基于异氰基乙酸乙酯与多取代二乙烯基酮的新型串联反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,社会的可持续性发展及其所涉及的生态、环境、资源、经济等方面的问题已经成为国际社会关注的焦点。如何从源头上消除或减少废物排放对有机合成而言是极具挑战性的研究课题。串联反应是一种“一个反应瓶”内进行的多步反应,反应连续、有序地进行,不经中间产物的分离直接得到最终产物。由于避免了中间产物的分离纯化步骤,从而大大节省了试剂用量和时间,具有高效和环境友好等优点,得到了有机化学家的广泛关注。
     本论本致力于发展新颖、高效的多步串联反应。以含有多个反应位点的异氰基乙酸乙酯和多取代二乙烯基酮为底物,通过多步的串联反应简洁地构筑具有生物活性的吡咯并环和桥环化合物,为吡咯里西啶和6-氮杂双环[3.2.1]辛烷等化合物提供了新的合成方法。同时对所涉及的反应机理进行了深入研究。
     本论文共分为五章,前两章为论文的背景与选题,综述了近几十年来串联反应的研究进展与异腈化学的发展,在此基础上结合本课题组的研究工作提出了选题依据。
     第三章描述了利用有机小分子催化的四步串联反应合成吡咯里西啶类化合物的新策略。在1,8-二氮杂双环[5.4.0]十一碳-7-烯(DBU)的催化下,异氰基乙酸乙酯和多取代二乙烯基酮发生串联的双迈克尔加成/分子内环合/1,3-酰基转移反应,高选择性地合成了多官能团化的吡咯里西啶类化合物。根据捕捉的中间体结构,提出了可能的反应机理。该反应提供了一种由开链化合物出发“一锅”合成吡咯里西啶双环体系的新方法。
     第四章阐述了利用有机小分子催化的三步串联反应合成6-氮杂双环[3.2.1]辛烷类化合物的新方法。在DBU的催化下,异氰基乙酸乙酯和2-芳基或烷基取代的二乙烯基酮发生串联的双迈克尔加成/分子内环合反应,立体选择性地合成了多官能团化的6-氮杂双环[3.2.1]辛烷类化合物。
     第五章论述了α-芳甲酰基-α-烯酰基二硫缩烯酮与异氰基乙酸乙酯的串联迈克尔加成/1,3-偶极环加成反应,立体选择性地合成了多官能团化的六氢苯并噁唑类化合物。
     本论本中所涉及的异氰基乙酸乙酯参与的串联反应有以下特点:(1)机理新颖;(2)效率高,在“一锅”反应中形成了多个化学键和两个环;(3)可生成四个相邻的手性中心;(4)原子利用率达到了100%;(5)高区域选择性和非对映异构选择性。所发展的合成策略为吡咯里西啶,6-氮-双环[3.2.1]辛烷等具有天然产物母核结构的生物活性化合物以及六氢苯并噁唑类化合物等“类天然产物”的合成提供了一种简单、高效、易操作、条件温和且绿色环保的合成方法。
Tandem reactions, which result from the combination of multiple transformations in a single pot, could efficiently afford complex products from simple, readily available starting materials. Such processes are both economically and ecologically beneficial and environmentally benign, which could minimize the requisite reagents, solvents, costs, time, and separation processes for the desired transformation and also minimize the formation of waste. Therefore, the development of novel tandem reactions is particularly attractive in modern organic chemistry.
     This dissertation is devoted to develop novel strategies for the construction of biologically active fused and -bridged pyrrole compounds through highly efficient multisteps tandem reactions between isocyanoacatate and 1,4-dien-3-ones. Mechanisms of these new reactions were also investigated in details.
     The dissertation is divided into five chapters. In chapter one, the progresses on both tandem reactions and isocyanide chemistry were reviewed. Based on chapter one and combined with our group’s research works, the dissertation proposal was presented.
     Chapter three describes a novel strategy for the synthesis of pyrrolizidines through an organocatalytic quadruple tandem reaction. Catalyzed by DBU, polyfunctionalized pyrrolizidines were stereoselectively constructed by a tandem double-Michael-addition/cyclization/acyl migration of 1,4-dien-3-ones and ethyl isocyanoacetate. A possible mechanism of this reaction is proposed based on the isolated intermediates.
     Chapter four involves a novel strategy for the synthesis of 6-azabicyclo[3.2.1]octanes by an organocatalytic triple domino reaction. Catalyzed by DBU, polyfunctionalized 6-azabicyclo[3.2.1]octanes with up to five adjacent stereocenters were stereoselectively constructed by a tandem double-Michael -addition/cyclization of 1,4-dien-3-ones and ethyl isocyanoacetate.
     Chapter five shows a new strategy for the stereoselective synthesis of 4,5,7,7a-tetrahydrobenzo[d]oxazol-6(3aH)-ones by tandem Michael addition/1,3- dipolar cycloaddition reactions ofα-alkenoyl-α-benzoyl ketene-(S,S)-acetals and isocyanoacetate.
     The benefits of the tandem reactions in this dissertation are summarized as below: (1) novel mechanism; (2) high efficiency, up to four bonds and two rings were formed in one-pot operation; (3) up to four adjacent stereocenters were formed; (4) perfectly atom-economy; (5) excellent regio- and diastereoselectivity. The studies in this dissertation discovered novel and efficient domino reactions to form azabicyclic skeleton, found in natural alkaloids, and paved the way to synthesis such natural-like product libraries under simple, mild and environmentally benign conditions.
引文
[1] (a)吴毓林,麻生明,戴立信,现代有机合成化学进展[M],化学工业出版社,北京,2005年。(b)伍贻康,吴毓林,有机合成的新纪元——有机合成近年进展鉴赏[M],化学进展,2007,19,1–34。
    [2] Tietze L F, Brasche G, Gericke M. Domino Reactions in Organic Synthesis[M]. WILEY-VCH Verlag GmbH & Co KGaA, Weinheim, 2006.
    [3] (a) Tietze L F, Beifuss U. Sequential Transformations in Organic Chemistry: A Synthetic Strategy with a Future[J]. Angew Chem Int Ed, 1993, 32(2): 131–163. (b) Tietze L F. Domino Reactions in Organic Synthesis[J]. Chem Rev, 1996, 96(1): 115–136. (c) Padwa A, Scott K, Bur S K. The Domino Way to Heterocycles[J]. Tetrahedron, 2007, 63(25): 5341–5378. (d) Chapman C J, Frost C G. Tandem and Domino Catalytic Strategies for Enantioselective Synthesis[J]. Synthesis, 2007(1): 1–21. (e) Ender D, Grondal C, Hüttl M R M. Asymmetric Organocatalytic Domino Reactions[J]. Angew Chem Int Ed. 2007, 46(10): 1570–1581. (f) Pellissier H. Asymmetric domino reactions. Part A: Reactions Based on the Use of Chiral Auxiliaries[J]. Tetrahedron, 2006, 62(8): 1619–1665. (g) Pellissier H. Asymmetric Domino Reactions. Part B: Reactions Based on the Use of Chiral Catalysts and Biocatalysts[J]. Tetrahedron, 2006, 62(10): 2143–2173.
    [4] Robinson R L. A Synthesis of Tropinone[J]. J Chem Soc, 1917(111): 762–768.
    [5] (a)Corey E J, Russey W E, Ortiz de Montellano P R. 2,3-Oxidosqualene, an Intermediate in the Biological Synthesis of Sterols from Squalene[J]. J Am Chem Soc, 1966, 88(20): 4750-4751. (b)Corey E J, Virgil S C. An Experimental Demonstration of the Stereochemistry of Enzymic Cyclization of 2,3-Oxidosqualene to the Protosterol System, Forerunner of Llanosterol and Cholesterol[J]. J Am Chem Soc, 1991, 113(10): 4025-4026. (c)Corey E J, Virgil S C, Sarshar S. New Mechanistic and Stereochemical Iinsights on the Biosynthesis of Sterols from 2,3-Oxidosqualene[J]. J Am Chem Soc, 1991, 113(21): 8171-8172. (d)Corey E J, Virgil S C, Liu D R et al. The Methyl Group at C(10) of 2,3-Oxidosqualene is Crucial to the Correct Folding of This Substrate in the Cyclization-rearrangement Step of Sterol Biosynthesis[J]. J Am Chem Soc, 1992, 114(4): 1524-1525.
    [6] Johnson W S. Biomimetische Cyclisierungen von Polyenen[J]. Angew Chem, 1976, 88(2): 33-41.
    [7] Tan B, Shi Z, Chua P J, et al. Unusual Domino Michael/Aldol Condensation Reactions Employing Oximes as N-Selective Nucleophiles: Synthesis of N-Hydroxypyrroles[J]. Angew Chem Int Ed, 2009, 48(4): 758-761.
    [8] Zoretic P A,Fang H, Ribeiro A A. Application of a Radical Methodology toward the Synthesisof d,l-5α-Pregnanes and Related Steroids: A Stereoselective Radical Cascade Approach[J]. J Org Chem, 1998, 63(21): 7213-7217.
    [9] Pevarello P, Amici R, Brasca M G, et al. Targets Heterocycl[J]. Syst. 1999, 3, 301.
    [10] Guo L N, Duan X H, Hu J, et al.Synthesis of Indene and Naphthalene Derivatives by a Palladium-Catalyzed Domino Carbopalladation/Cyclization/Coupling Process Synthesis of Indene and Naphthalene Derivatives by a Palladium-Catalyzed Domino Carbopalladation/Cyclization/Coupling Process[J]. Eur J Org Chem. 2008, 8, 1418-1425.
    [11] Graening T, Bette V, Neudrfl J, et al. Total Synthesis of (?)-Colchicine via a Rh-Triggered Cycloaddition Cascade[J]. Org Lett, 2005, 7 (20): 4317-4320.
    [12] Müller G H, Lang A, Seithel D R, et al. An Enzyme-Initiated Hydroxylation-Oxidation Carbo Diels -Alder Domino Reaction[J]. Chem Eur J, 1998, 4(12): 2513-2522.
    [13] Basaric N, Horvat M, Majerski K M, et al. Novel 2,4-Methanoadamantane -Benzazepine by Domino Photochemistry of N-(1-adamantyl) phthalimide[J]. Org Lett, 2008, 10 (18): 3965- 3968.
    [14] Chataigner I, Piettre S R. Multicomponent Domino [4+2]/[3+2] Cycloadditions of Nitroheteroaromatics:An Efficient Synthesis of Fused Nitrogenated Polycycles[J]. Org Lett, 2007, 9 (21): 4159-4162.
    [15] Hideo N, Keiichiro F. A Novel Domino Route to Chiral Cyclobutanones and its Function as Cornerstone in the Synthesis of Versatile Natural Products[J]. Synlett 1997, 8, 863-875.
    [16] Julia Deschamp, and Olivier Riant. Efficient Construction of Polycyclic Derivatives via a Highly Selective CuI-Catalyzed Domino Reductive-Aldol Cyclization[J].Org Lett, 2009, 11 (6): 1217-1220.
    [17] Enders D, Huttl M R M, Grondal C, et al.Control of Four Stereocentres in a Triple Cascade Organocatalytic Reaction[J]. Nature, 2006, 441, 861-863.
    [18] (a) Berkessel A, Gr?ger H. Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesi[M]. Wiley-VCH, Weinheim, 2005; (b) Enantioselective Organocatalysis[M] (Ed.: Dalko, P. I.) Wiley-VCH, Weinheim, 2007. Special issues dealing with asymmetric organocatalysis: (c) Acc Chem Res 2004, 37, 487–621 (Eds.: Houk, K. N.; List, B.); (d) Tetrahedron 2006, 62, 255–502 (Eds.: Kocovsky, P.; Malkov, A. V.); (e) Chem Rev, 2007, 107, 5413–5883 (Ed.: List, B.). (f) Dalko P I, Moisan L. In the Golden Age of Organocatalysis[J]. Angew Chem Int Ed. 2004, 43(39): 5138– 5175. (g) Barbas III, C F. Organocatalysis Lost: Modern Chemistry, Ancient Chemistry, and an Unseen Biosynthetic Apparatus[J]. Angew Chem Int Ed, 2008, 47(1): 42–47. (h) Dondoni A, Massi A, Asymmetric Organocatalysis: From Infancy to Adolescence [J]. Angew Chem Int Ed, 2008, 47(25): 4638–4660.
    [19] Lu L Q, Cao Y J, Liu X P, et al. A New Entry to Cascade Orgaoncatalysis: Reactions of Stable Sulfur Ylides and Nitroolefins Sequentially Catalyzed by Thiourea and DMAP[J]. J Am Chem Soc, 2008, 130(22): 6946–6948.
    [20] Hu X D, Fan C A, Zhang F M, et al.Tandem Semipinacol Rearrangement/Alkylation of ?α-Epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols[J]. Angew Chem Int Ed, 2004, 43(13): 1702–1705.
    [21] Liu G., Lu X. Palladium(II)-Catalyzed Tandem Reaction of Intramolecular Aminopalladation of Allenyl N-Tosylcarbamates and Conjugate Addition[J]. Org Lett, 2001, 3(24): 3879–3882.
    [22] Liu Y, Song F, Guo S. Cleavage of a Carbon?Carbon Triple Bond via Gold-Catalyzed Cascade Cyclization/Oxidative Cleavage Reactions of (Z)-Enynols with Molecular Oxygen[J]. J Am Chem Soc, 2006, 128(35): 11332–11333.
    [23] Cui S L, Wang J, Wang Y G. Synthesis of Indoles via Domino Reaction of N-Aryl Amides and Ethyl Diazoacetate[J]. J Am Chem Soc, 2008, 130(41): 13526–13527.
    [24] Ma D, Zhu W. Two-Component Method to Enantiopure Quinolizidinones and Indolizidinones. Total Synthesis of (-)-Lasubine II[J]. Org Lett, 2001, 3(24): 3927–3929.
    [25] Isocyanides is the name adapted by IUPAC (“Nomenclature of Organic chemistry”,Setion C,1965)
    [26] gautier A. Jystus Liebigs Ann.Chem.1869, 146, 119.
    [27] Lieke W.“über das Cyannllyl”.Annalen der Chemie und Pharmacie[J], 1859, 112: 316–321.
    [28] (a)Scheuer P J (Ed.) Marine Natural Products 1978, Academic Press, New York; (b)Edenborough M S, Herbert R B. Nat Prod Rep. 1988, 5, 229; Naturally Occurring Isocyanides.(c) Baker J T, Wells R J, Oberhaensli W E, et al. A New Diisocyanide of Novel Ring Structure from a Sponge[J]. J Am Chem Soc, 1976, 98(13):4010-4012.
    [29] Scheuer P J.“Isocyanides and Cyanides as Natural Products”. Acc Chem Res, 1992, 25(10): 433-439.
    [30] Ugi I, Meyr R.“Neue Darstellungsmethode für Isonitrile”[J].Angewandte Chemie,1958, 70(22-23): 702–703.
    [31] (a) Skorna G, Ugi I. Angew Chem, 1977, 89(4): 267-268; Isocyanide Synthesis with Diphosgene[J]. Angew Chem Int Ed 1977,16(4): 259-260; (b) Herschbach D R. Molecular Dynamics of Elementary Chemical Reactions (Nobel Lecture)[J]. Angew Chem Int Ed.1987, 26(12): 1221-1243.
    [32] Hofmann A W. Justus Liebigs. Ann Chem, 1867,144, 114.
    [33] Pirrung M C, Ghorai S.“Versatile, Fragrant, Convertible Isonitriles”[J]. J Am Chem Soc,2006, 128(36): 11772–11773.
    [34] Porcheddu A, Giacomelli G, Salaris M. Microwave-Assisted Synthesis of Isonitriles: AGeneral Simple Methodology[J]. J Org Chem, 2005, 70 (6): 2361-2363.
    [35] Lygin A V, Larionov O V, Korotkov V S, et al. Oligosubstituted Pyrroles Directly from Substituted Methyl Isocyanides and Acetylenes[J]. Chem Eur J, 2009, 15, 227– 236.
    [36] Ono N, Kawamura H, Bougauchi M, et al. Chem Soc, Chem Commur, 1989, 1580.
    [37] Uno H, Inoue K, Inoue B, et al. Preparation ofα-Free Pyrroles with Perfluorinated Groups atβ-Positions[J]. Synthesis 2001, 15, 2255–2258.
    [38] Grigg R, Mark L, Mark T P. Silver Acetate Catalyzed Cycloadditions of Isocyanoacetates[J]. Tetrahedron. 1999, 55(7): 2025-2044.
    [39] Panella L, Aleixandre A M, Kruidhof G J, et al. Enantioselective Rh-Catalyzed Hydrogenation of N-FormylDehydroamino Esters with Monodentate Phosphoramidite Ligands[J]. J Org Chem, 2006, 71(5): 2026-2036.
    [40] Tormyshev V M, Mikhalina T V, Rogozhnikova O Y, et al. A Combinatorially Convenient Version of Synthesis of 5-Substituted Oxazole-4-carboxylic Acid Ethyl Esters[J]. Russ J Org Chem, 2006, 42(7): 1031-1035.
    [41] Sundaram G S M, Singh B, Venkatesh C, et al. Dipolar Cycloaddition of Ethyl Isocyanoacetate to 3-Chloro-2-(methylthio)/2-(methylsulfonyl)quinoxalines: Highly RegioandChemoselective Synthesis of Substituted Imidazo[1,5-a] quinoxaline- 3- carboxylates[J]. J Org Chem, 2007, 72(13): 5020-5023.
    [42] Huang W S, Yuan C Y , Wang Z Q. Facile Synthesis of 1-Substituted 5-Trifluoromethylimidazole-4-Carboxylates[J]. Journal of Fluorine Chemistry, 1995, 74(2): 279-282.
    [43] Fujiwara S, Shin-Ike T, Sonoda N, et al. Novel Selenium Catalyzed Synthesis of Isothiocyanates from Isocyanides and Elemental Sulfur[J]. Tetrahedron Letters, 1991, 32(29): 3503-3506.
    [44] Misra N V, Panda K, Ila H, et al. An Efficient Highly Regioselective Synthesis of 2,3,4-Trisubstituted Pyrroles by Cycloaddition of Polarized Ketene S,Sand N,S-Acetals with Activated Methylene Isocyanides[J]. J Org Chem, 2007, 72(4): 1246-1251.
    [45] Osipova A, Yufit D S, de Meijere A. Synthesis of New Cyclopropylisonitriles and Their Applications in Ugi Four-component Reactions[J]. Synthesis, 2007, 1, 131-139.
    [46] Sepp A, Alexander D. Desosamine in Multicomponent Reactions[J]. Bioorg Med Chem Lett, 2006, 16(24): 6360-6362.
    [47] Robinson R. LXXV.-A theory of the Mechanism of the Phytochemical Synthesis of Certain Alkaloids[J]. J Chem Soc, 1917, 111, 876-899.
    [48] (a) Ugi I, Meyr R, et al. Neue Darstellungsmethode für Isonitrile[J] .Angew Chem,1958, 70(22-23): 702-703. (b) Ugi I, Steinbrückner C.über ein neues Kondensations-Prinzip[J].Angew Chem, 1960, 72(7-8): 267-268.
    [49] Faure S, Hjelmgaard T, Roche S P, et al. Passerini Reaction-Amine Deprotection-Acyl Migration Peptide Assembly: Efficient Formal Synthesis of Cyclotheonamide C[J]. Org Lett, 2009, 11( 5) : 1167-1170.
    [50] Maison W, Schlemminger, I Westerhoff O, et al. Multicomponent Synthesis of Novel Amino Acid-nucleobase Chimeras: A Versatile Approach to PNA-monomers[J]. Bioorg Med Chem, 2000, 8(6): 1343~1360.
    [51] Kehagia K, Domling A, Ivar Ugi. The Formation ofβ-Lactam Derivatives and a C3-Symmetrical Heterocycle from 5,6-Dihydro-2H-1,3-oxazines[J]. Tetrahedron, 1995, 51(1): 139-144.
    [52] Rivera D G, Wessjohann L A. Architectural Chemistry: Synthesis of Topologically Diverse Macromulticycles by Sequential Multiple Multicomponent Macrocyclizations[J]. J Am Chem Soc, 2009, 131(10): 3721-3732.
    [53] Pirrung M C and Wang J. Multicomponent Reactions of Cyclobutanones. J Org Chem, 2009, 74(8): 2958-2963.
    [54] Roche C, Delair P, Greene A E. Dichloroketene-Chiral Olefin-Based Approach to Pyrrolizidines: Highly Stereocontrolled Synthesis of (+)-Amphorogynine A [J], Org Lett, 2003, 5(10): 1741–1744. b) White J D, Hrnciar P, Yokochi A F. Tandem Ring-Closing Metathesis Transannular Cyclization as a Route to Hydroxylated Pyrrolizidines. Asymmetric Synthesis of (+)-Australine[J], J Am Chem Soc, 1998, 120 (29): 7359–7360.
    [55] Liddell J R. Pyrrolizidine alkaloids[J], Nat. Prod. Rep. 2002, 19, 773–781 and the previous papers in this series.
    [56] Cordero F M, Pisaneschi F, Batista K M, et al. A New Bicyclic Dipeptide Isostere with Pyrrolizidinone Skeleton[J]. J Org Chem, 2005, 70(3): 856-867.
    [57] Barrett A G., Cook A S, Kamimura A. Asymmetric Baylis–Hillman Reactions: Catalysis Using a Chiral Pyrrolizidine Base[J]. Chem Commun, 1998, 22, 2533–2534.
    [58] Liddell J R. Pyrrolizidine alkaloids. Nat Prod Rep, 2002, 19: 773–781 and the previous papers in this series. Despinoy X L, McNab H. The Synthesis of 1,(7)-Substituted Pyrrolizidin-3-ones[J]. Tetrahedron 2000, 56(35): 6359–6383.
    [59] Huang J M, Hong S C, Wu K, et al. Stereoselective Construction of the Pyrrolizidine Bridgehead Stereochemistry by the Adjacent Hydroxyl group in the Synthesis of (+)-Heliotridine and (?)-Retronecine[J]. Tetrahedron Lett, 2004, 45(15): 3047–3050.
    [60] De′ne`s F, Beaufils F, Renaud P, Thiophenol-Mediated 1,5-Hydrogen Transfer for the Preparation of Pyrrolizidines, Indolizidines, and Related Compounds[J].Org Lett, 2007, 9(21): 4375-4378.
    [61] (a) Doyle M P, Kalinin A V. Synthesis of Pyrrolizidine Bases by Highly Diastereoselective and Regioselective Catalytic Carbon-hydrogen Insertion Reactions of Chiral Pyrrolidinediazozcetamides[J]. Tetrahedron Lett, 1996, 37(9): 1371-1374. (b) Sulikowski G A,Cha K L, Sulikowski M M. Stereoselective Intramolecular Carbon-hydrogen Insertion Reactions of Metal Carbenes[J].Tetrahedron Asymmetry, 1998, 9(18): 3145-3169.
    [62] Chaudhari V D, Kumar K S A, Dhavale D D. Synthesis of (?)-Lentiginosine, Its 8a-Epimer and Dihydroxylated Pyrrolizidine Alkaloid from D-Glucose[J]. Tetrahedron 2006, 62(18): 4349–4354.
    [63] Chaudhari V D, Kumar K S, Dhavale D D. Synthesis of (?)-Lentiginosine, Its 8a-Epimer and Dihydroxylated Pyrrolizidine Alkaloid from D-Glucose[J]. Tetrahedron 2006, 62, 4349–4354.
    [64] Vicente J, Arrayás R G., Carretero J C. An Efficient and Stereoselective Synthesis of Enantiopure 1,2,7-Trihydroxylated Pyrrolizidines[J]. Tetrahedron Lett. 1999, 40(33): 6083–6086.
    [65] Tang T, Ruan Y P, Ye J L, et al. A Flexible Carbanionic Approach to Protected trans-(2R,3S)-2-Substituted 3-Aminopyrrolidines: Application to the Asymmetric Synthesis of (+)-Absouline[J], Synlett, 2005, 2, 231–234. b) Donohoe T J, Sintim H O. A Concise Total Synthesis of (±)-1-Epiaustraline[J]. Org Lett, 2004, 6(12): 2003–2006.
    [66] Pyne S G., Davis A S, Gates N J, et al. Asymmetric Synthesis of Polyfunctionalized Pyrrolidines and Related Alkaloids[J]. Synlett 2004, 15, 2670–2680.
    [67] Denmark S E, Herbert S E. Synthesis of (1R,2R,3R,7R,7aR)-Hexahydro -3-(Hydroxymethyl)-1H-pyrrolizine-1,2,7-triol: 7-Epiaustraline[J]. J Am Chem Soc, 1998, 120(29): 7357–7358.
    [68] Gallos J K, Sarli V C, Stathakis C I, et al. Hetero-Diels–Alder Additions to Pent-4-enofuranosides: Concise Synthesis of Hydroxylated Pyrrolizidines[J]. Tetrahedron 2002, 58(46): 9351–9357.
    [69] (a) Murray A, Proctor G R, Murray P J. An Efficient Route to the Pyrrolizidine Ring System via an N-acyl Anion Cyclisation Process[J]. Tetrahedron, 1996, 10, 3757-3766. (b) Galeotti N, Poncet J, Chiche L, etal. Diastereofacial Selectivity in Reduction of Chiral Ttetramic Acids[J]. J Org Chem, 1993, 58(20): 5370–5376.
    [70] de Faria A R, Salvador E L, Correia C R D. Synthesis of Indolizidines and Pyrrolizidines through the [2 + 2] Cycloaddition of Five-Membered Endocyclic Enecarbamates to Alkyl Ketenes. Unusual Regioselectivity of Baeyer-Villiger Ring Expansions of Alkyl Aza-Bicyclic Cyclobutanones[J]. J Org Chem 2002, 67(11): 3651–3661.
    [71] Epperson M T, Gin D Y. Enantiospecific Synthesis of the Bridged Pyrrolizidine Core of Asparagamine A: Dipolar Cycloadditions of Azomethine Ylides Derived from the Sulfonylation of Vinylogous Amides[J]. Angew Chem Int Ed, 2002, 41(10): 1778–1780.
    [72] Craig D, Hyland C J T, Ward S E. Stereoselective Synthesis of (–)-Trachelanthamidine via Palladium-Catalysed Intramolecular Allylation[J]. Synlett, 2006 (13): 2142–2144.
    [73] Smaele D D, Bogaert P, Kimpe N D. Synthesis of Pyrrolizidines by Cascade Reactions of N-AIkenylaziridinylmethyl Radicals[J]. Tetrahedron Lett. 1998, 39(52): 9797–9800.
    [74] Clark A J, Filik R P, Peacock J L, et al. Tandem Cyclisations of Amidyl Radicals Derived from O-Acyl Hydroxamic Acid Derivatives[J]. Synlett 1999, 4, 441–443。
    [75] Crich D, Ranganathan K, Neelamkavil S, et al. Tandem Polar/Radical Crossover Sequences for the Formation of Fused and Bridged Bicyclic Nitrogen Heterocycles Involving Radical Ionic Chain Reactions, and Alkene Radical Cation Intermediates, Performed under Reducing Conditions: Scope and Limitations[J]. J Am Chem Soc, 2003, 125 (26): 7942–7947.
    [76] Li Y, Marks T J. Coupled Organolanthanide-Catalyzed C–N/C–C Bond Formation Processes. Efficient Regiospecific Assembly of Pyrrolizidine and Indolizidine Skeletons in a SingleCatalytic Reaction[J]. J Am Chem Soc, 1996, 118(3): 707–708.
    [77] (a) Dong H Q, Shi Z C, Lin G Q. A New Approach to the Construction of Pyrrolizidine and Indolizidine Skeleton: Enantioselective Synthesis of (1S,7aS)-1-hydroxypyrrolizidine and (1S,8aS)-1-hydroxyindolizidine[J]. Chin Chem Lett, 1997, 8, 773–776. (b) Ribes C, Falomir E, Carda M, et al. Stereoselective Synthesis of the Glycosidase Inhibitor Australine through a One-Pot, Double-Cyclization Strategy[J]. Org Lett, 2007, 9(1): 77–80.
    [78] Vanecko J A, West F G. Ring Expansion of Azetidinium Ylides: Rapid Access to the Pyrrolizidine Alkaloids Turneforcidine and Platynecine[J]. Org Lett, 2005, 7(14): 2949–2952.
    [79] McClure C K, Kiessling A J, Link J S. Oxa-di-π-methane Photochemical Rearrangement of Quinuclidinones. Synthesis of Pyrrolizidinones[J]. Org Lett, 2003, 5 (21): 3811-3813.
    [80] (a) Choi E B, Youn I K, Park . S. Preparation of Protectedα-Keto Aldehydes fromα-Keto Esters via Selective Reduction of Acyl(alkoxycarbonyl)ketene Dithioacetals[J]. Synthesis 1988, 792–794. (b) Bi X, Dong D, Liu Q,et al. [5+1] Annulation: A Synthetic Strategy for Highly Substituted Phenols and Cyclohexenones[J]. J. Am. Chem. Soc. 2005, 127(13): 4578–4579.
    [81] (a) Dong D, Bi X, Liu Q, et al.[5C+1N] Annulation: A Novel Synthesis Strategy for Functionalized 2,3-Dihydro-4-pyridones[J]. Chem. Commun, 2005, 28, 3580–3582. (b) Zhao L, Liang F, Bi X, et al. Efficient Synthesis of Highly Functionalized Dihydropyrido[2,3-d]pyrimidines by a Double Annulation Strategy fromα-Alkenoyl-α-carbamoyl Ketene-(S,S)-acetals[J]. J Org Chem, 2006, 71(3): 1094–1098. (c) Bi X, Dong D, Li Y, et al.. [5C+1S] Annulation: A Facial and Efficient Synthetic Route toward Functionalized 2,3-Dihydrothiopyran-4-ones[J]. J Org Chem, 2005, 70(3): 10886–10889. (d) Kang J, Liang F, Sun S, et al. Copper-Mediated C–N Bond Formation via Direct Aminolysis of Dithioacetals[J]. Org Lett, 2006, 8(12): 2547–2550. (e) Liang F, Li D, Zhang L, et al. Efficient One-Pot Synthesis of Polyfunctionalized Thiophenes via an Amine-Mediated Ring Opening of EWG-Activated 2-Methylene-1,3-dithioles[J]. Org Lett, 2007, 9(23): 4845–4848.
    [82] (a)Winkler J D, Kim H S, Kim S, et al. Stereoselective Synthesis of the Taxane Ring System via theTandem Diels-Alder Cycloaddition[J].J Org Chem 1997, 62(9): 2957-2962. (b) Jung M E, McCombsC A, Takeda Y, et al. Use of Silyloxydienes in Synthesis.Total Syntheses of the Sesquiterpene(.+-.)-Seychellene[J]. J Am Chem Soc, 1981, 103(22): 6677-6685.
    [83] Brittenkelly M, Willis B J, Barton D H R. Michael Addition to Alkyl Substituted Divinyl Ketones[J]. Synthesis,1980, 1, 27-29.
    [84] Kuehne M E, Bornmann W G, Earley W G, et al. Studies in Biomimetic Alkaloid Syntheses.14.Controlled, Selective Syntheses of Catharanthine and Tabersonine,and Related Desethyl Compounds, Through Generation of 15-Oxosecodine Intermediates[J]. J Org Chem, 1986, 51(15): 2913-2927.
    [85] Nazarov I N, Zaretskaya I I, Sorkina T I. Zh Obsh Khim,1960(30): 746-754.
    [86] Cindy C, Browder, Marmster F P, et al. Highly Efficient Trapping of the NazarovIntermediate with Substituted Arenes[J]. Org Lett., 2001, 3 (19): 3033-3035.
    [87] (a) Coldham I, Hufton R. Intramolecular Dipolar Cycloaddition Reactions of Azomethine Ylides. Chem Rev, 2005, 105(7): 2765– 2809; (b) Coldham I, Crapnell K M, Fernandz J C, et al. A new Stereoselective Approach to the Manzamine Alkaloids.Chem Commun, 1999(17): 1757– 1758; (c) Guo C, Xue M X, Zhu M K, et al. Organocatalytic Asymmetric Formal [3+2] Cycloaddition Reaction of Isocyanoesters to Nitroolefins Leading to Highly Optically Active Dihydropyrroles. Angew Chem, 2008, 120(18): 3462– 3465; Angew Chem Int Ed, 2008, 47(18): 3414– 3417.
    [88] (a) Klaver W J, Hiemstra H, Speckamp W N. Synthesis and Absolute Configuration of the Aristotelia Alkaloid Peduncularine[J]. J Am Chem Soc, 1989, 111(7): 2588-2595. (b) Rigby J H, Meyer J H. Synlett, 1999, 860-862. (c) Roberson C W, Woerpel K A. Formal Synthesis of (±)-Peduncularine: Use of the [3 + 2] Annulation of Allylic Silanes and Chlorosulfonyl Isocyanate[J]. Org Lett, 2000, 2(5): 621- 623.
    [89] (a) Denhart D J, Griffith D A, Heathcock C H. Synthesis of the Tricyclic Core of Sarain A. Use of Formaldehyde in an Intramolecular Grigg Azomethine Ylide Cyclization [J]. J Org Chem, 1998, 63(26): 9616-9617. (b) Irie O, Samizu K, Henry J R, et al. Further Studies on Total Synthesis of Sarain A. Efforts Toward Annulation of the Macrocyclic Rings[J]. J Org Chem, 1999, 64(2): 587-595. (c) Downham R. Ng, F W, Overman L E. Asymmetric Construction of the Diazatricyclic Core of the Marine Alkaloids Sarains A?C[J]. J. Org. Chem. 1998, 63(23): 8096-8097. (d) Sung M J, Lee H I, Chong Y, et al. Facile Synthesis of the Tricyclic Core of Sarain A. 3-Oxidopyridinium Betaine Cycloaddition Approach1[J]. Org Lett, 1999, 1(12): 2017-2019.
    [90] Gulavita N, Hori A, Shimizu Y, etal. Aphanorphine, A Novel Tricyclic Alkaloid from the Blue-green AlgaAphanizomenon Flos-aquae[J]. Tetrahedron Lett. 1988, 29(35): 4381-4384.
    [91] Beutler JA, Karbon EW, Brubaker AN, et al. Securinine alkaloids: a new class of GABA receptor antagonist[J]. PubMed, 1985, 330(1): 135-140.
    [92] Kwak Y S, Winkler J D. Synthesis of 6-Aza-bicyclo[3,2,1]octan-3-ones via Vinylogous Imide Photochemistry: An Approach to the Synthesis of the Hetisine Alkaloids[J]. J Am Chem Soc, 2001, 123(30): 7429- 7430.
    [93] (a) Horii Z, Hanaoka M, Yamawaki Y, et al. The Total Synthesis of Securinine and Virosecurinine[J]. Tetrahedron 1967, 23(3): 1165-1174. (b) Heathcock C H, von Geldern T W Heterocycles 1987, 25, 75-78. (c) Jacobi P A, Blum C A, DeSimone R W, et al. Bis-heteroannulation. 15. Enantiospecific Syntheses of (+)- and (-)-Norsecurinine[J]. J Am Chem Soc, 1991, 113(14): 5384-5392. (d) Magnus P, Rodr?′guez-Lo′pez J, Mulholland K, etal. Synthesis of the Securinega Alkaloids (±)-Norsecurinine and (±)-Nirurine from 3-Hydroxypyridine[J]. Tetrahedron 1993, 49(36): 8059-8072. (e) Han G, LaPorte M G, Folmer J J, et al. Total Syntheses of the Securinega Alkaloids (+)-14,15-Dihydronorsecurinine, (?)-Norsecurinine, and Phyllanthine?[J] J Org Chem, 2000, 65(20): 6293-6306. (f) Honda T, Namiki H, Kudoh M, et al. A Novel Intramolecular Diels–Alder Approach to Securinega Alkaloids: Formal Synthesis of Securinine[J]. Tetrahedron Lett. 2000, 41(31): 5927-5930. (g) Liras S, Davoren J E, Bordner J. An Approach to the Skeleton of the Securinega Alkaloids. The Total Synthesis of (±)-Securinine[J]. Org Lett, 2001, 3(5): 703-706.
    [94] Triggle D J, Kwon Y W, Abraham P, et al. J Med Chem, 1991, 34, 3164-3171.
    [95] (a) Quirante J, Vila X, Bonjoch J, et al. 2,3-Disubstituted 6-Azabicyclo[3.2.1] Octanes as Novel Dopamine Ttransporter Iinhibitors[J]. Bioorg Med Chem, 2004, 12, 1383-1391.
    [96] Xichen Lin, Didier Stien ,Steven M. Weinreb.A Mild New Procedure for Production, Cyclization and Trapping Amidyl Radicals: Application to a Formal Total Synthesis of Peduncularine[J].Tetrahedron Lett, 2000, 41(14): 2333–2337.
    [97] Quirante J, Vila X, Escolano C, et al. Decarbonylative Radical Cyclization ofα-Amino Selenoesters upon Electrophilic Alkenes. A General Method for the 6-Azabicyclo[3.2.1]octane Synthesis.[J]. J Org Chem, 2002, 67(7): 2323-2328.
    [98] Davies H M L, Cao G. Cation Induced Rearrangement of 8-azabicyclo[3.2.1] octa-2,6-dienes to 6-azabicyclo[3.2.1]oct-2-enes[J]. Tetrahedron Lett, 1998, 39(33): 5943-5946.
    [99] Rigby J H, Pigge F C. A Novel Entry into the 6-Azabicyclo[3.2.1]octane System via Radical Rearrangement of a Tropane Derivative[J].Tetrahedron Lett. 1996, 37(13): 2201-2204.
    [100] Bogdanowicz-Szwed K, Grochowski J, Obara A, et al. Stereoselective Synthesis of Bridged Azepine Derivatives via Polyfunctionalized Spiroannulated Thiophene. Novel Rearrangement of Oxime Esters[J]. J Org Chem, 2001, 66(21): 7205-7208.
    [101] Neumann H, von Wangelin A J, G?rdes D, et al. Multi-component Coupling Reactions of Aldehydes and Amides with Maleic Anhydride: Synthesis of 7-oxo-6-azabicyclo[3.2.1]oct -2-ene-8-carboxylic Acids[J]. Tetrahedron, 2002, 12, 2381-2387.
    [102] Grygorenko O O, Artamonov O S, Palamarchuk G V,et al. Stereoselective Synthesis of 2,4-Methanoproline Homologues[J]. Tetrahedron Asymmetry, 2006, 17(2): 252–258.
    [103] Pulipaka A B and Bergmeier S C. A Synthesis of 6-Azabicyclo[3.2.1]octanes. The Role of N-Substitution[J]. J Org Chem, 2008, 73(4): 1462-1467.
    [104] Kwak Y S, Winkler J D. Synthesis of 6-Aza-bicyclo[3,2,1]octan-3-ones via Vinylogous Imide Photochemistry: An Approach to the Synthesis of the Hetisine Alkaloids[J]. J Am Chem Soc, 2001, 123(30): 7429- 7430.
    [105] (a) Schreiber S L. Target-Oriented and Diversity-Oriented Organic Synthesis in Drug Discovery, Science 2000, 287, 1964–1969. (b) Nielsen T E, Schreiber S L. Towards the Optimal Screening Collection: A Synthesis Strategy[J]. Angew Chem Int Ed, 2008, 47(1):48–56. (c)刘钢,李裕林,南发俊,多样性导向的“类天然产物”化合物库合成[M],化学进展,2006, 18, 734–742.
    [106] Chuang C P, Chen K P, Hsu Y L, et al.α-Nitro Carbonyl Compounds in the Synthesis of 2,3-Dihydrofurans[J]. Tetrahedron, 2008, 64 (32): 7511–7516.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700