Functionalizations: Trends andMechanistic Insights Angew. Chem. Int. Ed.2011,50,11062-11087.(d) Yoo,W.-J.; Li, C.-J.; Cross-Dehydrogenative Coupling Reactions of sp3-HybridizedC–H Bonds[J]. Top. Curr. Chem.2010,292,281-302.(e) Scheuermann, C. J.;Beyond Traditional Cross Couplings: The Scope of the Cross DehydrogenativeCoupling Reaction[J]. Chem. Asian J.2010,5,436-451.(f) Li, C.-J.; Li, Z.;Green chemistry: The development of cross-dehydrogenative coupling (CDC)forchemical synthesis[J]. Pure Appl. Chem.2006,78,935-945.
    (4) For reviews, see:(a) Zhang, S.-Y.; Zhang, F.-M.; Tu, Y.-Q.; Direct Sp3α-C–Hactivation and functionalization of alcohol and ether[J]. Chem. Soc. Rev.2011,40,1937-1949.(b) Li, C.-J.; Cross-Dehydrogenative Coupling (CDC): ExploringC-C Bond Formations beyond Functional Group Transformations[J]. Acc. Chem.Res.2009,42,335-344.(c) Campos, K. R.; Direct sp3C–H bond activationadjacent to nitrogen in heterocycles[J]. Chem. Soc. Rev.2007,36,1069-1084.
    (5) Deboef, B.; Pastine, S. J.; Sames, D.; Cyclization of Alkene-Amide Substrates[J].J. Am. Chem. Soc.2004,126,6556-6557.
    (6) Li, Z.; Li, C.-J.; Cross-Coupling of sp3C–H Bonds and Alkenes: CatalyticCuBr-Catalyzed Direct Indolation of Tetrahydroisoquinolines viaCross-Dehydrogenative Coupling between sp3C–H and sp2C–H Bonds[J]. J. Am.Chem. Soc.2005,127,6968-6969.
    (7) Deng, G.; Zhao, L.; Li, C.-J.; Ruthenium-Catalyzed Oxidative Cross-Coupling ofChelating Arenes and Cycloalkanes[J]. Angew. Chem. Int. Ed.2008,47,6278-6282.
    (8) Liégault, B.; Fagnou, K.; Palladium-Catalyzed Intramolecular Coupling ofArenes and Unactivated Alkanes in Air[J]. Organometallics.2008,27,4841-4843.
    (9) Li, Y.-Z.; Li, B.-J.; Lu, X.-Y.; Lin, S.; Shi, Z.-J.; Cross DehydrogenativeArylation (CDA) of a Benzylic C-H Bond with Arenes by Iron Catalysis[J].Angew. Chem. Int. Ed.2009,48,3817-3820.
    (10)Liu, H.; Cao, L.; Sun, J.; Fossey, J. S. Deng, W.-P.; Iron-catalysed tandemcross-dehydrogenative coupling (CDC) of terminal allylic C(sp3) to C(sp2) ofstyrene and benzoannulation in the synthesis of polysubstituted naphthalenes[J].Chem. Commun.2012,48,2674-2676.
    (11)Wei, W.-T.; Zhou, M.-B.; Fan, J.-H.; Liu, W.; Song, R.-J.; Liu, Y.; Hu, M.; Xie, P.;Li, J.-H.; Synthesis of Oxindoles by Iron-Catalyzed Oxidative1,2-Alkylarylationof Activated Alkenes with an Aryl C(sp2)–H Bond and a C(sp3)–H BondAdjacent to a Heteroatom[J]. Angew. Chem. Int. Ed.2013,52,3638-3641.
    (12)Wu, Z. Y.; Pi, C.; Cui, X. L.; Bai, J.; Wu, Y. J.; Direct C-2Alkylation ofQuinoline N-Oxides with Ethers via Palladium-Catalyzed DehydrogenativeCross-Coupling Reaction[J]. Adv. Synth. Catal.2013,355,1971-1976.
    (13)Xie, Z. Y.; Cai, Y. P.; Hu, H. W.; Lin, C.; Jiang, J. L.; Chen, Z. X.; Wang, L.Y.;Pan, Y.; Cu-Catalyzed Cross-Dehydrogenative Coupling Reactions of(Benzo)thiazoles with Cyclic Ethers[J]. Org. Lett.2013,15,4600-4603.
    (14)Piou, T.; Bunescu, A.; Wang, Q.; Neuville, L.; Zhu, J.; Palladium-CatalyzedThrough-Space C(sp3)–H and C(sp2)–H Bond Activation by1,4-PalladiumMigration: Efficient Synthesis of [3,4]-Fused Oxindoles[J]. Angew. Chem. Int.Ed.2013,52,12385-12389.
    (15)Li, Z. J.; Zhang, Y.; Zhang, L. Z.; Liu, Z.-Q.; Free-Radical CascadeAlkylarylation of Alkenes with Simple Alkanes: Highly Efficient Access toOxindoles via Selective (sp3)C H and (sp2)C H Bond Functionalization[J]. Org.Lett.2014,16,382-385.
    (16)Liu, D.; Liu, C.; Li, H.; Lei, A.; Copper-catalysed oxidative C–H/C–H couplingbetween olefins and simple ethers[J]. Chem. Commun.2014,50,3623-3626.
    (17)Deng, G.; Ueda, K.; Yanagisawa, S.; Itami, K.; Li, C.-J.; Coupling of NitrogenHeteroaromatics and Alkanes without Transition Metals: A New OxidativeCross-Coupling at C-H/C-H Bonds[J]. Chem. Eur. J.2009,15,333-337.
    (18)He, T.; Yu, L.; Zhang, L.; Wang, L.; Wang, M.; Direct C2-Alkylation of Azoleswith Alcohols and Ethers through Dehydrogenative Cross-Coupling underMetal-Free Conditions[J]. Org. Lett.2011,13,5016-5019.
    (19)Xia, R.; Niu, H.-Y.; Qu, G.-R.; Guo, H.-M.; CuI Controlled C–C and C–N BondFormation of Heteroaromatics through C(sp3)–H Activation[J]. Org. Lett.2012,14,5546-5549.
    (20)Antonchick, A. P.; Burgmann, L.; Direct Selective Oxidative Cross-Coupling ofSimple Alkanes with Heteroarenes[J]. Angew. Chem. Int. Ed.2013,52,3267-3271.
    (21)Li, X.; Wang, H.-Y.; Shi, Z.-J.; Transition-metal-free cross-dehydrogenativealkylation of pyridines under neutral conditions[J]. New J. Chem.2013,37,1704-1706.
    (22)Meng, Y.; Guo, L.-N.; Wang, H.; Duan, X.-H.; Metal-free oxidativehydroxyalkylarylation of activated alkenes by direct sp3C–H functionalization ofalcohols[J]. Chem. Commun.2013,49,7540-7542.
    (23)Zhou, M.-B.; Song, R.-J.; Ouyang, X.-H.; Liu, Y.; Wei, W.-T.; Deng, G.-B.; Li,J.-H.; Metal-free oxidative tandem coupling of activated alkenes with carbonylC(sp2)–H bonds and aryl C(sp2)–H bonds using TBHP[J]. Chem. Sci.2013,4,2690-2694.
    (24)Zhou, M.-B.; Wang, C.-Y.; Song, R.-J.; Liu, Y.; Wei, W.-T.; Li, J.-H.; Oxidative1,2-difunctionalization of activated alkenes with benzylic C(sp3)–H bonds andaryl C(sp2)–H bonds[J]. Chem. Commun.2013,49,10817-10819.
    (25)(a) Bhattacharya, A.; DiMichele, L. M.; Dolling, U.-H.; Grabowski, E. J. J.;Grenda, V. J.;2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) oxidation ofsilyl enol ethers to enones via DDQ-substrate adducts[J]. J. Org. Chem.1989,54,6118-6120.(b) Guo, X.; Mayr, H.; Manifestation of Polar Reaction Pathways of2,3-Dichloro-5,6-dicyano-p-benzoquinone[J]. J. Am. Chem. Soc.2013,135,12377-12387.
    (26)(a) Witiak, D. T.; Kakodkar, S. V.; Brunst, G. E.; Baldwin, J. R.; Rahwan, R. G.;Pharmacology on rat ileum of certain2-substituted3-(dimethylamino)-5,6-dimethoxyindenes related to5,6-(methylendioxy)indenecalcium antagonist[J]. J. Med. Chem.1978,21,1313-1315.(b) Korach, K. S.;Metzler, M.; McLachlan, J. A.; Diethylstilbestrol metabolites and analogs. Newprobes for the study of hormone action [J]. J. Biol. Chem.1979,254,8963-8968.
    (27)(a) Palm, J.; Boegesoe, K. P.; Liljefors, T.; A structure-activity study of fourdopamine D-1and D-2receptor antagonists, representing the phenylindan,-indene, and-indole structural classes of compounds[J]. J. Med. Chem.1993,36,2878-2885.(b) Hagishita, S.; Yamada, M.; Shirahase, K.; Okada, T.; Murakami,Y.; Ito, Y.; Matsuura, T.; Wada, M.; Kato, T.; Conformationally Defined6-s-trans-Retinoic Acid Analogs.3. Structure-Activity Relationships for NuclearReceptor Binding, Transcriptional Activity, and Cancer ChemopreventiveActivity[J]. J. Med. Chem.1996,39,3636-3658.(c) Gao, H.; Katzenellenbogen,J. A.; Garg, R.; Hansch, C.; Comparative QSAR Analysis of Estrogen ReceptorLigands[J]. Chem. Rev.1999,99,723-744.(d) Guillon, J.; Dallemagne, P.; Léger,J.-M.; Sopkova, J.; Bovy, P. R.; Jarry, C.; Rault, S.; Synthesis of a Novel Class ofNon-Peptide NK-2Receptor Ligand, Derived from1-Phenyl-3-pyrrol-1-ylindan-2-carboxamides[J]. Bioorg. Med. Chem.2002,10,1043-1050.(e) Karaguni, I.-M.; Glusenkamp, K.-H.; Langerak, A.; Geisen, C.;Ullrich, V.; Winde, G.; Moroy, T.; Muller, O.; New indene-derivatives withanti-proliferative properties[J]. Bioorg. Med. Chem. Lett.2002,12,709-712.
    (28)(a) Watanabe, N.; Nakagava, H.; Ikeno, A.; Minato, H.; Kohayakawa, C.; Tsuji, J.;4-(4-Alkylpiperazin-1-yl)phenyl group: A novel class of basic side chains forselective estrogen receptor modulators[J]. Bioorg. Med. Chem. Lett.2003,13,4317-4320.(b) Korte, A.; Legros, J.; Bolm, C.; Asymmetric Synthesis ofSulindac by Iron-Catalyzed Sulfoxidation[J]. Synlett.2004,2397-2399.(c)Kolanos, R.; Siripurapu, U.; Pullagurla, M.; Riaz, M.; Setola, V.; Roth, B. L.;Dukat, M.; Glennon, R. A.; Binding of isotryptamines and indenes at h5-HT6serotonin receptors[J]. Bioorg. Med. Chem. Lett.2005,15,1987-1991.(d) Clegg,N. J.; Paruthiyil, S.; Leitman, D. C.; Scanlan, T. S.; Differential Response ofEstrogen Receptor Subtypes to1,3-Diarylindene and2,3-DiarylindeneLigands[J]. J. Med. Chem.2005,48,5989-6003.(e) Wang, Y.; Mo, S.-Y.; Wang,S.-J.; Li, S.; Yang, Y.-C.; Shi, J.-G.; A Unique Highly OxygenatedPyrano[4,3-c][2]benzopyran-1,6-dione Derivative with Antioxidant andCytotoxic Activities from the Fungus Phellinus igniarius[J]. Org. Lett.2005,7,1675-1678.
    (29)(a) Barber, J.; Rakitin, O. A.; Ros, M. B.; Torroba, T.; Breaking the Mold ofDiscotic Liquid Crystals[J]. Angew. Chem. Int. Ed.1998,37,296-299.(b)Cadierno, V.; Diez, J.; Pilar, G. M.; Gimeno, J.; Lastra, E.; Indenyl complexes ofGroup8metals[J]. Coord. Chem. Rev.1999,147-205.(c) Yang, J.;Lakshmikantham, M. V.; Cava, M. P.; Lorcy, D.; Bethelot, J. R.; Synthesis andCharacterization of5,10-Bis(2-thienyl)indeno[2,1-a]indene Derivatives: TheFirst Examples of Conducting Polymers Containing a RigidBis(thienyl)butadiene Core[J]. J. Org. Chem.2000,65,6739-6742.(d) Leino, R.;Lehmus, P.; Lehtonen, A.; Heteroatom-Substituted Group4Bis(indenyl)metallocenes[J]. Eur. J. Inorg. Chem.2004,3201-3222.
    (30) Alt, H. G.; K ppl, A.; Effect of the Nature of Metallocene Complexes of GroupIV Metals on Their Performance in Catalytic Ethylene and PropylenePolymerization[J]. Chem. Rev.2000,100,1205-1222.(b) Zargarian, D.; Group10metal indenyl complexes[J]. Coord. Chem. Rev.2002,157-176.
    (31)(a) Prough, J. D.; Alberts, A. W.; Deana, A. A.; Gilfillian, J. L.; Huff, J. W.; Smith,R. L.; Wiggins, J. M.;3-Hydroxy-3-methylglutaryl-coenzyme A reductaseinhibitors.6. trans-6-[2-(Substituted-1-naphthyl)ethyl(or ethenyl)]-3,4,5,6-terahydro-4-hydroxy-2H-pyran-2-ones[J]. J. Med. Chem.1990,33,758-765.(b) Kim,D. H.; Lee, J. A.; Lee, B. Y.; Chung, Y. K.; Synthesis of zirconocenes bearingbenz[f]indenyl ligand and their use as a catalyst in ethylene polymerization[J]. J.Organomet. Chem.2005,690,1822-1822.
    (32)(a) Zhou, X.; Zhang, H.; Xie, X.; Li, Y.; Efficient Synthesis of3-Iodoindenes viaLewis-Acid Catalyzed Friedel Crafts Cyclization of Iodinated AllylicAlcohols[J]. J. Org. Chem.2008,73,3958-3960.(b) Eom, D.; Park, S.; Park, Y.;Ryu, T.; Lee, P. H.; Synthesis of Indenes via Br nsted Acid CatalyzedCyclization of Diaryl-and Alkyl Aryl-1,3-dienes[J]. Org. Lett.2012,14,5392-5395.
    (33)(a) Yoshida, H.; Kato, M.; Ogata, T.; An extremely facile ring opening ofsubstituted1-(alkylthio)cyclopropene via vinylcarbene intermediate[J]. J. Org.Chem.1985,50,1145-1147.(b) Shao, L.-X.; Zhang, Y.-P.; Qi, M.-H.; Shi, M.;Lewis Acid Catalyzed Rearrangement of Vinylcyclopropenes for theConstruction of Naphthalene and Indene Skeletons[J]. Org. Lett.2007,9,117-120.(c) Zhu, Z.-B.; Shi, M.; Gold(I)-Catalyzed Cycloisomerization ofArylvinylcyclopropenes: An Efficient Synthetic Protocol for the Construction ofIndene Skeletons[J]. Chem. Eur. J.2008,14,10219-10222.
    (34)(a) Kuninobu, Y.; Kawata, A.; Takai, K.; Rhenium-Catalyzed Formation of IndeneFrameworks via C H Bond Activation:[3+2] Annulation of AromaticAldimines and Acetylenes[J]. J. Am. Chem. Soc.2005,127,13498-13499.(b)Marion, N.; Díez-González, S.; de Frémont, P.; A. Noble, R.; Nolan, S. P.;AuI-Catalyzed Tandem [3,3] Rearrangement–Intramolecular Hydroarylation:Mild and Efficient Formation of Substituted Indenes[J]. Angew. Chem. Int. Ed.2006,45,3647-3650.(c) Sanz, R.; Miguel, D.; Rodríguez, F.; Gold(I)-CatalyzedTandem Reactions Initiated by1,2-Indole Migrations[J]. Angew. Chem. Int. Ed.2008,47,7354-7357.(d) Wu, Y. T.; Kuo, M. Y.; Chang, Y. T.; Shin, C. C.; Wu, T.C.; Tai, C. C.; Cheng, T. H.; Liu, W. S.; Synthesis, Structure, and PhotophysicalProperties of Highly Substituted8,8a-Dihydrocyclopenta[a]indenes[J]. Angew.Chem. Int. Ed.2008,47,9891-9894.(e) Zhao, J.; Clark, D. A.; RegiodivergentSynthesis of Functionalized Indene Derivatives via Pt-Catalyzed RautenstrauchReaction of Propargyl Carbonates[J]. Org. Lett.2012,14,1668-1671.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700