新型咔唑基席夫碱衍生物的合成及离子识别性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着化学传感器的迅速发展,荧光探针研究在化学、生物、医学和环境等诸多领域受到了人们越来越多的关注,成为目前的一大研究热点。金属离子是化学、环境科学、生命科学和医学等诸多学科领域的研究对象,因此溶液中金属离子的识别和检测也成为了分析化学研究的热点问题。荧光分子/离子探针技术因具有选择性好、灵敏度高、简单快速且不需要借助昂贵仪器的优点而被广泛地应用于各种金属离子的检测。利用荧光强度与离子浓度的关系可以对离子进行定量或定性的分析,方便、快捷且具有较高的选择性和灵敏性,非常适用于重金属离子的实时或原位检测。本文基于C=N异构化和激发态分子内质子转移机理,设计合成了六种席夫碱化合物L1-L6,并利用紫外-吸收光谱法和荧光光谱法研究了他们对金属离子的选择性识别性能。
     作为多功能荧光传感器,新型咔唑-席夫碱L1被设计、合成和表征。通过紫外吸收光谱法和荧光光谱法,L1都能选择性识别Fe3+离子和Cu2+离子。利用Job曲线法测得L1与Fe3+离子和Cu2+离子的络合比分别是2:1和1:1。L1与Fe3+离子和Cu2+离子的检出限分别是4.23×10-6M和5.67x10-6M。加入Fe3+/Cu2+离子后,L1的荧光增强,其可归因于C=N异构化和ESIPT。同时L1跟其他离子的相互作用也被研究,其紫外和荧光光谱并没有明显的变化。因此L1是一种高选择性和高灵敏性的新型Fe3+/Cu2+离子化学传感器。
     L2分子是咔唑基团与4-氨基安替比林缩合的产物,它与Cr3+和Cu2+离子结合后溶液由无色分别变为黄色和淡黄色,便于可视检测,是一种检测Cr3+和Cu2+离子的比色探针。同时,L2中加入Cr3+和Cu2+离子后其紫外吸收发生明显蓝移,其与Cr3+离子和Cu2+离子的结合常数Ka分别为2.20x104M-1和1.75x104M-1;结合比分别为1:1和2:1;检测下限分别为logClim为-5.54M-1和-5.56M-1,即Clim分别为2.86x10-6M和2.75x10-6M。
     将噻吩引入到咔唑母体上,设计合成了L3和L4。探针L3分子是咔唑-噻吩基团与4-硝基-2-羟基苯胺缩合反应得到的产物,加入Fe3+离子后,313nm处出现新的吸收峰,溶液由黄绿色变为无色,肉眼即可观察出,因此L3可以作为裸眼识别Fe3+离子的比色探针,与Fe3+离子的结合常数K。为4.21×104M-1,对Fe3+离子的检测限为6.16x10-7M。荧光光谱研究显示:加入Fe3+后L3的荧光峰强度增加了13倍;加入Cr3+后荧光增强11倍。因而L3可作为Fe3+和Cr3+离子荧光探针,其与Fe3+和Cr3+离子的结合常数Ka分别为4.67x104M-1和5.97x104M-1,结合比都为2:1,检测限分别为3.74x10-6M和2.56x10-6M。L4分子是比L3分子少一个羟基的噻吩类席夫碱。对其进行紫外吸收光谱研究和荧光发射光谱研究,结果显示L4对金属离子没有选择性识别,表明羟基是与金属离子配位的结合位点。
     将水杨醛基团引入咔唑母体合成了席夫碱探针L5和L6,在结构上L5比L6少一个硝基。L5在乙腈溶液中选择性识别Fe3+离子,加入Fe3+离子后,其紫外吸收在432nm处出现一个新的吸收峰,检测限为9.21×10-7M,络合比为1:1。在(乙腈/水=3/1)混合溶剂中,Fe3+/Cr3+离子对L5具有明显的荧光增强响应,其检出限分别为8.16x10-7mol/L和1.15×10-6mol/L,络合比分别为1:1和2:1,结合常数Ka分别为3.21×104M-1和2.21×104M-1。经荧光光谱法研究发现,L6可作为选择性识别Cu2+/Cr3+离子的比率荧光探针,结合常数Ka分别为1.53x106M-1和5.37x105M-1,络合比都为2:1,且识别过程是可逆的,其检出限分别为2.01×10-7M和2.440x10-7M。
With the rapid development of chemosensors, the study on fluorescent probes has become one of the hottest research fields including chemistry, biology, medical science, and environment, and drew more and more attention of people in recent years. The analysis and detection of metal ions are important for its implications in such fields:chemistry, biology, medicine and environment. There are lots of advantages for fluorescence chemosensors such as high selectivity, sensitivity, simplicity and without resorting to any expensive instruments, which was successfully applied in the detection of many metal ions in aqueous solution. Using the relationship between the fluorescence property and the ions concentration, fluorescent probes is fit for the heavy metal detection in real time or in situ for its characteristics of convenience, shortcut, high sensitivity and selectivity. Based on the principle of C=N isomerization and the obstructed excited state intramolecular proton transfer (ESIPT), six compounds L1-L6were designed and synthesized. By using UV-vis and fluorescence spectrometry methods, we studied their selectively recognition for the metal ions.
     A new carbazole-based Schiff-base fluorescent chemosensor (L1) was designed, synthesized by condensation reaction between2-amino-4-nitrophenol and3-formyl-9H-hexylcarbazole, which can selectively recognized Fe3+and Cu2+ions over a number of other metal ions. Compound L1could detect Fe3+and Cu2+by UV-Vis and fluorescence spectrometry method. The stoichiometry ratio of L1-Fe3+and L1-Cu2+determined by the method of Job's plot are2:1and1:1, respectively. Moreover, the detection limits were calculated to be4.23×10-6mol/L for Fe3+ion and5.67×10-6mol/L for Cu2+ion. In the presence of Fe3+/Cu2+ions, the fluorescence enhancement was attributed to the inhibited C=N isomerization and the obstructed excited state intramolecular proton transfer (ESIPT) of compound L1. At the same time, the interactions of compounds L1with other ions were also investigated and no obvious changes of UV-vis absorption and fluorescence were observed. Thus a new kind of chemosensor with high sensitivity and selectivity for Fe3+/Cu2+detection was introduced.
     The compound L2was synthesized by condensation of4-amino antipyrine with3-formyl-9H-hexylcarbazole. When it bonds Cr3+and Cu2+ions, the color of L2in CH3CN solution alters from colorless to yellow and light yellow, respectively. L2can be used as colorimetric probe for Cr3+and Cu2+ions recognization by simple visual inspection. Addition of Cr3+/Cu2+ions to solution, the UV-vis absorption band occur obvious blue shift. The Ka of L1-Cr3+and L1-Cu2+are2.20×104M-1and1.75×104M-1, respectively. The stoichiometry ratio of L1-Cr3+and L1-Cu2+calculated by the Job's plot method are2:1and1:1, respectively. The calculated detection limits are2.86×10-6M for Cr3+ion and2.75×10-6M for Cu2+ion.
     L3and L4were designed by introduced thiophene to the carbazole group. Compound L3was synthesized by condensation of2-amino-4-nitro phenol with3-thienyl-hexylcarbazole. Addition of Fe3+ion to L3solution, there is a new UV-vis absorbance band at313nm and the solution color changes from yellowish green to colorless. So L3can be used as colorimetric probe for Fe3+ion recognization observed by unaided eye. The Kais4.21×104M-1and the detection limit is6.16×10-7M. The experiment results show that the intensity of fluorescence peak enhanced13-fold and11-fold with addition of Fe3+/Cr3+ions, respectively. Thus L3could be used as fluorescence probe for detection of Fe3+/Cr3+ions. The Ka of L3-Fe3+and L3-Cr3+are4.67×104M-1and5.97×104M-1, respectively. Both the stoichiometry ratio of L3-Fe3+and L3-Cr3+are2:1. The detection limits are calculated to be3.74×10-6M for Fe3+ion and2.56x10-6M for Cr3+ion. L4was a Schiff base without-OH group comparing with L3. It could not selectively detect metal ions by UV-Vis and fluorescence spectroscopy method. The results show that the phenolic hydroxy is one important bond site of compound for binding to metal ions.
     The L5and L6were synthesized by introducing salicylaldehyde to the carbazole group and L5had no-NO2group on salicylaldehyde comparing with L6. In CH3CN solution, L5could selectively recognize for Fe3+ion. Addition of Fe3+ion, a new UV-vis absorbance peak located at432nm. The calculated detection limit is9.21×10-7M and the stoichiometry ratio of L5-Fe+is1:1. In the mixed solvent of acetonitrile and water (volume ratio=3:1), the fluorescence intensity enhancement is observed for reaction of L5and Fe3+/Cr3+ion. The detection limits are8.16×10-7M for Fe3+ion and1.15×10-6M for Cr3+ion. The stoichiometry ratio and the Ka of L5-Fe3+/L5-Cr3+are1:1/2:1and4.67x104M-1/5.97×104M-1, respectively. By fluorescence spectrometry studies, we found L6could be used as a ratio fluorescent probe for Cu2+/Cr3+ions detection in CH3CN solution. The Ka of L6-Cu2+and L6-Cr3+are1.53x106M-1and5.37×105M-1, respectively. Both the stoichiometry ratio of L6-Cu2+and L6-Cr3+are2:1. Moreover, the reaction of L6bonding to Cu2+/Cr3+ions is reversible and the detection limits are2.01x10-7M for Cu2+ion and2.440×10-7M for Cr3+ion.
引文
[1]Galbraith E, James T-D. Boron based anion receptors as sensors [J]. Chem. Soc. Rev., 2010,39(10):3831~3842
    [2]Zou Q, Jin J-Y, Xu B, D L, T H. New photochromic chemosensors for Hg2+ and F-[J]. Tetrahedron lett., 2011,67(5):915~921
    [3]Bera R-K, Das A-K, Raj C-R. Enzyme-Cofactor-Assisted Photochemical Synthesis of Ag Nanostructures and Shape-Dependent Optical Sensing of Hg (Ⅱ) Ions [J]. Chem Mater, 2010,22(15):4505-4511
    [4]Vasimalai N, John S-A. Ultrasensitive and selective spectrofluorimetric determination of Hg(Ⅱ)using a dimercaptothiadiazole fluorophore[J]. J. Lumin.,2011,131(12):2636~ 2641
    [5]Liu X-C, Yang X, Fu Y, Zhu C-J, Cheng Y-X. Novel fluorescent sensor for Ag+ and Hg2+ based on the BINOL-pyrene derivative via click reaction [J]. Tetrahedron.,2011, 67(18):3181~3186
    [6]Ooyama Y, Shimada Y, Inoue S, Nagano T. Fojikawa Y, Komaguchi K, Imae I, Harima Y. New molecular design of donor-pi-acceptor dyes for dye-sensitized solar cells:control of molecular orientation and arrangement on TiO2 surface [J]. New. J. Chem.,2011, 35(1):111~118
    [7]Xu D-F, Liu X-L, Lu R, Xue P-C, Zhang X-F, Zhou H-P, Jia J-H. et al. New dendritic gelator bearing carbazole in each branching unit: selected response to fluoride ion in gel phase [J]. Org. Biomol. Chem.,2011,9(5):1523~1528
    [8]Misr A, Shahid M, Srivastava P, Dwivedi P. Fluorescent chemosensor: recognition of metal ions in aqueous medium by fluorescence quenching [J]. J. Incl. Phenom. Macrocycl. Chem.,2011,69(1-2):119-129
    [9]Willam R L, Brand L. Analysis of two-state excited-state reactions: The fluorescence decay of 2-naphthol [J]. J. Phy. Chem.,1979,8397:795~802
    [10]Mordon S, Devoisselle J-M, Soulie S. Fluorescence spectroscopy of pH in vivo using a dual-emission fluorophore (C-SNAFL-1)[J]. J. Photoch. Photobio. B.,1995,28(1):19~ 23
    [11]Kim S, Seo J, Jung H-K, et al. White luminescence from polymer thin films containing excited-state intramolecular proton-transfer dyes [J]. Adv. Mater., 2005.17(17):2077~ 2082
    [12]Chira R Bhattacharjee, Pankaj Goswami, Harun A R Pramanik, et al. Reactivity of tris(acetylacetonato) iron(Ⅲ) with tridentate [ONO] donor Schiff base as an access to newer mixed-ligand iron(Ⅲ) complexes[J]. Spectrochim. Acta. Part A,2011,78(5): 1408~1415
    [13]Ressalan S, Iyer C. Absorption and fluorescence spectroscopy of 3-hydroxy-3-phenyl-l-o-carboxyphenyltriazene and its copper (Ⅱ), nickel (Ⅱ) and zinc (Ⅱ) complexes:a novel fluorescence sensor [J]. J. Lumin.,2005,111(3):121~129
    [14]Wu Y-K, Peng X-J, Fan J-L, et al. Fluorescence sensing of anions based on Inhibition of Excited-state intramolecular Proton Transfer [J]. J. Org. Chem.,2007,72(1):62~70
    [15]De Silva A P, Hu Q-N, Gunnlauggson T, et al. Signaling Recognition Events with Fluorescent Sensors and Switches [J]. Chem. Rev.,1997,97():1515~1566
    [16]Azab H-A, El-Korashy S-A, Anwar Z-M, etal. Synthesis and fluorescence properties of Eu-anthracene-9-carboxylic acid towards N-acetyl amino acids and nucleotides in different solvents[J]. Spectrochim. Acta. Part A,2010,75(1):21-27
    [17]Pina J, Seixas de M J, Batista R M F, Costa S P G, Raposo M M M. Synthesis and Characterization of the Ground and Excited States of Tripodal-like Oligothienyl-imidazoles [J]. J. Phys. Chem. B,2010,114(15):4964-4972
    [18]Goldsmith C R, Lippard S J.6-methylpyridyl for pyridyl substitution tunes the properties of fluorescent zinc sensors of the zinpyr family [J]. Inorg. Chem.,2006,45(2):555~561
    [19]Esteves C I C, Raposo M M M, Costa S P G, Synthesis and evaluation of benzothiazolyl and benzimidazolyl asparagines as amino acid based selective fluorimetric chemosensors for Cu2+[J]. Tetrahedron,2010,66 (38):7479-7486
    [20]Ma L-J, Li Y, Li L, etal. A protein-supported fluorescent reagent for the highly-sensitive and selective detection of mercury ions in aqueous solution and live cells [J]. Chem. Commun., 2008, (47):6345~6347.
    [21]Saowapak K, Ornchuree S-K, Vithaya R. Cation recognition of thiacalix[2]thianthrene and p-tert-butylthiacalix[2]thianthrene and their conformers and complexes with Zn(Ⅱ), Cd(Ⅱ) and Hg(II):a theoretical investigation [J]. J. Mol. Model.,2010,16(2):243-253
    [22]Bao X-P, Zhou Y-H, Yu J-H. N-Salicyloyltryptamine:An efficient fluorescent turn-on chemosensor for F- and AcO- based on an increase in the rigidity of the receptor[J]. J. Lumin., 2010,130(3):392~398
    [23]Li J-W, Lin H, Cai Z-S, etal. A novel coumarin-based switching-on fluorescent and colorimetric sensor for F-[J]. J. Lumin.,2009,129(5):501-505
    [241刘阁,邵杰.基于吡咯希夫碱衍生物的荧光比色阴离子探针[J].化学学报,2011,69(9):1070-1074
    [25]Gale P-A. Anion receptor chemistry: highlights from 2008 and 2009[J]. Chem. Soc. Rev., 2010,39(10):3746~3771
    [26]Chen X, Baek K-H, Kim Y, et al. A selenolactone-based fluorescent chemodosimeter to monitor mecury/methylmercury species in vitro and in vivo [J]. Tetrahedron left,2010, 66(23):4016~4021
    [27]He Q-W, Miller E-W, Wong A-P, Chang C-J. A selective fluorescent sensor for detecting lead in living cells [J]. J. Am. Chem. Soc.,2006,128(29):9316~9317
    [28]Li H-L, Fan J-L, Du J-J, Guo K-X, Sun S-G, Liu X-J, Peng X-J. A fluorescent and colorimetric probe specific for palladium detection [J]. Chem. Commun., 2010, 46(7):1079~1081
    [29]Kwon J-Y, Jang J, Lee Y-J, Kim K-M, Seo M-S, Nam W, Yoon J. A highly selective fluorescent chemosensor for Pb2+[J]. J. Am. Chem. Soc., 2005,127(28):10107~ 10111
    [30]Prodi L, Montalti M, Zaccheroni N. Characterization of 5-chloro-8-methoxyquinoline appended diaza-18-crown-6 as a chemosensor for cadmium [J]. Tetrahedron Lett.,2001, 42(16):2941-2944
    [31]Mahapatra A-K, Roy J, Sahoo P. Fluorescent carbazolyldithiane as a highly selective chemodosimeter via protection/deprotection functional groups: a ratiometric fluorescent probe for Cd(Ⅱ)[J]. Tetrahedron Lett,2011,52(23):2965-2968
    [32]Xu Z-C, Qian X-H, Cui J-N. Colorimetric and ratiometric fluorescent chemosensor with a large red-shift in emission:Cu (Ⅱ)-only sensing by deprotonation of secondary amines as receptor conjugated to naphthalimide fluorophore [J]. Org. Lett., 2005,7(14):3029~ 3032
    [33]Xu Z-C, XiaoY, Qian X-H, Cui J-N, Cui D-W. Ratiometric and selective fluorescent sensor for Cu-Ⅱ based on internal charge transfer (ICT)[J]. Org. Lett.,2005,7(5):889~892
    [34]Tang L-J, Li F-F, Liu M-H, Nandhakumar R. Single sensor for two metal ions:Colorimetric recognition of Cu2+ and fluorescent recognition of Hg2+[J]. Spectrochim. Acta. Part A, 2011,78(3):1168-1172
    [35]Wang N-J, Sun C-M, Chung W-S. A specific and ratiometric chemosensor for Hg2+ based on triazole coupled ortho-methoxyphenylazocalix[4]arene [J]. Tetrahedron lett,2011, 67(42):8131~8139
    [36]Guo D-C, Wu P-L, Tan H, etal. Synthesis and luminescence properties of novel 4-(N-carbazole methyl) benzoyl hydrazone Schiff bases [J]. J. Lumin.,2011, 131(7):1272~1276
    [37]Shunmugam R, Gabriel G-J, Smith C-E, Aamer K-A, Tew G-N. A highly selective colorimetric aqueous sensor for mercury [J]. Chem-Eur. J.,2008,14(13):3904~3907
    [38]MisraA, Shahid M. Chromo and Fluorogenic Properties of Some Azo-Phenol Derivatives and Recognition of Hg2+ Ion in Aqueous Medium by Enhanced Fluorescence [J]. J. Phys. Chem. C.,2010,114(39):16726~16739
    [39]Popov L-D, Tupolova Y-P, Levehenkov S-I, et al. Magnetic properties of copper(Ⅱ) complexeswith somehydrazones of substituted salicylaldehydes[J]. Russ. J. Coord. Chem., 2007,33(3):208~212
    [40]Martinez R, Zapata F, Caballero A, Espinosa A, Tarraga A, Molina P.2-aza-1,3-butadiene derivatives featuring an anthracene or pyrene unit: Highly selective colorimetric and fluorescent signaling of Cu2+ cation [J]. Org. Lett.,2006,8(15):3235~3238
    [41]张小林,章微华,欧阳红霞,翁惠萍.新型荧光试剂5-(4-溴苯偶氮)-8-(8-喹啉重氮氨基)喹啉的合成及其分析应用[J].化学试剂,2010,32(1):55~58
    [42]韩巧荣,江玉亮,王炳祥.N-乙基咔唑席夫碱EDA-NECD的合成及其对Cu2+的识别研究[J].功能材料,2011,42(9):1588~1590
    [43]Komatsu K, Kikuchi K, Kojima H, Urano Y, Nagano T. J. Am. Chem. Soc.,2005, 127:10197~10204
    [44]Shi H-B, Ji S-J, Bian B. Studies on transition metal ions recognition properties of l-(2-benzothiazole)-3-(2-thiophene)-2-pyrazoline derivatives [J]. Dyes and Pigments, 2007,73(3):394~396
    [45]赫奕,李艳梅.咔唑衍生物的合成及其对Zn2+和Cu2+的选择性荧光淬灭[J].东北师大学报(自然科学版),2011,43(3):89-92.
    [46]方晴,曾和平,张卫民,张培全.二{2-{2-{9-乙基-6-[2-(8-羟基喹啉-2-基)乙烯基]咔唑-3-基)乙烯基}-8-羟基喹啉}锌配合物的合成与荧光光谱特性[J].有机化学,2008,5(28):814-818
    [47]张灯青.镁离子荧光探针[J].化学进展,2009,4(21):715~722
    [48]Kim H-M, Yang P-R, Cho B-R, Seo M-S, Yi J-S, Hong J-H, Jeon S-J, Ko Y-G, Lee K-J, et al. Magnesium ion selective two-photon fluorescent probe based on a benzo[h] chromene derivative for in vivo imaging [J]. J. Org. Chem.,2007,72(6):2088-2096
    [49]李娜,向宇,童爱军.一种新型高选择性检测镁离子的荧光增强型探针[J].环境化学,2011,30(1):357-361
    [50]Park E-J, Brasuel M, Behrend C, Philbert M-A, Kopelman R, et al. Ratiometric Optical PEBBLE Nanosensors for Real-Time Magnesium Ion Concentrations Inside Viable Cells[J]. Anal. Chem.,2003,75(15):3784-3791
    [51]Ray D, Bharadwaj P-K. A coumarin-derived fluorescence probe selective for magnesium [J]. Inorg. Chem.,2008,47(7):2252~2254
    [52]Suzuki Y, Komatsu H, Ikeda T, Saito N, Araki S, Citterio D, Hisamoto H, Kitamura Y, Kubota T, Nakagawa J, Oka K, Suzuki K, et al. Design and Synthesis of Mg2+ -Selective Fluoroionophores Based on a Coumarin Derivative and Application for Mg2+ Measurement in a Living Cell[J]. Anal. Chem.,2002,74(6):1423~1428
    [53]张飞飞,周成合,颜建平.咔唑类化合物研究新进展[J].有机化学,2010,30(6):783-796
    [54]Chung C-C, Yi W-J, Wei C-C, et al. A Fluorescent Carbazole Derivative: High Sensitivity for Quadruplex DNA[J]. Anal. Chem.,2003,75(22):6177-6183
    [55]Thomas K R J, Lin J-T, Tao Y-T, Chuen C-H, et al. New carbazole-oxadiazole dyads for electroluminescent devices: influence of acceptor substituents on luminescent and thermal properties [J]. Chem. Mater., 2004,16(25):5437~5444
    [56]Itoigawa M, Kashiwada Y, Ito C, et al. Antitumor Agents.203. Carbazole Alkaloid Murrayaquinone A and Related Synthetic Carbazolequinones as Cytotoxic Agents [J]. J. Nat. Prod.,2000,63(7):893~897
    [57]Han F, Chi L-N, Liang X-F, Ji S-M, Liu S-S, Zhou F-K, Wu Y-B, Han K-L, Zhao J-Z, James T-D, et al.3,6-disubstituted carbazoler based bisboronic acids with unusual fluorescence transduction as enantioselective fluorescent chemosensors for tartaric acid [J]. J. Org. Chem., 2009,74(3):1333~1336
    [58]高文涛,杨锦宗,赵德丰.3-氨基-6-溴-N-乙基咔唑的合成工艺研究[J].精细石油化工,1999,(1):46~49
    [59]Schneider K, Nachtigall J, HanchenA, et al. Lipocarbazoles, Secondary Metabolites from Tsukamurella pseudospumae Acta 1857 with Antioxidative Activity [J]. J. Nat. Prod., 2009,72(10):1768~1772.
    [60]Eaton D-F. Nonlinear Optical Materials, Materials for Nonlinear Optics:chemical perspective [J]. ACS Symp. Ser., 1991,455(8):128~156
    [61]Knolker H-J, Reddy K-R. Isolation and synthesis of biologically active carbazole alkaloids [J]. Chem. Rev.,2002,102(11):4303-4428
    [62]苑元,王曾辉,高晋生.咔唑的理化性质和加工利用[J].燃料与化工.1997,28(4):226-228
    [63]萧楠.咔唑市场止处成长期[N].中国化工报.2004-02-06.
    [64]胡国强,侯莉莉,谢松强,杜钢军,黄文龙,张惠斌.非对称双(均三唑席夫碱)衍生物的合成及抗肿瘤活性[J].有机化学,2008,28(4):700-704
    [65]马永超,皇甫超中,胡国强,杨锐生,刘彬.三氮唑席大碱衍生物对人肝癌细胞SMMC27721的诱导分化作用[J].第四军医大学学报,2007,28(19):65-70
    [66]张文清,沈方红,丁卯,蒋鑫,夏玮.壳聚糖基功能材料的制备及性能测定[J].华东理工大学学报,2010,36(03):401-405
    [67]卑凤利,高颖,傅小奇,杨绪杰,汪信.含羧基席夫碱型配合物纳米结构材料的制备及谱学性质研究[J].化学学报,2009,67(10):1147-1154
    [68]Yong L, Huanh J-L, Lian B, et al. synthesis of titanium(Ⅳ) complexes with Schiff bases ligand and their catalytic activities for polymerization of ethylene and etyrene [J]. Chin. J. Chem., 2001,19(4):429~432
    [69]李良钊,尚晓敏,杜鸿志,崔冬梅,陈学思,景遐斌.席夫碱铝双核配合物的合成其对ε-己内酯的催化作用[J].应用化学,2007,24(8):878-88
    [70]胡乃梁,陈燕,杨家祥,宋继梅,徐季昭.一种西夫碱化合物的合成及其在汞测定中的应用[J].安徽大学学报,2008,32(6):65-68
    [71]李惠成,仵博万,张克钧,张兵,刘建宁.对羟基苯甲醛缩邻氨基苯甲酸与汞的荧光猝灭反应及其应用[J].分析测试学报,2010,29(4):415~417
    [72]Vaswani K-G. Keranen M-D. Detection of aqueous mercuric ion with a structurally simple 8-Hydroxyquinoline derived ON-OFF fluorosensor [J]. Inorg. Chem.,2009, 48(13):5797~5800
    [1]Gou C, Qin S-H, Wu H-Q, Wang Y, Luo J, Liu X-Y. A highly selective chemosensor for Cu2+ and Al3+ in two different ways based on Salicylaldehyde Schiff [J]. Inorg. Chem. Commun.,2011,14(10):1622~1625
    [2]Ghosh K, Sahal, Selective sensing of Zn(Ⅱ) ion by a simple anthracene-based tripodal chemosensor [J]. Tetrahedron Lett.,2010,51(38):4995~4999
    [3]Azadbakht R, Keypour H, A new Schiff base system bearing two naphthalene groups as fluorescent chemodosimeter for Zn2+ ion and its logic gate behavior[J]. Spectrochim Acta A,2012,85(1):293~297
    [4]Wang L-N, Qin W-W, Liu W-S. A sensitive Schiff-base fluorescent indicator for the detection of Zn2+[J]. Inorg. Chem. Commun.,2010,13(10):1122~1125
    [5]Bhalla V, Tejpal R, Kumar M. Terphenyl based fluorescent chemosensor for Cu2-+ and F-ions employing excited state intramolecular proton transfer [J]. Tetrahedron Lett., 2011, 67(6):1266-1271
    [6]Udhayakumari D, Saravanamoorthy S, Ashok M, Velmathi S. Simple imine linked colorimetric and fluorescent receptor for sensing Zn2+ ions in aqueous medium based on inhibition of ESIPT mechanism[J]. Tetrahedron Lett.,2011,52(37):4631-4635
    [7]Jiang J-Q, Gou C, Luo J, Yi C-L, Liu X-Y. A novel highly selective colorimetric sensor for Ni(II) ion using coumarin derivatives [J]. Inorg. Chem. Commun., 2012.15:12~ 15
    [8]Henze M-W, Muckenthaler M-U, Galy B, Camaschella C. Two to Tango:Regulation of Mammalian Iron Metabolism[J]. Cell.,2010,142(1):24~38
    [9]Lin W-Y, Long L-L, Yuan L, Cao Z-M, Feng J-B. A novel ratiometric fluorescent Fe3+ sensor based on a phenanthroimidazole chromophore [J]. Anal. Chim. Acta.,2009, 634(2):262~266
    [10]Hao E-H, Meng T, Zhang M, Pnag W-D, Zhou Y-Y, Jiao L-J. Solvent Dependent Fluorescent Properties of a 1,2,3-Triazole Linked 8-Hydroxyquinoline Chemosensor. Tunable Detection from Zinc(Ⅱ) to Iron(Ⅲ) in the CH3CN/H2O System [J]. J. Phys. Chem. A.,2011,115(29):8234~8241
    [11]Zou Y-M, Zhou H, Zhang J-L, Zhang L, Niu J-Y, Fe3+-selective fluorescent probe based on aminoantipyrine in aqueous solution [J]. Spectrochim. Acta. A, 2012,98:14~17
    [12]Liu X-F, Theil E-C Ferritins: Dynamic Management of Biological Iron and Oxygen Chemistry [J]. Ace. Chem. Res.,2005,38(3):167-175
    [13]Li Z-X, Zhang L-F, Li X-Y, Guo Y-K,Ni Z-H, Chen J-H, Wei L-H, Yu M-M. A fluorescent color/intensity changed chemosensor for Fe3+ by photo-induced electron transfer (PET) inhibition of fluoranthene derivative[J]. Dyes. Pigm.,2012,94(1):60~65
    [14]Devaraj S, Tsui Y-K, Chiang C-Y, Yen Y-P. A new dual functional sensor: Highly selective colorimetric chemosensor for. Fe+ and fluorescent sensor for Mg2+[J]. Spectrochim Acta A,2012,96:594~599
    [15]Perez C-A, Tong Y, Guo M. Iron Chelators as Potential Therapeutic Agents for Parkinsons Disease [J]. Curr. Bioact. Compd.,2008,4(3):150-158
    [16]Narayanaswamy N, Govindaraju T, Aldazine-based colorimetric sensors for Cu2+ and Fe3+ [J]. Sens. Actuators. B.,2012,161(1):304~310
    [17]Maria J C M, Colin F, Barry H-W, Graham H R C, et al. A new use for an old molecule: N-phenyl-2-(2-hydroxynaphthalen-1-ylmethylene)hydrazinecarbothioamide as a ratiometric 'Off-On' fluorescent probe for iron [J]. Tetrahedron Lett.,2012,53(6):670~ 673
    [18]Sahin C-A, Tokgoz I. A novel solidified floating organic drop microextraction method for preconcentration and determination of copper ions by flow injection flame atomic absorption spectrometry [J]. Anal. Chim. Acta.,2010,667(1-2):83~87
    [19]Linder M-C, Hazegh-Azam M, Copper biochemistry and molecular biology[J]. Am. J. Clin. Nutr.,1996,63(suppl):797S~811S
    [20]Shoaee H, Roshdi M, Khanlarzaden N, Beiraghi A. Simultaneous preconcentration of copper and mercury in water samples by cloud point extraction and their determination by inductively coupled plasma atomic emission spectrometry [J]. Spectrochim. Acta. A, 2012,98:70~75
    [21]Li T-R, Yang Z-Y, Li Y, Liu Z-C, Qi G-F, Wang B-D. A novel fluorescein derivative as a colorimetric chemosensor for detecting copper(Ⅱ) ion [J]. Dyes. Pigm.,2011, 88(1):103~108
    [22]Bag S-S, Kundu R, Talukdar S. Fluorometric sensing of Cu2+ ion with smart fluorescence light-up probe, triazolylpyrene (TNDMBPy) [J]. Tetrahedron Lett.,2012,53(44):5875~5879
    [23]Helal A, Rashid M H O, Choi C-H, Kim H-S. New regioisomeric naphthol-substituted thiazole based ratiometric fluorescence sensor for Zn2+ with a remarkable red shift in emission spectra [J]. Tetrahedron,2012,68(2):647~653
    [24]Li M, Lu H-Y, Liu R-L, Chen J-D, Chen C-F. Turn-On Fluorescent Sensor for Selective Detection of Zn2+,Cd2+, and Hg2+ in Water [J]. J. Org. Chem.,2012,77(7):3670~3673
    [25]Ray D, Bharadwaj P-K. A coumarin-derived fluorescence probe selective for magnesium [J]. Inorg. Chem., 2008,47(7):2252-2254
    [26]Wu J-S, Liu W-M, Zhuang X-Q, Wang F, Wang P-F, Tao S-L, Zhang X-H, Wu S-K, Lee S-T. Fluorescence turn on of coumarin derivatives by metal cations:A new signaling mechanism based on C=N isomerization [J]. Org. Lett.,2007,9(1):33~36
    [27]Mao J, Wang L, Dou W, Tang X-L, Yan Y, Liu W-S. Tuning the selectivity of two chemosensors to Fe(Ⅲ)andCr(Ⅲ)[J]. Org. Lett.,2007,9(22):4567~4570
    [28]Saluja P, Sharma H, Kaur N, Singh N, Jang D-O. Benzimidazole-based imine-linked chemosensor: chromogenic sensor for Mg2+ and fluorescent sensor for Cr3+ [J]. Tetrahedron,2012,68(10):2289~2293
    [29]Tang X-L, Peng X-H, Dou W, Mao J, Zheng J-R, Qin W-W, Liu W-S, Chang J, Yao X-J. Design of a semirigid molecule as a selective fluorescent chemosensor for recognition of Cd(Ⅱ)[J]. Org. Lett.,2008,10(17):3653-3656
    [30]Li L, Dang Y-Q, Li H-W, Wang B, Wu Y-Q. Fluorescent chemosensor based on Schiff base for selective detection of zinc(II) in aqueous solution[J]. Tetrahedron. Lett.,2010, 51(4):618-621
    [31]Udhayakumari D, Saravanamoorthy S, Ashok M, Velmathi S. Simple imine linked colorimetric and fluorescent receptor for sensing Zn2+ ions in aqueous medium based on inhibition of ESIPT mechanism [J]. Tetrahedron. Lett., 2011,52(36):4631~4635
    [32]Dong M, Dong Y-M, Ma T-H, Wang Y-W, Peng Y. A highly selective fluorescence-enhanced chemosensor for Al3+ in aqueous solution based on a hybrid ligand from BINOL scaffold and β-amino alcohol [J]. Inorg. Chimi. A,2012,381:137~142
    [1]Bricks J-L, Kovalchuk A, Rurack K. On the development of sensor molecules that display Fe-III-amplified fluorescence [J]. J. Am. Chem. Soc., 2005,127(39):13522~13529
    [2]Ma Y-M, Luo W, Camplo M, Liu Z-D, Hider R-C. Novel iron-specific fluorescent probes [J]. Bio. Med. Chem. Lett.,2005,15(14):3450~3452
    [3]Li Z-X, Zhou W, Zhang L-F, Yuan R-L, Liu X-J, Wei L-H, Yu M-M. Highly selective ratiometric fluorescent detection of Fe3+ with a polyphenyl derivative [J]. J. Luminescence.,2013,136:141~144
    [4]Koner R-R, Sinha S, Kumar S, Nandi C-K, Ghosh S.2-Aminopyridine derivative as fluorescence 'On-Off molecular switch for selective detection of Fe3+/Hg2+ [J]. Tetrahedron Lett.,2012,53(18):2302~2307
    [5]Arwar J-A, Ahmad M. Seleetive detemination of chromium (Ⅳ) by indirect spectrophotomrty[J]. J. Chem. Soc. Parkistan,1996,18:291-296
    [6]Bravo V, Gil S, Costero A-M, Kneeteman M-N, Llaosa U, Emancini P M E, Ochando L-E, Parra M. A new phenanthrene-based bis-oxime chemosensor for Fe (Ⅲ) and Cr (Ⅲ) discrimination [J]. Tetrahedron,2012,68(24):4882~4887
    [7]Weerasinghe A-J, Schmiesing C, Sinn E. Highly sensitive and selective reversible sensor for the detection of Cr3+[J]. Tetrahedron Lett.,2009,50(46):6407~6410
    [8]钱丽丽,张芝兰,陈海杰,徐冬梅,张可达.一种1,8-萘酰亚胺Cr3+离子荧光探针的研究[J].化学研究与应用,2010,22(5):539~543
    [9]Saluja P, Kaur N, Singh N, Jang D-O. Benzimidazole-based fluorescent sensors for Cr3+ and their resultant complexes for sensing HSO4- and F- [J]. Tetrahedron,2012, 68(41):8551~8556
    [10]Hoshi S, Konuma K, Sugawara K, et al. The simple and rapid spedrophotometric determination of trace [J]. J. Chem. Soc. Pakistan,1996,18:291-296
    [11]Gao P-Y, Feng R-L, Zhang H-Z, et al. Determination of trace chromium in water by graphite fumaec atomic absorption speetrophotometry after preconcentration on a soluble membrane fillter [J]. Analytieal Letters,1998,31(6):1095~1106
    [12]Sirinawin W, Westerlund S. Analysis and storage of samples for chromium determination in seawater [J]. Analytica ChimicaActa,1997,356(1):35~40
    [13]Ueda J, Satoh H, Kagaya S. Determination of chromium (Ⅲ) and chromium (Ⅳ) by graphite-furnace atomic absorption spectrometry after coprecipitation with hafnium hydroxide [J]. Analytical Seience,1997,13(4):613~617
    [14]Kotas J, Staeieka Z. Chromium occurrence in the environment and methods of its speeiation [J]. Enviromental Pollution,2000,107(3):263~283
    [15]Lien G Y O, Jen J-F. Simultaneous preconcentration of chromium (Ⅲ) and chromium (Ⅳ) prior to speciation analysis[J]. Analyt. Chim. Aeta.,1993,279(2):329~334
    [16]Bergmann H, Harms K. Analysis of dissolved Cr3+ and Cr6+ in water by APDC- M1BK extraction and atomic absorption spectrometry [J]. J. Analyt. Chem.,1997,297:381~ 383
    [17]Weerasinghe A-J, Schmiesing C, Varaganti S, Ramakrishna G, Sinn E. Single-and Multiphoton Turn-On Fluorescent Fe3+ Sensors Based on Bis(rhodamine) [J]. J. Phys. Chem. B,2010,114(29):9413-9419
    [18]Narayanaswamy N, Govindaraju T. Aldazine-based colorimetric sensors for Cu2+ and Fe3+[J]. Sensor. Actual. B-Chem.,2012,161(1):304~310
    [19]Jung J-Y, Han S-J, Chun J, Lee C, Yoon J. New thiazolothiazole derivatives as fluorescent chemosensors for Cr3+ and Al3+[J]. Dyes Pigm., 2012,94(3):423~426
    [20]Renuga D, Udhayakumari D, Suganya S, Velmathi S. Novel thiophene based colorimetric and fluorescent receptor for selective recognition of fluoride ions[J]. Tetrahedron Lett., 2012,53(38):5068~5070
    [21]Caglar Y, Gumrukcuoglu N, Saka E-T, Ocak M, Kantekin H, Ocak U. Phthalocyanine-based fluorescent chemosensor for the sensing of Zn (II) in dimethyl sulfoxide-acetonitrile[J]. J. Incl. Phenom. Macrocycl. Chem., 2012,72(3-4):443~ 447
    [22]Zhou Y, Li Z-X, Zang S-Q, Zhu Y-Y, Zhang H-Y, Hou H-W, Mak T C W. A Novel Sensitive Turn-on Fluorescent Zn2+ Chemosensor Based on an Easy To Prepare C-3-Symmetric Schiff-Base Derivative in 100% Aqueous Solution [J]. Org. Lett.,2012, 14(5):1214~1217
    [23]Wu H-H, Sun Y-L, Wan C-F, Yang S-T, Chen S-J, Hu C-H, Wu A-T. Highly selective and sensitive fluorescent chemosensor for Hg2+ in aqueous solution [J]. Tetrahedron Lett., 2012,53(9):1169~1172
    [24]Ma X, Wang Q-L, Tan Z-W, Wei D-B, Du Y-G. A "Turn-on" Fluorescent Hg2+ Chemosensor Based on Ferrier Carbocyclization[J]. Org. Lett.,2012,14(3):820~823
    [25]Wang L-N, Yan J-X, Qin W-W, Liu W-S, Wang R. A new rhodamine-based single molecule multianalyte (Cu2+, Hg2+) sensor and its application in the biological system [J]. Dyes Pigm., 2012,92(3):1083~1090
    [26]Wang L-N, Qin W-W, Tang X-L, Dou W, Liu W-S. Development and Applications of Fluorescent Indicators for Mg2+ and Zn2+[J]. J. Phys. Chem. A.,2011,115(9):1609~ 1616
    [27]Maguir M-E, Cowan J-A. Magnesium chemistry and biochemistry [J]. Biometals,2002, 15(3):203~210
    [28]Chen X-Y, Shi J, Li Y-M, Wang F-L, Wu X, Guo Q-X, Liu L. Two-photo fluorescent probe of biological Zn(Ⅱ) derived from 7-hydroxyquinoline [J]. Org. Lett.,2009, 11(19):4426~4429
    [29]Zhang H-S, Wang H, Zhao Y-Y. In Molecular Probes and Detection Reagents [M]. Beijing: Science Press,2002: Vol.3.
    [30]Lin Y-D, Peng Y-S, Su W-T, Tu C-H, Sun C-H, Chow T-J. A highly selective colorimetric and turn-on fluorescent probe for cyanide anion [J]. Tetrahedron.,2012,68(11):2523~ 2526
    [31]Misra A, Shahid M. Chromo and Fluorogenic Properties of Some Azo-Phenol Derivatives and Recognition of Hg2+ Ion in Aqueous Medium by Enhanced Fluorescence [J]. J. Phys. Chem. C,2010,114(39):16726~16739
    [1]Mao J, He Q, Liu W-S. An rhodamine-based fluorescence probe for iron ion determination in aqueous solution [J]. Talanta.2010,80(5):2093~2098
    [2]Ma Y-M, Hider R-C. The selective quantification of iron by hexadentate fluorescent probes [J]. Bioorg. Med. Chem.,2009,17(23):8093-8101
    [3]Xiang Y, Tong A-J. A new rhodamine-based chemosensor exhibiting selective Fe-III-amplified fluorescence [J]. Org. Lett.,2006,8(8):1549~1552
    [4]Esposito B-P, Epsztejn S, Breuer W, Cabantchik Z-I. A Review of Fluorescence Methods for Assessing Labile Iron in Cells and Biological Fluids [J]. Anal. Biochem.,2002, 304(1):1~18
    [5]Fan L-J, Jones W-E. A highly selective and sensitive inorganic/organic hybrid polymer fluorescence " turn-on " chemosensory system for iron cations [J]. J. Am. Chem. Soc., 2006,128(21):6784~6785
    [6]Lytton S-D, Mester B, Libman J, Shanzer A, Cabantchik Z-I. Monitoring of iron(Ⅲ) removal from biological sources using a fluorescent siderophore [J]. Anal. Bioc hem., 1992,205(2):326~333
    [7]Kumar M, Kumar N, Bhalla V, Sharma P-R, Kaur T. Highly Selective Fluorescence Turn-on Chemodosimeter Based on Rhodamine for Nanomolar Detection of Copper Ions [J]. Org. Lett.,2012,14(1):406~409
    [8]Shoaee H, Roshdi M, Khanlarzaden N, Beiraghi A, Simultaneous preconcentration of copper and mercury in water samples by cloud point extraction and their determination by inductively coupled plasma atomic emission spectrometry [J]. Spectrochim. Acta. A, 2012,98:70~75
    [9]陈同斌,黄启飞,高定,郑玉琪,吴吉夫.中国城市污泥的重金属含量及其变化趋势[J].环境科学学报,2003,23(5):561-569
    [10]Singh A-K, Gupta V-K, Gupta B. Chromium(Ⅲ) selecyive membrane sensor based on Schiff bases as chelating ionophores [J]. Anal. Chim. Acta.,2007.585(1):171~178
    [11]Valeur B, Leray I. Design principles of fluorescentmolecular sensors for cation recognition [J]. Coord. Chem. Rev.,2000,205(8):3-40
    [12]Gokel G-W. Leevy W, Weber M-E. Crown ethers:sensors for ions and molecular scaffolds formaterials and biological models [J]. Chem. Rev,2004,104(5):2723~2 750
    [13]Silva A P D, Fox D-B, Huxley A J M, Moody T-S. Combining luminescence, coordination and electron transfer for signalling purposes [J]. Coord. Chem. Rev,2000, 205(1):41~57
    [14]宋玉民,马新贤,杨武.一种对Fe(Ⅲ)进行裸眼识别和检测探针的荧光性质[J].光谱学与光谱分析,2012,32(12):3271-3275
    [15]Lin W, Yuan L, Cao X. A rational approach to emission ratio enhancement of chemodosimeters via regulation of intramolecular charge transfer [J]. Tetrahedron Lett., 2008,49(46):6585~6588
    [16]Mao J, Wang L, Dou W, et al. Tuning the selectivity of two chemosensors to Fe(III) and Cr(Ⅲ)[J]. Org. lett.,2007,9(22):4567~4570
    [17]魏太保,李军舰,林奇,姚虹,郭英,白翠冰,谢永强,张有明.N-芳基香豆素甲基酮缩氨基硫脲对Cu2+的选择性比色识别[J].高等化学学报,2012,33(11):2452~2456
    [18]王利涛,何晓明,郭勇,徐健,邵士俊.双吲哚烯类受体对氨基酸的比色识别作用[J].高等学校化学学报,2011,32(9):2109~2113
    [19]Lee M-H, Kim H-J, Yoon S, Park N, Kim J-S. Metal ion induced FRET OFF-ON in tren/dansyl-appended rhodamine[J]. Org. Lett., 2008, 10(2):213~216
    [21]Li Z-X, Zhao W-Y, Zhang Y, Zhang L-F, Yu M-M, Liu J-X, Zhang H-Y. An 'off-on' fluorescent chemosensor of selectivity to Cr3+ and its application to MCF-7 cells[J]. Tetrahedron,2011,67(37):7096~7100
    [22]Huang K-W, Yang H, Zhou Z-G, Yu M-X, Li F-Y, Gao X, Yi T, Huang C-H. Multisignall chemosensor for Cr(3+) and its application in bioimaging [J]. Org. Lett., 2008,10(12): 2557~2560
    [23]Saluja P, Sharma H, Kaur N, Singh N, Jang D-O. Benzimidazole-based imine-linked chemosensor: chromogenic sensor for Mg2+ and fluorescent sensor for Cr3+ [J]. Tetrahedron,2012,68(10):2289~2293
    [24]Hu X-Y, Zhang X-Y, He G-J, He C, Duan C-Y. A FRET approach for luminescence sensing Cr3+ in aqueous solution and living cells through functionalizing glutathione and glucose moieties [J]. Tetrahedron,2011,67(6):1091~1095
    , [25] Pourreza N, Hoveizavi R. Simultaneous preconcentration of Cu, Fe and Pb as methylthymol blue complexes on naphthalene adsorbent and flame atomic absorption determination [J]. Anal.Chim. Acta" 2005,549(1):124-128.
    [26]Romani J-O, Moreda A-P, Barrera A-B, et al. Evaluation of commercial C18 cartridges for trace elements solid phase extraction from seawater followed by inductively coupled plasma-optical mission spectrometry determination [J]. Anal. Chim. Acta.,2005, 536(2):213~218
    [27]Beni V, Ogurtsov V-I, Bakunin N-V, et al. Development of a portable electroanalytical system for the stripping voltammetry of metals:determination of copper in acetic acid soil extracts [J]. Anal. Chim. Acta.,2005,52(1):190~200
    [28]Lakowicz R-J. Topics in Fluorescence Spectroscopy Vol.4:Probe Design and Chemical Sensing [R]. New York:Kluwer Academic Publishers,2002.
    [29]Gou C, Qin S-H, Wu H-Q, Wang Y, Luo J, Liu X-Y. A highly selective chemosensor for Cu2+ and Al3+ in two different ways based on Salicylaldehyde Schiff [J]. Inorg. Chem. Commun.,2011,14(10):1622~1625
    [30]Azadbakht R, Keypour H. A new Schiff base system bearing two naphthalene groups as fluorescent chemodosimeter for Zn2+ ion and its logic gate behavior [J]. Spectrochim Acta A,2012,85(1):293~297
    [31]Bhalla V, Tejpal R, Kumar M, Puri R-K, Mahajan R-K. Terphenyl based 'Turn On' fluorescent sensor for mercury [J], Tetrahedron Lett.,2009,50(22):2649~2652
    [32]Kumar M, Kumar R, Bhalla V, Differential fluorogenic sensing of F- versus CN- based on thiacalix[4]arene derivatives [J]. Tetrahedron Lett.,2013,54(12):1524~1527
    [33]Jiang J-Q, Gou C, Luo J, Yi C-L, Liu X-Y. A novel highly selective colorimetric sensor for Ni(II) ion using coumarin derivatives [J]. Inorg. Chem. Commun.,2012,15:12~ 15
    [34]刘阁,邵杰.基于分子内电荷转移的阴离子比率荧光分子探针[J].无机化学学报,2011, 27(4):731-736
    [35]Shen K, Yang X, Cheng Y.X, Zhu C. J. A highly selective ratiometric fluorescent chemosensor for Zn2+ ion based on a polyimine macrocycle [J]. Tetrahedron,2012, 68(29):5719~5723
    [36]Zhang S-F, Zhou D-H, Yang J-Z. Nitration of carbazole and N-alkylcarbazoles [J]. Dyes and Pigments,1995,27(4):287~296
    [37]Wang L-Y, Ye D-C, Cao D-R. A novel coumarin Schiff-base as a Ni(Ⅱ) ion colorimetric sensor [J]. Spectrochim. Acta. A,2012,90:40~44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700