新荧光发色体系—含腈萘杂环:分子设计、合成、应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文共合成了56个未见报道的化合物,其结构全部通过核磁、红外,质谱等方式加以确证。
     1.本文设计了4-氨基-1,8-萘二腈(ADCN)类新型荧光发色体系;探索了两条合成ADCN衍生物通用路线;光谱测定表明ADCN衍生物荧光量子效率高。
     2.提出迫位效应促进的扭曲分子内电荷转移(peri-effect promoted TICT)机制,设计了一系列对介质极性具有强烈敏感性的4-双取代氨基-1,8-萘二腈荧光化合物;提出了扭曲分子内电荷转移促进光诱导电子转移(TICT promoted PET)机制,并通过简单的理论计算作为辅助,设计了4-(4-甲基)哌嗪基,其对过渡金属离子Fe~(3+),Cr~(3+)呈现出非常强烈的荧光增强;设计了以硫醚为电子供体,N…S型双齿配体为过渡金属离子受体的新型PET荧光探针,其特点在于不受质子化影响,但光谱性能研究表明该类荧光衍生物中无电子转移作用;设计了季铵盐型和季亚铵盐型ADCN衍生物,其具有良好的水溶性。
     3.应用苊醌与丙二腈在碱性条件下进行两次Knoevenagel Condensation反应,生成的两次缩合产物与缩合反应释放的羟基负离子发生O_2-oxidative S_NAr~H反应,得到了深蓝色取代产物;碱催化的5-取代基(-OCH_3,-Br,-NO_2)苊醌与丙二腈的反应,则发生了两种取代反应即“ipso-substitution”和“tele-substitution”;应用硅胶做固相催化剂,通过连续快速柱层析方法操作Knoevenagel Condensation反应,制备了1-二氰基亚甲基-2-氧-苊;在无水条件下,以碳酸钾为催化剂,完成1-二氰基亚甲基-2-氧-苊的分子内环合反应,将其定量地转化为8-氧-8H-苊并[12-b]吡咯-9-腈;研究了无水条件下碱催化环合的机理,和有水条件下,碱催化的歧化反应机理,发现Knoevenagel Condensation反应在碱性有水条件下,是可逆反应;通过8-氧-8H-苊并[12-b]吡咯-9-腈与羟基负离子和伯胺类亲核试剂的氧气氧化S_NAr~H反应,得到了强荧光长波长新型荧光化合物3-取代基(氧负离子,伯氨基)8-氧-8H-苊并[12-b]吡咯-9-腈;而且发现8-氧-8H-苊并[12-b]吡咯-9-
    
     睛的两个芳香氢(H-3,H-6)可以被两个六元环状胺(派促,吗琳,硫吗附)
     置换。
     4.设计合成了个(二甲氨基一乙基一氨基N一烯丙基一,8尊酷亚胺可聚合荧光单体,并
     与甲基丙烯酸甲酯、苯乙烯共聚,制备了 polypoMA-CO-flllofophorC)和
     Poly(STc-luorophore)固体薄膜。Poly(MMA-co-luorophore)固体薄膜只对过渡
     金属离子表现出较强的荧光增加,对氢质子则不敏感,而Poly侣Tco刁uorophore)
     固体薄膜对氢质子表现出较强的荧光增加,而对过度金属离子则表现出荧光淬
     灭。
     5.设计合成了 3一硝基一危酿和 3一硝基一案二隋新型 DNA切断剂,初步研究表明它们
     具有较好的DNA切断性能。
During the investigation for this dissertation, 56 new compounds had been synthesized and identified via NMR, IR, ESI-MS and UV-Vis, etc..
    1. Novel 4-amino-l,8-dicyanonaphthalene (ADCN) fluorophore had been designed, and its fluorescent derivatives had been synthesized via two general procedures. The spectra studies investigated that these compounds have high fluorescence quantum yields.
    2. The "peri-effect promoted TICT" was suggested as a novel concept for the design of highly sensitive fluorescent probe for media polarity, based on which some 4-bissubstitutedamino-l,8-dicyanonaphthalenes had been designed; The novel "TICT promoted PET" mechanism had been suggested as novel concept for the design of highly sensitive probe for transition metal ions; Based on it and with the aid of theoretical computation, 4-(N/-methyl-)piperazino-l,8-dicyano- dicyanonaphthalene had been designed, which exhibited strongly fluorescence enhancements induced by Fe3+ and Cr3+; The ADCN derivatives with thioether substiutents had been designed and synthesized as PET fluorescent probes free of protonization, but they failed to show PET properties; Quaternary ammonium and quaternary iminonium ADCN derivatives had been designed and synthesized as water-soluble cation-type fluorescent probes, they exhibited good water-solubility.
    3. Under the catalysis of bases, the product of twice Knoevenagel condensation of acenaphthalenequinone and malononitrile had undergone further O2-oxidative SNArH reaction with the hydroxy ion released by the condensation, and resulted in dark-blue substitution product; Base catalyzed reactions between 5-X(-OCH3, -Br, -NO2)-acenaphthalenequinone and malononitrile led to ipso- and tele- substitutions; Under the catalysis of silica gel, and with a continuous flow method, the Knoevenagel condensation between acenaphthalenequinone and malononitrile gave the product l-biscyanomethylene-2-oxo-acenaphthalene with high yield; The 8-Oxo-8H-acenaphtho[l,2-b]pyrrol-9-carbonitrile had been obtained in quantitative yileld
    
    
    
    via base-induced intramolecular cyclization of 1-biscyanomethylene -2-oxo-acenaphthalene under anhydrous conditions; under aqueous conditions the disproportionate of l-biscyanomethylene-2-oxo-acenaphthalene had been observed, which indicated the Knoevenagel condensation might be a reversible reaction; via the O2-oxidative SnAr" reaction of 8-Oxo-8//-acenaphtho[l,2-b]pyrrol-9-carbonitrile and hydroxy ion and primary amines, novel compounds with very strong fluorescence of long wavelength had been obtained; It was also found double-substitutions occurred on position-3 and position-6 of this precursor if the nucleophiles were six-member cyclic amines such as piperidine and morphorline.
    4. 4-(dimethylamino-ethylene)amino-N-allyl-l, 8-naphthalimide had been designed and synthesized as polymerizable fluorescent monomer; Its co-polymerizations with methyl methacrylate (MMA) and Styrene (ST) led to two PET fluorescent polymer probes; The Poly(MMA-co-fluorophore) exhibited considerable fluorescence enhancement toward transition metal ions, and non-sensitivity toward proton; The Poly(ST-co-fluorophore) exhibited considerable fluorescence enhancement toward proton, and fluorescence decrease toward transition metal ions.
    5. 3-nitro-acenaphthalenequinone and 3-nitro-l, 8-dicyanonaphthalene were designed and synthesized as novel photo-sensitive DNA cleavage agents; The tentative investigation investigated that the two compounds have good DNA cleavage ability.
引文
[1] R. P. Haugland. Handbook of fluorescent probes and research chemicals. Sixth edition. Eugene,Oregon, USA: Molecular Probe Inc.,1996.
    [2] N. J. Emptage,. Fluorescent imaging in living systems. Current opinion in Pharmacology 2001, 1(5): 521-525
    [3] G. Bork, P. Steinlein, L. A. Huber. Cell biologists sort things out: analysis and purification ofintracellular organells by flow cytometry. Trends in Cell Biol., 1997, 7: 499-503
    [4] J. Szllosi, P. Nagy, Z. Sebestyén, S. Damjanovich. Applications of fluorescence resonance energy transfer for mapping biological membranes. Rev. Molecular Biotech., 2002, 82(3): 251-266
    [5] J. -M. Lehn. Perspectives in supramolecular chemistry-from molecule recognition towards molecular information processing and self-organization. Angew. Chem. Int. Ed. Engl., 1990, 29:1304-1319
    [6] K. Kils, A. N. Macpherson, T. Gillbro, J. Mrtensson. Control of electron transfer in supramolecular systems Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2001, 57 (11): 2213-2227
    [7] H. Xu, X. Li, H. Jiang, Q. Zhou. Effect of host-guest interactions on the photophysical properties of a monocrown ether substituted phthalocyanine Materials Science and Engineering: C, 1999,10(1-2):71-74
    [8] G. Das,; P. K. Bharadwaj, M. B Roy, S. Ghosh. Transition metal cryptate--enhanced fluorescence in a trianthroyl cryptand: effect of spacer on the photoinduced electron transfer process. J. Photochem. Photobiol. A: Chem. 2000, 135 (1): 7-11
    [9] M Sirish, B. G Maiya. Fluorescence studies on a supramolecular porphyrin bearing anthracene donor moieties. J. Photochem. Photobiol. A: Chem. 1995, 85(1-2): 127-135.
    [10] R. Purrello, S. Gurrieri, R. Lauceri. Porphyrin assemblies as chemical sensors. Coordin. Chem. Rev., 1999, 190, 683-706
    [11] A. P. de Silva, D. B. Fox, T. S. Moody, S. M. Weir. The development of Molecular fluorescent switches. Trends in biotech. 2001, 19(1):29-34
    [12] B. Bergonzi, L. Fabbrizzi, M. Licchelli, C. Mangano. Molecular switches of fluorescence operating through metal centred redox couples. Coordin. Chem. Rev., 1998, 170: 31-46
    [13] 马立人,蒋中华.生物芯片.第一版.北京:化学工业出版社,2000年.pp16-36
    [14] A. P. de Silva, H. Q. N. Gunatatne, T. Gunnlauggson, A. J. M. Huxley, C. P. McCoy, J. T. Radmancher, T. E. Rice. Signaling Recognition events with fluorescent sensors and switches. Chem. Rev. 1997, 97:1515~1566
    [15] A. P. de Silva, H. Q. N. Gunaratne, P. L. M. Lynch, A. J. Patty, G. L. Spence. Luminescence and charge transfer. Part 3. The use of chromophores with ICT(intramolecular charge transfer) excited states in the construction of fluorescent PET (photoinduced electron transfer) pH sensors and related absorption pH sensors with
    
    aminoalkyl side chains. J. Chem. Soc. Perkintrans. 2, 1993: 1611-1616
    [16] X. Qian, Z. Zhu, K. Chen. The synthesis, application and prediction of stocks shift in fluorescent dyes derived from 1,8-naphthalic anhydride. Dyes Pigm. 1989, 11: 13-20
    [17] M. E. Huston, K. W. Haider, A. W. Czarnik. Chelation-Enhanced Fluorescence in 9,10-bis(TMEEDA)anthracene. J. Am. Chem. Soc., 1988, 110: 4460-4462
    [18] B. Ramachandram, A. Samanta. How important is the quenching influence of the transition metal ions in the design of fluorescent PET sensors? Chem. Phys. Lett., 1998, 290:9-16
    [19] K. Tanaka, T. Miura, N. Uimezawa, Y. Urano, K. Kikuchi, T. Higuchi, T. Nagano. Rational design of fluorescein-based fluorescence probes. Mechanism-based design of maximum fluorescence probe for singlet oxygen. J. Am. Chem. Soc., 2001, 123: 2530-2536
    [20] F. Cosnard, V. Wintgens. A new fluoroionophore derived from 4-amino-N-methyl-1,8-naphthalimide. Tetrahedron Lett., 1998, 39: 2751-2754
    [21] Z. Diwu, C. Chen, C. Zhang, D. H. Klaubert, R. P. Haugland. Anovel acidotropic pH indicator and its potential application in labeling acidic organelles of live cell. Chem. Biol. 1999, 6(7): 411-418
    [22] M. Kolimannsberger, K. Rurack, U. Resch-Genger, J. Daub. Ultrafast charge transfer in amino-substituted boron dipyrromethene dyes and its inhibition by cation complexation: a new design concept for highly sensitive fluorescent probes. J. Phys. Chem. A, 1998, 102: 10211-10220
    [23] Z. R. Grabowski, J. Dobkowski. Twisted intramolecular charge transfer (TICT) excited states: energy and molecular structure. PureAppl. Chem. 1983, 55(2): 245-252
    [24] W. Rettig. Charge seperation in excited states of decoupled system—TICT compounds and implications regarding the development of new laser dyes and the primary processes of vision and photosynthesis. Angew. Chem. Int. Ed. Engl., 1986, 25:971-988
    [25] A. Nag, T. Charkrabarty, K. Bhattacharyya. Effect of γ-cyclodextrin on the intramolecular charge transfer processes in aminocoumarinlaser dyes. J. Phys. Chem., 1990, 94, 4203-4206
    [26] N. Sarkar, K. Das, D. N. Nath, K. Bhattacharyya. Twisted charge transfer process of Nile red in homogeneous solution and in Faujasite zeolite. Langmuir, 1994, 10: 326-329
    [27] K. G. Casey, E. L. Quitevis. Effect of solvent polarity on nonradiative processes in Xanthene dyes: Rhodamine B in normal alcohols. J. Phys. Chem., 1988, 92:6590-6594
    [28] 樊美公.光化学基本原理与光子学材料科学.第一版.北京:科学出版社,2001年,pp332-333
    [29] F. M. Winnik. Photophysics of preassociated pyrenes in aqueous polymer solution and in other organized media. Chem. Rev., 1993, 93:587-614
    [30] I. Aoki, Y. Kawahara, T. Sakaki, T. Harada, S. Shinkai. Molecular design of a new fluorescent Barbiturate receptor. Sensitive detection of Barbiturate through solvent
    
    extraction. Bull. Chem. Soc. Jpn., 1993, 927-933
    [31] J. A. Sclafani, M. T. Maranto, T. M. Sisk, S. A. Van Arman. An aqueous ratiometric fluorescence probe for Zn(Ⅱ). Tetrahedron Lett., 1996, 37(13): 2193-2196
    [32] Y. Kakizawa, T. Akita, H. Nakamura. Syntheses and complexing behavior of new fluorescent reagents for alkaline earth metal ions. Chem. Lett. 1993: 1671-1674
    [33] S. Speiser. Photophysics and mechanisms of intramolecular electron energy transfer in bichromophoric molecular systems: solution and supersonic jet studies. Chem. Rev., 1996, 96: 1953-1976
    [34] 魏亦男,李元宗,常文宝,慈云祥.荧光共振能量转移技术在生物分析中的应用.分析化学,1996,26:477-484
    [35] B. Valeur, J. Pouget, J. Bourson, M. Kaschke, N. P. Ernsting. Tuning of photoinduced energy transfer in bichromophoric coumarin superamolecule by cation binding. J. Phys. Chem., 1992, 96: 6545-6549
    [36] D. A. Pearce, G. K. Walkup, B. Imperiali. Peptidyl chemosensors incorporating a FRET mechanism for detection of Ni(Ⅱ). Bioorg. Med. Chem. Lett., 1998, 8: 1963-1968
    [37] D. A. Johnson, V. L. Leathers, A. -M. Martinez, D. A. Walsh, W. H. Fletcher. Fluorescence resonance energy transfer within a heterochromoatic cAMP-dependent protein kinase holoenzyme under equilibrium conditions: new insight into the conformational changes that result in cAMP activation. Biochem., 1993, 93:587-614
    [38] S. Tyagi, F. R. Kramer. Molecular beacons: probes that fluorescence upon hybridization. Nat. Biotechnol., 1996, 14: 303-308
    [39] J. H. Hartley, T. D. James, C. J. Ward. Synthetic receptors. J. Chem. Soc. Perking Trans. 1, 2000, 3155-3184
    [40] D. J. Cram. The design of molecular hosts, guests, and their complexes. Angew. Chem. Int. Ed. Engl., 1988, 27(8): 1009-1020
    [41] 陆国元.有机底物的分子识别.化学通报,1995,(11):21-24
    [42] A. Ueno. Review: fluorescent cyclodextrins for molecule sensing. Supramolecular Science, 1996, 3(1-3): 31-36
    [43] K. Rurack, M. Kollmannsberger, U. Resch-Genger, J. Daub. A selective and sensitive fluoroionophore and receptor units. J. Am. Chem. Soc., 2000, 122:968-969
    [44] K. Rurack, J. L. Bricks, B. Schulz, M. Maus, G. Reck, U. Resch-Genger. J. Phys. Chem. A, 2000, 104: 6171-6188
    [45] B. Dietrich, M. W. Hosseini, J. M. Hosseini, J. M. Lehn, R. B. Sessions. Anion receptor molecules. Synthesis and anion-binding properties of polyammonium macrocycles. J. Am. Chem. Soc., 1981, 103:1282-1283
    [46] M. W. Hosseini, J. M. Lehn. Anion receptor molecules. Chain length dependent selective binding of organic and bioorganic dicarboxylate anions by ditipic polyammonium Marcrocycles. J. Am. Chem. Soc., 1982, 104:3525-3527
    [47] I. Tabushi, N. Shimizu, T. Sugimoto, M. Shiozuka, K. Yamamura. Cyclodextrin flexibly capped with metal ion. J. Am. Chem. Soc., 1977, 99:7100-7102
    
    
    [48] 何卫江,陆国元,胡宏纹,J.de Mendoza,P,Prados.含手性双环胍的氨基酸受体合成.高等学校化学学报,1997,18(11):1800-1803
    [49] 李楠,王凤翔,周春喜.荧光探针应用技术.第一版.北京:军事医学科学出版社.1998年,pp13-27
    [50] L. Fabbrizzi, M. Licchelli, P. Pallavicini, D. Sacchi, A. Taglietti. Sensing of transition metals through fluorescence quenching or enhancement. A review. Analyst, 1996, 121: 1763-1768
    [51] M. M. Martin Hydrogen bond effects on radiationless electronic transitions in xanthene dyes. Chem. Phys. Lett., 1975, 35:105-111
    [52] R. F. Kubin, A. N. Fletcher. Fluorescence quantum yields of some rhodamine dyes. J. Luminescence, 1982, 27: 455-462
    [53] 高志宇,刘燕刚,陈妍.生物荧光标记菁染料研究进展.影像技术,2001,(2):10-16
    [54] J. Karolin, L. B. -A. Johansson, L. Strandberg, T. Ny. Fluorescence and absorption spectroscpic properties of dipyrrometheneboron difluoride (BODIPY) derivatives in liquid, lipid membranes and proteins. J. Am. Chem. Soc., 1994, 116: 7801-7806
    [55] J. Chen, A. Burghart, A. Derecskei-Kovacs, K. Burgess. 4,4-Difluoro4-bora-3a,3a-diaza-s-indacene (BODIPY) dyes modified for extended conjugation and restricted bond rotation. J. Org. Chem., 2000, 65:2900-2906
    [56] A. Treibs, F. -H. Kreuzer. Difluorboryl-Komplexe yon Di- und Tripyrrylmethen. Liebigs Ann. Chem., 1968, 718:208-223
    [57] R. P. Haugland. Handbook of fluorescent probes and research chemicals. Sixth edition. Eugene, Oregon, USA: Molecular Probe Inc., 1996. Pp13-17
    [58] 赵同丰,赵德丰,于华云,程稆柏.1,8-萘酰亚胺荧光材料的进展.染料工业,1997,34 (1):8-15
    [59] Z. Tao, X. Qian. Naphthalimide hydroperoxides as photonucleases: substituent effects and structural basis. Dyes Pigm., 1999, 43(2): 139-145
    [60] W. W. Stewart. Lucifer dyes-fluorescent dyes for biological tracing. Nature, 1981, 292(2):17-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700